首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 140 毫秒
1.
富尖晶石球粒状CAI(富Ca-Al难熔包体)是球粒陨石中一种特殊类型的CAI,在南极格罗夫山碳质球粒陨石GRV020025和GRV021579中共发现两个富尖晶石球粒状CAI———GRV020025-3RI8和GRV021579-3RI5。GRV020025-3RI8具有占统治地位的尖晶石,在球粒的最外边存在严重蚀变的不规则边,钙钛矿主要分布在靠近边的位置。与GRV020025-3RI8比较,GRV021579-3RI5的尖晶石中的钙钛矿消失,深绿辉石出现,薄薄的蚀变层位于尖晶石核和富钙辉石边之间。两个富尖晶石球粒状CAI的尖晶石均具有低含量FeO和ZnO的特征,而且GRV021579-3RI5具有较GRV020025-3RI8更高的TiO2含量。岩石学和矿物化学特征表明,GRV020025-3RI8和GRV021579-3RI5都经历过熔融结晶过程,它们的蚀变均发生在非氧化的含水或无水的环境中。  相似文献   

2.
本文研究了2个富钙长石-橄榄石型包体和2个富黄长石-尖晶石型和富尖晶石-辉石型包体(分别来自宁强和南极格罗夫山碳质球粒陨石)的矿物岩石学特征,并对它们进行了对比。富钙长石-橄榄石型包体的矿物模式组成具有富橄榄石和缺失黄长石的特征,其可能是球粒和典型难熔包体之间的中间产物,是认识它们之间相互关系的钥匙。矿物岩石学特征表明富黄长石-尖晶石型和富尖晶石-辉石型包体可能是星云直接凝聚的产物,而富钙长石-橄榄石型包体经历过熔融结晶过程。富钙长石-橄榄石型包体的初始物质可能是富Al的球粒或含难熔组分的蠕虫状橄榄石集合体。矿物化学组成对比研究发现,GRV 022459-RI6中的尖晶石具有最富FeO的特征,表明包体的蚀变可能发生在高氧逸度的星云环境。  相似文献   

3.
富Ca,Al包体、球粒和蠕虫状橄榄石集合体都是早期星云事件的产物。本文探讨了4个富橄榄石的富Ca,Al组分集合体的矿物岩石学特征,并对它们进行了对比。矿物岩石学特征表明含橄榄石边的富尖晶石-辉石型包体和富Ca,Al组分蠕虫状橄榄石集合体都属于星云直接凝聚的产物,而富钙长石-橄榄石型包体(POI)和富Ca,Al组分球粒经历过熔融结晶过程。矿物模式组成表明POI包体和富Ca,Al组分球粒可能是认识典型富Ca,Al包体与球粒之间相互关系的钥匙。蠕虫状橄榄石集合体GRV022459-2C1中尖晶石普遍具有高的FeO含量,表明其蚀变发生于高氧逸度的星云环境。球粒与粗粒富Ca,Al包体可能属于同一热事件的产物,粗粒富Ca,Al包体形成于富Ca,Al矿物富集的区域,Mg,Fe质硅酸盐球粒形成于富Ca,Al矿物缺失的区域,POI包体和富Ca,Al组分球粒可能形成于上述两个区域之间的过渡区域。  相似文献   

4.
富Ca、Al包体(简称CAI)形成于太阳星云演化的最初始阶段,其成因模式主要包括:气—固凝聚、熔融结晶和部分熔融以及高温蒸发作用等。最近,通过对不同球粒陨石化学群中的CAI进行岩石学特征对比研究,发现不同化学群中的CAI具有相似的大小和类型分布特征,表明不同球粒陨石化学群中的CAI极可能具有相似的起源。该结果,与前人的氧同位素、Al—Mg同位素体系以及稀土元素等研究得到的结论一致。不同球粒陨石化学群中的CAI具有相似的成因,并很可能形成于太阳星云的相同区域,随后迁移到不同球粒陨石群的吸积区域。  相似文献   

5.
肇东、毫县陨石中的黑包体在总体成分、形状、大小上与陨石球粒相似,但两者的内部结构以及矿物组合不同。黑包体中矿物呈密堆状,主要由细粒橄榄石以及其它硅酸盐微晶组成,不含火成玻璃等特点表明黑包体未经历过熔融,它们可能是形成球粒的毛坯。因此认为球粒的形成有三个阶段:星云凝聚形成尘粒—尘粒吸积形成黑包体—黑包体熔融形成球粒。  相似文献   

6.
戴德求  包海梅  刘爽  尹锋 《岩石学报》2020,36(6):1850-1856
富Al球粒是原始球粒陨石中一种矿物岩石学特征介于富钙铝包体(CAIs)和镁铁质硅酸盐球粒之间的特殊集合体,所以常常认为富Al球粒在认识CAIs和镁铁质硅酸盐球粒形成演化过程中的相互联系具有特殊意义。然而,对富Al球粒的初始物质组成以及形成演化过程一直存在较多争议,而氧同位素组成研究能够对球粒演化和早期星云环境等提供重要的信息。在本文中我们报导了来自Kainsaz(1937年降落于俄罗斯,CO3型)碳质球粒陨石中的2个富Al球粒(编号K1-CH1和K2-CH2)的矿物岩石学和氧同位素组成特征。K1-CH1的矿物组成主要为橄榄石、低钙辉石和富钙长石,K2-CH2为橄榄石和富钙长石。2个球粒中的矿物均具有贫~(16)O同位素组成特征。K1-CH1中矿物的△~(17)O组成基本上位于2个区间:-11.1‰~-8.7‰和-3.9‰~0.4‰;而K2-CH2的△~(17)O介于-6.6‰~-0.6‰之间,且具有从中部至边部升高的趋势。矿物岩石学和氧同位素特征表明,这2个富Al球粒的初始物质组成为富CAIs和镁铁质硅酸盐。在球粒熔融结晶过程中,与贫~(16)O同位素组成(△~(17)O:-8.7‰~-7.8‰)的星云发生了氧同位素交换。球粒形成后,发生迁移进入陨石母体,在相对更贫~(16)O同位素组成(△~(17)O:-0.6‰~0.4‰)的母体中(流体参与)发生变质作用,并再次发生了氧同位素交换。  相似文献   

7.
在通过对Allende(CV3)碳质球粒陨石的4个光薄片中发现的5个特殊蠕虫状橄榄石集合体(AOA)的岩石学和矿物化学特征研究,证实它们的矿物组合以富橄榄石和霞石为特征,可见少量的金属硫化物。橄榄石颗粒Fa(Fe/(Fe Mg)原子百分比)值范围在34.1 mol%~42.2 mol%,百分标准平均方差(PMD)值为6.1,表明这些颗粒达到了一定的热力学平衡。AOA可能属于星云直接凝聚形成,AOA和细粒CAI(FTA和富尖晶石-辉石型CAI)可能代表了太阳星云从高温到低温连续凝聚的产物。认为AOA的蚀变作用发生在太阳星云中,霞石和铁橄榄石可能是后期水化蚀变的产物,霞石可能替代了AOA中原始的矿物——钙长石和黄长石等。AOA可能在星云中还经历了热蚀变作用的过程,橄榄石和霞石颗粒均具有高的FeO质量分数(29.1%~34.4%,4.04%~9.70%),表明蚀变反应发生在高逸氧度的星云环境下。  相似文献   

8.
许伟  李文强  田世洪  杨竹森 《地质学报》2023,97(4):1030-1045
西藏南部的中新世含暗色微粒包体的富钾埃达克质岩被认为是之前的大陆地壳在石榴子石稳定压力下发生部分熔融的熔体与同时期的幔源超钾质火山岩发生岩浆混合或混杂的产物。为检验这一观点,本文对雅鲁藏布江缝合带西段仲巴微地体内的中新世马莜木富钾埃达克质岩及其内的暗色微粒包体开展了岩石学、锆石U-Pb定年、矿物电子探针分析以及全岩主微量元素和Sr-Nd同位素测试等方面的工作。结果显示暗色微粒包体和富钾埃达克质岩具有相似的结晶年龄(~17.5 Ma)、矿物组合(石英+长石+角闪石+黑云母)和矿物成分,但暗色微粒包体比富钾埃达克质岩含更多的角闪石和黑云母,且具有比富钾埃达克质岩低的K2O和SiO2以及高的MgO、TiO2和P2O5含量。除此之外,富钾埃达克质岩和暗色微粒包体还表现出相似的全岩Sr-Nd同位素组成:富钾埃达克质岩的(87Sr/86Sr)i和εNd(t)值分别为0.70933~0.70950和-8....  相似文献   

9.
对Allende陨石中一块富深绿辉石--钙长石-尖晶石难熔包体进行了岩石学和矿物化学研究。包体近似球形(半径~3 mm),边部为钙长石和方钠石(Mg O=1.04%~2.69%;Fe O1.57%)组成的矿物圈层(厚度~200μm),内部主要矿物有深绿辉石(Al2O3=7.63%~16.08%;Ti O2=1.73%~4.48%)、钙长石(Mg O0.41%;Na2O0.14%)和尖晶石(Fe O1.70%)。包体中残留黄长石(k70~85,Na2O0.22%),颗粒较小(10μm),大部分都被蚀变成为钙铝榴石、钙镁橄榄石和氯硅铝钙石(Mg O=5.07%~8.04%;Fe O0.31%)。包体规则的外形不可能由气—固凝聚形成,而可能是由熔融重结晶形成。黄长石含量较少以及残余黄长石非常富镁说明包体可能经历过蚀变作用,且方钠石与氯硅铝钙石的产状和成分差异说明包体可能经历了两次不同的蚀变事件。  相似文献   

10.
花岗岩中较少包含麻粒岩包体,但可以为地壳部分熔融、分异过程提供重要的信息。华南钦州湾花岗岩带中印支期强过铝花岗岩(台马—大寺和旧州岩体)包含丰富的麻粒岩包体,这些包体可分为两类:富斜长石的麻粒岩和贫斜长石的麻粒岩。麻粒岩包体富集Al2O3、Fe O、Mg O、Ti O2、REE及过渡族元素,亏损Si O2、Na2O、K2O、Rb等,同时包体与寄主岩具有相似的锆石Hf同位素组成和形成年龄,表明麻粒岩包体为残留体成因。地球化学特征表明,两类麻粒岩包体分别对应台马—大寺和旧州岩体的残留体。两类麻粒岩残留体相同的Nd同位素组成表明其起源于相似的源区,但不同的矿物组合限定岩浆产生时的p-T条件分别为5 kbar和1 010~1 040℃(台马—大寺岩体)、~8 kbar和840~870℃(旧州岩体)。主量元素模拟表明花岗岩的成分变化受到分离结晶和残留体不混熔作用的影响,但是结合实验岩石学研究,两组麻粒岩残留体及其对应的寄主花岗岩之间成分上的差异主要由压力控制。另外,麻粒岩残留体与寄主花岗岩之间Sr-Nd同位素组成显著不同。花岗岩中轻稀土元素含量低于平衡条件下饱和时的含量、寄主花岗岩与麻粒岩包体相似的锆石Hf同位素组成,以及同位素模拟结果表明,这种Sr-Nd同位素组成的差异不是由岩浆混合或源区混合导致的,而是不平衡部分熔融引起的。  相似文献   

11.
Three new carbonaceous chondrites (GRV 020025,021579 and 022459) collected from the Grove Mountains (GRV), Antarctica, have been classified as the CM2, CO3 and CV3 chondrites, respectively. A total of 27 Ca- and Al-rich inclusions have been found in the three meteorites, which are the earliest assemblages formed in the solar nebula. Most of the inclusions are intensively altered, with abundant phyllosilicates in the inclusions from GRV 020025 and FeO enrichment of spinel in those from GRV 022459. Except for one spinel-spherule in each of GRV 020025 and  相似文献   

12.
A coordinated mineralogical and oxygen isotopic study of four fine-grained calcium-, aluminum-rich inclusions (CAIs) from the ALHA77307 CO3.0 carbonaceous chondrite was conducted. Three of the inclusions studied, 05, 1-65, and 2-119, all have nodular structures that represent three major groups, melilite-rich, spinel-rich, and hibonite-rich, based on their primary core mineral assemblages. A condensation origin was inferred for these CAIs. However, the difference in their primary core mineralogy reflects unique nebular environments in which multiple gas-solid reactions occurred under disequilibrium conditions to form hibonite, spinel, and melilite with minor perovskite and Al,Ti-rich diopside. A common occurrence of a diopside rim on the CAIs records a widespread event that marks the end of their condensation as a result of isolation from a nebular gas. An exception is a rare inclusion 2-112 that contains euhedral spinel crystals embedded in melilite, suggesting this CAI had been re-melted. All of the fine-grained CAIs analyzed in ALHA77307 are 16O-rich with an average Δ17O value of ∼−22 ± 5‰ (2σ), indicating no apparent correlation between their textures and oxygen isotopic compositions. We therefore conclude that a prevalent 16O-rich gas reservoir existed in a region of the solar nebula where CO3 fine-grained CAIs formed, initially by condensation and then later, some of them were reprocessed by melting event(s).  相似文献   

13.
14.
15.
The forsterite-bearing Type B (FoB) CAI SJ101 consists of three major structural units: (1) light patches of sector-zoned, poikilitic Al-rich clinopyroxene (Cpx) with numerous inclusions of small spinel grains and aggregates and subordinate amounts of Mg-rich melilite (Mel) and anorthite (An) (Sp-Cpx lithology), (2) dark sinuous bands of Al-rich clinopyroxene with large (up to ∼300 × 60 μm) poikilitically enclosed euhedral forsterite (Fo) crystals (Fo-Cpx lithology), and (3) the external Cpx-Sp-An rim overlying the entire inclusion. The two major lithologies are always separated by a transition zone of clinopyroxene poikilitically enclosing both forsterite and spinel. The patches of the Sp-Cpx lithology exhibit significant textural and mineralogical variability that is size-dependent. Small patches typically consist of Cpx and spinel with minor remnants of melilite and/or its alteration products. Large patches contain Mel-An-rich cores with either equigranular-ophitic-subophitic or ‘lacy’ textures reminiscent of those in Types B or C CAIs, respectively. All silicates poikilitically enclose numerous spinel grains of identical habit. Both melilite and anorthite gradually disappear toward the boundary with the Fo-Cpx lithology. Neither the evaporation mantle of Al-rich melilite typical of other FoBs nor the Wark-Lovering rim is present. Secondary minerals include grossular, monticellite, magnetite, and a few grains of wollastonite, andradite, and nepheline.Being a rather typical FoB mineralogically and chemically, texturally SJ101 differs from other FoBs in displaying the nearly complete segregation of forsterite from spinel which occur only in the Fo-Cpx and Sp-Cpx lithologies, respectively. The complex, convoluted internal structure of SJ101 suggests that the coarse-grained Sp-An-Mel-Cpx cores and Fo-Cpx lithology represent the precursor materials of FoBs, proto-CAIs and Fo-rich accretionary rims. While the inferred chemistry and mineralogy of the Fo-rich rims are fairly typical, the high Åk content in SJ101 melilite (78.7-82.3 mol.%) implies that the SJ101 proto-CAIs represent a new type of CAIs that has not been sampled before. This type of CAIs might have formed by remelting of spinel-rich condensates.The Group II REE pattern, slightly negative δ29Si and δ25Mg values, and nearly solar ratios of the major elements in the bulk SJ101 suggest that its precursors, proto-CAIs and Fo-rich rims, could have formed by a non-equilibrium condensation in a closed system of solar composition somewhat depleted in a super-refractory evaporation residue. The proposed formation scenario of SJ101 invokes a non-steady cooling and condensation of the nebular gas interrupted by at least two distinct melting episodes required to account for the igneous textures of the Mel-An-Cpx-rich cores (proto-CAIs) and the Fo-Cpx lithology.  相似文献   

16.
A correlation of petrography, mineral chemistry and in situ oxygen isotopic compositions of fine-grained olivine from the matrix and of fine- and coarse-grained olivine from accretionary rims around Ca-Al-rich inclusions (CAIs) and chondrules in CV chondrites is used here to constrain the processes that occurred in the solar nebula and on the CV parent asteroid. The accretionary rims around Leoville, Vigarano, and Allende CAIs exhibit a layered structure: the inner layer consists of coarse-grained, forsteritic and 16O-rich olivine (Fa1-40 and Δ17O = −24‰ to −5‰; the higher values are always found in the outer part of the layer and only in the most porous meteorites), whereas the middle and the outer layers contain finer-grained olivines that are more fayalitic and 16O-depleted (Fa15-50 and Δ17O = −18‰ to +1‰). The CV matrices and accretionary rims around chondrules have olivine grains of textures, chemical and isotopic compositions similar to those in the outer layers of accretionary rims around CAIs. There is a correlation between local sample porosity and olivine chemical and isotopic compositions: the more compact regions (the inner accretionary rim layer) have the most MgO- and 16O-rich compositions, whereas the more porous regions (outer rim layers around CAIs, accretionary rims around chondrules, and matrices) have the most MgO- and 16O-poor compositions. In addition, there is a negative correlation of olivine grain size with fayalite contents and Δ17O values. However, not all fine-grained olivines are FeO-rich and 16O-poor; some small (<1 μm in Leoville and 5-10 μm in Vigarano and Allende) ferrous (Fa>20) olivine grains in the outer layers of the CAI accretionary rims and in the matrix show significant enrichments in 16O (Δ17O = −20‰ to −10‰). We infer that the inner layer of the accretionary rims around CAIs and, at least, some olivine grains in the finer portions of accretionary rims and CV matrices formed in an 16O-rich gaseous reservoir, probably in the CAI-forming region. Grains in the outer layers of the CAI accretionary rims and in the rims around chondrules as well as matrix may have also originated as 16O-rich olivine. However, these olivines must have exchanged O isotopes to variable extents in the presence of an 16O-poor reservoir, possibly the nebular gas in the chondrule-forming region(s) and/or fluids in the parent body. The observed trend in isotopic compositions may arise from mixtures of 16O-rich forsterites with grain overgrowths or newly formed grains of 16O-poor fayalitic olivines formed during parent body metamorphism. However, the observed correlations of chemical and isotopic compositions of olivine with grain size and local porosity of the host meteorite suggest that olivine accreted as a single population of 16O-rich forsterite and subsequently exchanged Fe-Mg and O isotopes in situ in the presence of aqueous solutions (i.e., fluid-assisted thermal metamorphism).  相似文献   

17.
Amoeboid olivine aggregates (AOAs) are the most common type of refractory inclusions in CM, CR, CH, CV, CO, and ungrouped carbonaceous chondrites Acfer 094 and Adelaide; only one AOA was found in the CBb chondrite Hammadah al Hamra 237 and none were observed in the CBa chondrites Bencubbin, Gujba, and Weatherford. In primitive (unaltered and unmetamorphosed) carbonaceous chondrites, AOAs consist of forsterite (Fa<2), Fe, Ni-metal (5-12 wt% Ni), and Ca, Al-rich inclusions (CAIs) composed of Al-diopside, spinel, anorthite, and very rare melilite. Melilite is typically replaced by a fine-grained mixture of spinel, Al-diopside, and ±anorthite; spinel is replaced by anorthite. About 10% of AOAs contain low-Ca pyroxene replacing forsterite. Forsterite and spinel are always 16O-rich (δ17,18O∼−40‰ to −50‰), whereas melilite, anorthite, and diopside could be either similarly 16O-rich or 16O-depleted to varying degrees; the latter is common in AOAs from altered and metamorphosed carbonaceous chondrites such as some CVs and COs. Low-Ca pyroxene is either 16O-rich (δ17,18O∼−40‰) or 16O-poor (δ17,18O∼0‰). Most AOAs in CV chondrites have unfractionated (∼2-10×CI) rare-earth element patterns. AOAs have similar textures, mineralogy and oxygen isotopic compositions to those of forsterite-rich accretionary rims surrounding different types of CAIs (compact and fluffy Type A, Type B, and fine-grained, spinel-rich) in CV and CR chondrites. AOAs in primitive carbonaceous chondrites show no evidence for alteration and thermal metamorphism. Secondary minerals in AOAs from CR, CM, and CO, and CV chondrites are similar to those in chondrules, CAIs, and matrices of their host meteorites and include phyllosilicates, magnetite, carbonates, nepheline, sodalite, grossular, wollastonite, hedenbergite, andradite, and ferrous olivine.Our observations and a thermodynamic analysis suggest that AOAs and forsterite-rich accretionary rims formed in 16O-rich gaseous reservoirs, probably in the CAI-forming region(s), as aggregates of solar nebular condensates originally composed of forsterite, Fe, Ni-metal, and CAIs. Some of the CAIs were melted prior to aggregation into AOAs and experienced formation of Wark-Lovering rims. Before and possibly after the aggregation, melilite and spinel in CAIs reacted with SiO and Mg of the solar nebula gas enriched in 16O to form Al-diopside and anorthite. Forsterite in some AOAs reacted with 16O-enriched SiO gas to form low-Ca pyroxene. Some other AOAs were either reheated in 16O-poor gaseous reservoirs or coated by 16O-depleted pyroxene-rich dust and melted to varying degrees, possibly during chondrule formation. The most extensively melted AOAs experienced oxygen isotope exchange with 16O-poor nebular gas and may have been transformed into magnesian (Type I) chondrules. Secondary mineralization and at least some of the oxygen isotope exchange in AOAs from altered and metamorphosed chondrites must have resulted from alteration in the presence of aqueous solutions after aggregation and lithification of the chondrite parent asteroids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号