首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 234 毫秒
1.
作为海上浮式结构物的一种新型锚固基础,动力锚具有自安装、不受水深影响、适用范围广的特点。在动力锚的基础上研发的组合动力锚结合了动力锚自安装和板锚法向受荷的特点,具有安装快速、适用多种类型海床、承载效率高等性质。组合动力锚在水中自由下落时的水动力学特性(下落速度、方向稳定性等)会受到锚链、尾翼宽度和助推器质量等因素影响。若下落速度过小或方向稳定性过差,则会影响锚的安装成功率。采用计算流体动力学方法模拟流体对锚的冲击和锚在水中自由下落过程,以优化组合动力锚的尾翼尺寸;其次研究锚链作用力和助推器质量对组合动力锚下落速度和偏角的影响规律。计算结果表明:组合动力锚的拖曳阻力系数为0.45左右,尾翼宽度最优尺寸为翼板宽度的1.25倍。连接在锚眼处的锚链会减小组合动力锚的下落速度并加剧锚的偏转,需综合锚的下落速度和偏角来确定锚在水中下落高度。  相似文献   

2.
韩聪聪  刘君 《海洋工程》2016,34(5):92-100
板翼动力锚是依靠自重完成安装并靠自重和海床土的抗力来锚固的新型动力锚。板翼动力锚高速(15~25 m/s)贯入地基过程中涉及到高应变率、流固耦合、土体软化和大变形等难题,模型试验可避免上述计算困难,能直接得出不同的贯入速度所对应的沉贯深度。本文首先推导了模型相似关系,然后在常规重力条件下,进行了两组26个工况的板翼动力锚在均质黏土中动力安装过程的模型试验,根据试验结果确定了率效应参数的取值范围,并研究了每一项受力对沉贯深度的影响。最后提出了在均质黏土中预测板翼动力锚沉贯深度的经验公式。  相似文献   

3.
刘君  张雪琪 《海洋工程》2017,35(3):29-36
板翼动力锚是依靠自重完成安装并靠自重和海床土的抗力来锚固的新型动力锚。板翼动力锚在水中自由下落的阻力决定了锚到达海床表面时的速度,进而直接决定了锚贯入海床中的深度以及它能提供的承载力。板翼动力锚的形状比较复杂,采用计算流体动力学的方法研究板翼动力锚的下落速度、水平位移和转角与下落位移的关系。计算结果表明:板翼动力锚的拖曳阻力系数约为0.93~1.12之间;在沉贯过程中应使加载臂与翼板共面以减少阻力;板翼动力锚的终端速度约为28 m/s。  相似文献   

4.
王煦  韩聪聪  刘君 《海洋工程》2021,39(2):53-61
相比于已有动力锚(鱼雷锚、多向受荷锚等),新型轻质动力安装锚借助助推器安装,具有质量轻、埋深大、承载效率高、在海床中下潜容易等特点。良好的水动力学特性(较小的拖曳阻力系数及稳定的下落垂直度)是确保动力安装锚准确、有效地安装到指定地点并贯入到设计深度的前提。通过4组10个工况的模型试验,研究了轻质动力安装锚的终端速度和拖曳阻力系数,及轻质动力安装锚和助推器的组合锚在水中自由下落时的方向稳定性。试验结果表明:优化后轻质动力安装锚的拖曳阻力系数为0.51~0.55,这有助于提高组合锚在水中的下落速度,从而提升组合锚的沉贯深度;增大助推器尾翼展弦比和选用轻质材料制作尾翼能减小组合锚的下落偏角,提高组合锚的方向稳定性。  相似文献   

5.
河床或海床中会布设光缆、管线、隧洞等结构物,如果该水域上有船只抛锚,就要考虑抛锚对结构物安全的影响。通过模型试验探究了霍尔锚在黏土中的抛锚深度,研究了贯入速度、锚重以及土强度对抛锚深度的影响。在模型试验中,用MEMS加速度传感器捕捉锚在土中运动时的加速度,并由加速度积分得到锚的下落速度及对应的下落位移。模型试验结果表明:当霍尔锚以极限速度贯入软黏土中时,17.8 t锚在强度为7.5 k Pa土中的贯入深度为4.0 m; 42 t锚在强度为8.3 k Pa的土中贯入深度为6.7 m。根据试验结果建立了霍尔锚在土中动力贯入时的运动微分方程,分析了作用在锚上的各项受力,并预测了抛锚深度。此外,根据模型试验结果,建立了抛锚深度和锚的总能量之间的经验公式。  相似文献   

6.
法向承力锚(Vertically Loaded Plate Anchor,VLA)是一种适用于深水的新型系泊基础,它的拖曳安装过程直接决定了其系泊定位的精度和锚体的最终承载能力。综合考虑VLA锚体、锚泊线和上部船体的运动,建立了一种新的准静力整体分析模型。模型包括不断贯入海床的锚体、锚泊线(土中反悬链段和水中悬链段)和安装船体三部分,针对确定的锚泊线长度,安装船运动张紧锚泊线进行安装的过程,计算了此过程中锚体的运动轨迹、锚泊线形态和作用在船体上的锚泊线张力矢量的变化,重点分析了不同抛链长度和海床土体的参数对安装过程控制的影响,发现链长与水深之比达到5时,接近极限贯入深度。  相似文献   

7.
自由下落式CPT测试技术(FF-CPT)是新兴的海上沉积物强度测试方法。本文构建了海上FF-CPT原型样机,并以海洋干砂质沉积物为研究对象,分析了FF-CPT的贯入特征、速度相关性及其影响因素。结果表明,装置触底速度与最终贯入沉积物的深度受装置释放高度影响,释放高度越大,则触底速度与贯入沉积物深度越大。贯入过程的阻力分布规律是影响速度变化的主要因素。FF-CPT初始贯入阶段,沉积物贯入阻力随深度线性增加,但增幅不明显,这导致贯入速度变化不大,几乎可视作匀速,该段行程超过总贯入深度的2/3。后段行程贯入阻力骤增,导致贯入速度迅速降低至0。对于干砂质沉积物,FF-CPT贯入阻力与贯入速度不存在正相关关系。FF-CPT贯入阻力的速度相关性与装置质量、沉积物密实度关系不大。  相似文献   

8.
王慧  张可成  王忠涛  张宇  王洪波 《海洋学报》2020,42(11):123-130
航船应急抛锚时锚板贯入土体可能会影响河床或海床中的结构物甚者造成破坏,因此在通航频繁的航道,结构物埋深的设计需要充分考虑应急抛锚时锚板的贯入深度。本文通过缩尺模型试验模拟了霍尔锚在中等密实度粉细砂中的抛锚贯入过程,研究了不同抛锚速度(1.15~4.4 m/s)及粉细砂相对密实度(0.45~0.65)对抛锚贯入深度的影响;基于太沙基极限承载力理论和能量守恒定律,推导出霍尔锚在粉细砂土中贯入深度的表达式,与模型试验结果对比显示理论计算结果偏于保守。基于试验结果提出修正系数,修正后的理论公式能够较好地快速预测霍尔锚在中等密实度粉细砂中的贯入深度。研究结果为粉细砂土河床或海床中的结构物埋深设计提供了一定的技术参考。  相似文献   

9.
船舶抛锚撞击水下管汇会影响到管汇的正常作业,基于ANSYS/LS-DYNA动力学分析软件,建立锚-水下管汇-海床土体的三维有限元模型,对抛锚碰撞水下管汇的过程进行数值仿真。通过求解水下管汇受碰撞后的等效应力、应变的时间历程及受撞击部位的凹陷损伤深度,发现最大等效应力点出现在管汇与锚接触位置处,管汇的碰撞部位最终发生凹痕变形。同时讨论锚与管汇接触面的形状以及海床土体对水下管汇损伤程度的影响,当冲击能量相同时,锚与水下管汇的碰撞接触面积越小,水下管汇的损伤深度就越大;当锚与管汇接触的接触面积相同时,冲击能量越大,水下管汇的损伤变形越大。海床土体的剪切弹性模量对管汇的凹陷损伤深度以及最大等效应力影响与冲击能量有关,海床土体的内摩擦角对管汇的碰撞影响较小。  相似文献   

10.
筒型基础沉放施工中,随着入土深度的增加,筒体所受的侧摩阻力越大,当达到一定程度时,将导致基础无法继续下沉.为了避免这种情况的发生,在实际的施工中可以在锚体上设置剪土环以减小侧摩阻力的影响.论文针对海上吸力锚基础这一新型海洋平台基础形式研究中面临的吸力锚负压沉贯下沉中设置剪土环及剪土环对其渗流场的影响这一问题,通过对吸力锚渗流场的有限元分析,运用有限元软件ANSYS对锚体周围土体渗流场进行建模分析,利用有限元计算的结果来分析剪土环对渗流场的影响.  相似文献   

11.
Drag anchor is a widely used anchor type in offshore engineering for the mooring system. The prediction of the anchor trajectory installation and the final position is important for anchor selection in design. The existing method using yield envelope method for trajectory prediction ignored the shallow anchor behavior but applied the deep yield envelope from a deeply embedded horizontal fluke in uniform clay for the whole drag-in installation process. However, the anchor fluke embedment depth and inclination angle change continually during installation in clay with linearly increasing shear strength soil profile in practice. Studies on the effect of fluke inclination angle on the anchor behavior in clay with such non-uniform soil profile under unidirectional and combined loading are important and necessary for the improvement of the yield envelope method to ensure a reasonable prediction. The current 2D finite element studies investigate the anchor behavior for inclined fluke in clay with linearly increasing shear strength under unidirectional vertical, horizontal and rotational loadings first. Then the effects of the fluke inclination angle, soil non-homogeneity and embedment depth ratio on the shallow yield envelopes are investigated. It is found that the effect of fluke inclination angle on the vertical capacity factors for anchor in clay with non-uniform and uniform soil profile is largely different. The resultant large impact on the yield envelopes shown here illustrates the importance of considering the fluke inclination angle and soil non-homogeneity in the prediction of anchor trajectory using yield envelope method.  相似文献   

12.
ABSTRACT

The OMNI-Max anchors are newly developed dynamically installed anchors for deep water mooring systems. After installation, the anchor is keyed to a new orientation and position by tensing the attached mooring chain, which is known as the “keying process”. This study conducted 1g model tests to study the trajectories and capacity developments of OMNI-Max anchors in homogeneous and lightly overconsolidated (LOC) clays. A testing arrangement was designed to simulate the anchor keying process with a constant pullout angle at the mudline. A half model anchor which could move against the box glass was used to determine the anchor trajectory in the soil. The effects of padeye offset angle, uplift angle at the mudline, anchor fluke thickness, anchor initial embedment depth, and soil strength on the anchor trajectory and capacity were systematically investigated. Moreover, the critical uplift angle at the padeye and the anchor critical initial embedment depth were discussed. The results indicate that the anchor can dive both in homogeneous and LOC clays under certain conditions. A padeye offset angle of 24–30° is recommended for the OMNI-Max anchor to maintain high capacity and diving trend simultaneously. Besides, the anchor diving trend can be improved with small uplift angles at the mudline and with thick anchor flukes. A critical initial embedment depth of 1.3 times the anchor length is recommended to preclude the anchor from being pulled out.  相似文献   

13.
Wu  Xiao-ni  Wang  Teng  Liao  Qian  Li  Ye 《中国海洋工程》2020,34(2):257-266
Drag anchor is widely applied in offshore engineering for offshore mooring systems. The prediction of the invisible trajectory during its drag-in installation is challenging for anchor design in determining the anchor final position for ensuring sufficient holding capacity. The yield envelope method based on deep anchor failure for kinematic analysis was proposed as a promising trajectory prediction method for drag anchor. However, there is a lack of analysis on the effects of the parameters applied in the kinematic analysis. The current work studies the effects of the yield envelope parameters, anchor line bearing capacity factor and the anchor/soil interface friction. It is found that the accuracy of the yield envelope parameters has large impact on the prediction results based on deep yield envelopes.Analyses of cases with smooth fluke predict deeper embedment depth than that from analyses of cases with rough fluke. The decrease of the capacity factor results in the increase of the anchor embedment depth, the anchor line load,the anchor chain angle and the stable value of the normalized horizontal load component for the same drag length,while the stable value of the normalized vertical load component decreases when the capacity factor decreases. This illustrates the importance in applying reasonable parameters and improving the method for more reliable prediction of the anchor trajectory.  相似文献   

14.
This paper reports the results from three-dimensional dynamic finite element analysis undertaken to provide insight into the behaviour of the fish and OMNI-max dynamically installed anchors during loading in crust-over-soft clay sediments. Particular attention was focused on the situations where the anchor is embedded to a shallow depth during dynamic installation due to the strong crust layer. Large deformation finite element analyses were carried out using the coupled Eulerian-Lagrangian approach, incoporating the anchor chain effect. Parametric analyses were undertaken varying the initial embedment depth, anchor shape, loading angle, strength ratio between the top and bottom layers. The tracked anchor trajectory confirmed that the diving potential of the fish and OMNI-Max anchors were enhanced by the presence of the crust layer as that somewhat restircted the upward movement. This will be beneficial for many hydrocarbon active regions with layered seabed sediments where the anchor embedment depths during dynamic installation are expected to be low.  相似文献   

15.
Gravity installed anchors (GIAs) are released from a height of 30–150 m above the seabed, achieving velocities up to 19–35 m/s at the seabed, and embed to depths of 1.0–2.4 times the anchor length. Challenges associated with GIAs include the prediction of anchor initial embedment depth, which determines the holding capacity of the anchor. Based on the coupled Eulerian–Lagrangian approach, a numerical framework is proposed in this paper to predict the embedment depth of GIAs, considering the effects of soil strain rate, soil strain-softening and hydrodynamic drag (modeled using a concentrated force), with the anchor-soil friction described appropriately. GIAs are influenced by the hydrodynamic drag before penetrating into the soil completely, hence the anchor accelerates less than the previous investigations in shallow penetration, even decelerates directly at the terminal impact velocity. The hydrodynamic drag has more influence on OMNI-Max anchors (with an error of ∼4.5%) than torpedo anchors, and the effect becomes more significant with increasing impact velocity. An extensive parametric study is carried out by varying the impact velocity, strain rate and strain-softening parameters, frictional coefficient, and soil undrained shear strength. It is concluded that the dominant factor affecting the penetration is the soil undrained shear strength, then are the impact velocity, strain rate dependency and frictional coefficient, and the minimal is the strain-softening of soil. In addition, although the strain rate dependency is partly compensated by the softening, the anchor embedment depth accounting for the effects of strain rate and strain-softening is lower than that for ideal Tresca soil. Strain rate dependency dominates the combined effects of strain rate and strain-softening in the dynamic installation of GIAs, on which should pay more attention, especially for the calibration of the related parameters and the measured solutions. In the end, the theoretical model based on the bearing resistance method is extended by accounting for the hydrodynamic drag effect.  相似文献   

16.
With the application of innovative anchor concepts and advanced technologies in deepwater moorings, anchor behaviors in the seabed are becoming more complicated and significantly affected by the anchor line. Based on the coupled Eulerian–Lagrangian (CEL) method, a numerical approach incorporating anchor line effects is developed to investigate comprehensive anchor behaviors in the soil, including penetration of drag anchors, keying of suction embedded plate anchors and diving of gravity installed anchors. Compared to the method directly incorporating the anchor line into the CEL analysis, the proposed method is computationally efficient. To examine the robustness and accuracy of the proposed method, numerical probe tests and then comparative studies are carried out. It is found that the penetration (or diving) and keying behaviors of anchors can be well simulated. A parametric study is also undertaken to quantify the effects of various factors on the behavior of OMNI-Max anchors, whose mechanisms are not yet fully understood. The maximum embedment loss of OMNI-Max anchors during keying is not influenced by the initial anchor embedment depth, whereas significantly increases with increasing drag angle at the embedment point. With decreasing initial anchor embedment depth or increasing soil strength gradient, drag angle at the embedment point and diameter of the anchor line, the behavior of OMNI-Max anchors could change from diving to pullout, which is undesirable in offshore engineering practice. If the drag angle increases over a certain limit, the anchor will fail similar to a suction anchor.  相似文献   

17.
Gravity installed anchors (GIAs) are the most recent generation of anchoring solutions to moor floating facilities for deepwater oil and gas developments. Challenges associated with GIAs include predicting the initial embedment depth and evaluating the keying performance of the anchor. The former involves high soil strain rate due to large anchor penetration velocity, while the later influences the subsequent behavior and pullout capacity of the anchor. With the coupled Eulerian–Lagrangian method, three-dimensional large deformation finite element models are established to investigate the penetration and keying of GIAs in non-homogeneous clay. In the penetration model, a modified Tresca soil model is adopted to allow the effects of soil strain rate and strain softening, and user-defined hydrodynamic drag force and frictional resistance are introduced via concentrated forces. In the keying model, the anchor line effects are incorporated through a chain equation, and the keying, diving and pulling out behaviors of the anchor can all be replicated. Parametric studies are undertaken at first to quantify the effects of various factors on the performance of GIAs, especially on the penetration and keying behaviors. Based on the results of parametric studies, fitted formulae are proposed to give a quick evaluation of the anchor embedment depth after the installation, and the shackle horizontal displacement, shackle embedment loss and anchor inclination at the end of the keying. Comparative studies are also performed to verify the effectiveness of the fitted formulae.  相似文献   

18.
Numerical solutions have been obtained for the vertical uplift capacity of strip plate anchors embedded adjacent to sloping ground in fully cohesive soil under undrained condition. The analysis was performed using finite element lower bound limit analysis with second-order conic optimization technique. The effect of anchor edge distance from the crest of slope, angle and height of slope, normalized overburden pressure due to soil self-weight, and embedded depth of anchor on the uplift capacity has been examined. A nondimensional uplift factor defined as F owing to the combined contribution of soil cohesion (cu), and soil unit weight (γ) is used for expressing the uplift capacity. For an anchor buried near to a sloping ground, the ultimate uplift capacity is dependent on either pullout failure of anchor or overall slope failure. The magnitude of F has been found to increase with an increase in the normalized overburden pressure up to a certain maximum value, beyond which either the behavior of anchor transfers from shallow to deep anchor or overall slope failure occurs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号