首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 806 毫秒
1.
软刚臂系泊系统水平恢复力特性数值预报   总被引:1,自引:1,他引:0  
建立软刚臂系泊系统的理论模型以及6自由度静恢复力特性计算分析的数学模型,模拟实际几何关系与力学作用机制。提出基于误差判断的变步长迭代搜索的数值逼近求解方法,以QHD32-6 FPSO软刚臂系泊系统的纵向和横向水平恢复力特性为例进行数值预报,并与国外设计公司计算结果以及模型试验结果进行比较分析。对比显示,该模型的数值计算结果符合良好,而且迭代计算次数少、收敛快、误差小,可用于海上软刚臂系泊系统静恢复力特性的预报。  相似文献   

2.
基于多体动力分析方法进行FPSO和水下软钢臂系泊系统的运动特性研究。相较于非线性弹簧模拟软钢臂系泊系统或者其他近似模拟方法,多体分析方法可以充分考虑系泊系统具体结构形式及其动力项对FPSO运动性能的影响,更好的预报系统运动响应和系泊力。本文将FPSO和水下钢臂结构模拟成2个具有6自由度的独立结构,两者用系泊链组进行连接。基于三维势流理论应用汇源分布法,首先在频域内进行FPSO的水动力参数分析,进而在时域内对系统进行耦合动力分析。本文重点讨论系泊系统黏性力和二阶波浪力对系统响应的影响,计算结果发现系泊系统黏性力对系泊力有一定影响,而在浅水条件下二阶波浪力的计算对准确预报系统运动及系泊力非常重要。  相似文献   

3.
Mooring system is the key equipment of FPSO safe operation. The soft yoke mooring system is regarded as one of the best shallow water mooring strategies and widely applied to the oil exploitation in the Bohai Bay in China and the Gulf of Mexico. Based on the analysis of numerous monitoring data obtained by the prototype monitoring system of one FPSO in the Bohai Bay, the on-site lateral vibration behaviors found on the site of the soft yoke subject to wave load were analyzed. ADAMS simulation and model experiment were utilized to analyze the soft yoke lateral vibration and it was determined that lateral vibration was resonance behaviors caused by wave excitation. On the basis of the soft yoke longitudinal restoring force being guaranteed, a TLD-based vibration damper system was constructed and the vibration reduction experiments with multi-tank space and multi-load conditions were developed. The experimental results demonstrated that the proposed TLD vibration reduction system can effectively reduce lateral vibration of soft yoke structures.  相似文献   

4.
软刚臂系泊系统是一种利用压载质量为浮式生产储油装置(FPSO)提供回复力的单点系泊方式。为快速准确地评估多铰接组成的软刚臂系统的受力状态,避免应用高复杂度的有限元软件,进而快速完成优化设计等任务,建立一种静力计算方法十分有必要。因此,针对由刚臂(YOKE)、柔性系泊腿和压载舱组成的刚柔多体系统,以分解组合的方式,提出一种二维静力计算方法,用以研究FPSO软刚臂系泊系统的静力特性。该方法主要依靠软刚臂的几何构型,在有限铰接约束下,形成非线性静力平衡方程,建立了压载舱式水上软刚臂单点系泊系统二维静力平衡计算算法。采用OrcaFlex、SESAM等软件开展了理论和数值对比分析,同时与系泊试验结果开展验证分析。对比结果表明,文中所提方法计算精度较高,可为软刚臂单点系泊系统的研究提供可靠支持。  相似文献   

5.
Shallow Water Effects on Surge Motion and Load of Soft Yoke Moored FPSO   总被引:2,自引:0,他引:2  
Much attention should be paid to a large FPSO moored permanently in an oil field with water depth of only about 20 m, since shallow water effects on the hydrodynamics may bring about collision and damage. A 160kDWT FPSO with a permanent soft yoke mooring system is investigated with various shallow water depths and focuses are the low frequency surge motion and mooring load. Computation for the FPSO system is made based on linear 3-D potential fluid theory and time-domain numerical simulation method. Corresponding model test is carried out in the ocean engineering basin of Shanghai Jiao Tong University. It is shown that, in the surge natural period, low frequency surge motion and mooring force increase remarkably with the decrease of water depth. Especially, the smaller the ratio of water depth and draught is, the quicker the increase is. The shallow water effects should be taken into account carefully for determining the design load of a single point mooring system.  相似文献   

6.
The Soft Yoke Mooring System (SYMS) is a single point mooring system for shallow water. It is composed of a mooring framework, mooring legs, yoke, and single point, and is located at the Floating Production Storage and Offloading (FPSO) through 13 hinge joints, such as universal joints and thrust bearings. Mooring restoring force, motions and postures of mooring components, and mechanical behaviors of hinge joints are major criteria for the structural design of the SYMS. Aiming at the difficulties of the multibody dynamics in traditional design of the SYMS, a multi-body dynamic mathematical modeling with seven independent degrees of freedom (DOFs) which is applicable to prototype field engineering was developed in this study. The proposed mathematical modeling of the SYMS multibody dynamic system has several advantages: 1. Internal tribological behaviors in hinge joints are considered within the presented multibody dynamics model to illustrate the good dynamic effects of the SYMS. 2. The multibody dynamic model can be applied in field service. Correctness and feasibility of the proposed multibody dynamic simulation method for describing motions and postures of hinges and single-body were validated by the prototype monitoring data. 3. The horizontal restoring force of the SYMS was calculated according to field measurement data. The motion state of each single body and internal stress distributions at each hinge joint in the SYMS are given. 4. The multibody dynamics calculation program can be directly used for the real-time monitoring of mechanical behaviors of the SYMS under the service state. The simulated results can provide real-time guarantee for safety alarming of the system. The vulnerability of the mooring system in service was evaluated based on long-term monitoring data analysis.  相似文献   

7.
A computer program is developed for hull/mooring/riser coupled dynamic analysis of a tanker-based turret-moored FPSO (Floating Production Storage and Offloading) in waves, winds, and currents. In this computer program, the floating body is modeled as a rigid body with six degrees of freedom. The first- and second-order wave forces, added mass, and radiation damping at various yaw angles are calculated from the second-order diffraction/radiation panel program WAMIT. The wind and current forces for various yaw angles of FPSO are modeled following the empirical method suggested by OCIMF (Oil Company International Marine Forum).

The mooring/riser dynamics are modeled using a rod theory and finite element method (FEM), with the governing equations described in a generalized coordinate system. The dynamics of hull, mooring lines, and risers are solved simultaneously at each time step in a combined matrix for the specified connection condition. For illustration, semi-taut chain-steel wire-chain mooring lines and steel catenary risers are employed and their effects on global FPSO hull motions are investigated. To better understand the physics related to the motion characteristics of a turret-moored FPSO, the role of various hydrodynamic contributions is analyzed and assessed including the effects of hull and mooring/riser viscous damping, second-order difference-frequency wave-force quadratic transfer functions, and yaw-angle dependent wave forces and hydrodynamic coefficients. To see the effects of hull and mooring/riser coupling and mooring/riser damping more clearly, the case with no drag forces on those slender members is also investigated. The numerical results are compared with MARIN's wave basin experiments.  相似文献   


8.
渤海油田浅水软刚臂系泊FPSO触底分析   总被引:9,自引:3,他引:6  
在线性三维势流理论的基础上,采用时域计算方法对BZ25—1油田16万吨级FPSO不同吃水条件下的碰底情况作了分析研究。数值计算结果与模型试验进行了比较,两者吻合较好,说明应用时域计算方法可以从理论上预报FPSO在浅水中的触底情况。这对我国渤海等浅水海域油田应用FPSO系统进行开发具有一定的意义。  相似文献   

9.
作为浮式结构最常采用的两种系泊方式,悬链式系泊和张紧式系泊皆存在不足。本文提出了一种新型系泊系统,并以一深水FPSO为例,采用完全时域耦合分析方法,对不同工作水深情况下的浮体及新型系泊系统的运动性能进行了数值模拟,并将该新型系泊系统的仿真结果与传统的张紧式系泊系统进行了比较,分析了新型系泊系统在浮体运动性能、缆索张力等方面的改善,同时探讨了该新型系泊系统的最佳工作水深。  相似文献   

10.
As one of the key safety problems, the motion performance and touching sea bottom of a FPSO are paid much attention by the ocean oil companies when the FPSO is exposed to survival storms in the shallow-water working areas. In this paper, timedomain numerical simulations are carried out on a 160 kDWT FPSO with a Yoke mooring system moored in the BZ25-1 oilfield with a water depth of 16.7m. The results are compared with those of the corresponding model tests. Good agreement shows that the time-domain simulations can be used to predict the performance of the FPSO in shallow-water reasonably. It is found that the touch of seabed by a fully loaded FPSO occurred few times under survival storm conditions. Therefore, the FPSO should be less loaded than that in the fully loaded condition under the survival storms.  相似文献   

11.
Dynamic Analysis of Turret-Moored FPSO System in Freak Wave   总被引:1,自引:1,他引:0  
Freak wave is the common wave which has significant wave height and irregular wave shape, and it is easy to damage offshore structure extremely. The FPSOs (Floating Production Storage and Offloading) suffer from the environment loads, including the freak wave. The freak waves were generated based on the improved phase modulation model, and the coupling model of FPSO-SPM (Single Point Mooring) was established by considering internal-turret FPSO and its mooring system. The dynamic response characteristics of both FPSO and SPM affected by the freak wave were analyzed in the time domain. According to the results, the freak waves generated by original phase modulation model mainly affect the 2nd-order wave loads. However, the freak waves which are generated by random frequencies phase modulation model affect both 1st-order and 2nd-order wave loads on FPSO. What is more, compared with the irregular waves, the dynamic responses of mooring system are larger in the freak waves, but its amplitude lags behind the peak of the freak wave.  相似文献   

12.
In the paper, a comprehensive numerical study on the moored system is performed in time domain. The moored system, which is composed of the floating body sub-system and the mooring line sub-system, is calculated as a whole system by coupling. A time-domain method is applied to the analysis of the mooring line sub-system, and at the same time, an indirect time-domain method translated from frequency-domain to time-domain is developed to calculate the floating body sub-system. In the end, an FPSO vessel is calculated as a numerical example by the present method. A comparison of the result of the model test and that of the numerical method indicates that the present method is exact and effective.  相似文献   

13.
The model test method of the FPSO and offloading system is investigated by using the development mode of “FPSO + CALM + TANKER” working in a 1700-m depth of offshore West Africa. An equivalent design based on static and dynamic similarity criteria for oil offloading line (OOL) is discussed, and a type of creative method for the equivalent design of OOL in a model test is proposed. Based on the static similarity criterion, the truncated design of the FPSO mooring system in water depth and horizontal directions is carried out. After that, a relevant static optimization is conducted. Meanwhile, to avoid interference between the FPSO mooring system and CALM mooring system, a horizontal equivalent design for the CALM mooring system is provided. On this basis, the model test scheme is conducted. Time domain coupled analyses for the whole system before and after truncation are later performed. After comparison, it is observed that the calculated results of the truncated system are basically consistent with those of the prototype system, and the design of the model test scheme is demonstrated to be robust and reliable.  相似文献   

14.
具有链—缆—链结构的复合系泊链缆因其相对于全钢链质量和成本上的优势而在深水系泊中得以广泛应用。基于细长杆理论采用有限差分法建立了可以考虑链—缆—链结构的复合系泊缆数值模型,将其应用于不同工况下全钢链和复合链缆运动的数值模拟中,并开展了验证。首先,将单根钢链顶张力数值模拟结果与不同工况下的模型试验结果进行了对比,验证了数值预报程序应用于全钢链的准确性。然后,对于复合系泊链缆开展了静刚度和动刚度迭代数值模拟,并将模拟结果同已发表文章中的算例结果进行比较,验证了该数值模型在复合链缆模拟上的准确性。发现对于单根钢锚链的验证,激励半径越大,激励周期越小,一个周期内顶张力幅值及其极差越大,钢链运动就越剧烈。对于链—缆—链式复合系泊链缆的验证,发现静刚度迭代中数值模拟结果与算例结果差异较小;对于动刚度迭代,除个别大幅慢漂工况外,两者有较高的吻合;且激励周期越小,激励半径越大,复合系泊链缆顶张力越大,弹性模量越小,运动越剧烈。对于聚酯缆刚度的敏感性分析,发现改变动刚度经验公式参数的情况下,杨氏模量的静刚度迭代和动刚度迭代结果误差分别最大达到了60.81%和68.21%,因此合成纤维材料特性对复合系泊链...  相似文献   

15.
针对传统圆筒型FPSO垂荡运动剧烈的特点,提出一种带有垂荡抑制结构的圆筒型FPSO。采用1∶77.8的缩尺比制作模型,进行垂荡纵摇衰减试验,得到带有不同垂荡抑制结构模型的固有周期和无因次阻尼系数,进而选取最优的垂荡抑制结构型式。之后计算并对比传统圆筒型FPSO和新型圆筒型FPSO垂荡纵摇运动的固有周期和幅频响应函数。在此基础上,结合我国南海海洋环境条件,设计新型圆筒型FPSO的系泊系统,计算分析自存工况下的耦合动力响应,并与传统圆筒型FPSO进行对比。结果表明,文中提出的垂荡抑制结构可以有效增大系统垂荡纵摇运动的固有周期,改善运动性能,提高系泊的安全性。  相似文献   

16.
Hybrid model testing technique is widely used in verification of a deepwater floating structure and its mooring system,but the design of the truncated mooring systems which can reproduce both static and dynamic response same as the full-depth mooring system is still a big challenge,especially for the mooting systems with large truncation.A Cell-Tress Spar operated in 1500 m water depth is verified in a wave basin with 4 m water depth.A large truncation factor arises even though a small model scale 1:100 is adopted.Computer program modules for analyzing the static and frequency domain dynamic response of mooting line are combined with multi-objective genetic algorithm NSGA-II to optimize the truncared mooting system.Considering the asymmetry of layout of mooring hnes,two different truncated mooring systems are respectively designed for both directions in which the restoring forces of the.mooting system are quite,different.Not only the static characteristics of the mooting systems are calibrated,but also the dynamic responses of the single truncated mooting line are evaluated through time domain numerical simulation and model tests.The model test results of 100-year storm in the GOM are reconstructed and extrapolated to a full depth.It is found that the experimental and numerical resuits of Spar wave frequency motion agree well,and the dynamic responses of the full-depth mooring lines are better reproduced,but the low frequency surge motion is overestimated due to the smaller mooring-induced damping.It is a feasible method adopting different truncated mooring systems for different directions in which the restoring force characteristics are quite different and cannot be simulated by one truncated mooring system.Hybrid verification of a deepwater platform in wave basin with shallow water depth is still feasible if the truncated mooring systems are properly designed,and numerical extrapolation is necessary.  相似文献   

17.
针对35万立方米超大型LNG-FSRU,采用软刚臂单点系泊系统定位方式,运用模型试验与数值计算两种技术手段开展风、浪、流联合作用下水动力研究。软刚臂系泊系统各构件间的连接方式及Yoke重量模拟是数值计算与模型试验的关键,数值计算对构件间的铰接方式与Yoke重量进行模拟,模型试验同样模拟了系泊系统的相似性,并将数值计算结果与模型试验结果进行对比分析。结果表明,软刚臂系泊系统刚度曲线呈非线性,试验结果与数值结果吻合良好,表明对于软刚臂系泊系统的两种模拟是合理的,反映了LNG-FSRU在风、浪、流联合作用下的运动特性,建立的研究方法可用于软刚臂系统的水动力研究。  相似文献   

18.
针对圆筒型海上储油装置FPSO垂荡运动性能较差、无法安装干式井口的问题,设计了带延伸筒体与矩形阻尼结构的圆筒型FPSO,根据延伸筒体与矩形阻尼结构是否通海分为两种型式。建立水动力计算模型,比较分析不同延伸筒体和阻尼结构型式对FPSO水动力性能的影响。针对南海作业海域,设计了悬链式系泊系统,基于JONSWAP波浪谱对FPSO的运动进行时域预报,并对系泊系统进行校核。分析结果表明:通海型FPSO垂荡固有周期显著提升,可以错开南海百年一遇谱峰周期,通海型FPSO满足钻井、安装干式井口的运动响应要求,系泊系统系缆张力满足规范要求。  相似文献   

19.
The real-time estimation of second-order difference-frequency wave forces using real-time random-wave measurement is developed for the FF (feed-forward) control based dynamic positioning of floating offshore vessels and platforms. The efficacy of the developed FF control scheme is validated by using the in-house hull-mooring-riser-thruster fully coupled time-domain computer simulation program through comparisons with the results by the conventional feedback-control-only case. The feedback (FB) control intends to reduce the accumulated position-excursion error, meanwhile the proposed feed-forward control compensates the controllable slowly-varying wave loads by activating thrusters in advance based on the real-time estimation of the second-order difference-frequency wave loadings using the real-time signal of random incident wave. The real-time estimation of the second-order difference-frequency wave loads is done by using the double-convolution integral with pre-calculated QIF (quadratic impulse function). The numerical DP system is successfully implemented with the FF control algorithm in the vessel-thruster fully coupled time-domain simulation program. The developed schemes are applied to a turret-moored FPSO (floating production storage offloading) with six dynamic-positioning (DP) azimuth thrusters in two non-collinear storm conditions. It is clearly demonstrated that the developed FF control scheme performs much better than the conventional feedback-control-only case. The corresponding reductions in horizontal offsets, motions, mooring tensions, and fuel consumptions by using the developed FF control scheme are underscored.  相似文献   

20.
The highest similarity degree of static characteristics including both horizontal and vertical restoring force-displacement characteristics of total mooring system, as well as the tension-displacement characteristics of the representative single mooring line between the truncated and full depth system are obtained by annealing simulation algorithm for hybrid discrete variables (ASFHDV, in short). A“baton” optimization approach is proposed by utilizing ASFHDV. After each baton of optimization, if a few dimensional variables reach the upper or lower limit, the boundary of certain dimensional variables shall be expanded. In consideration of the experimental requirements, the length of the upper mooring line should not be smaller than 8 m, and the diameter of the anchor chain on the bottom should be larger than 0.03 m. A 100000 t turret mooring FPSO in the water depth of 304 m, with the truncated water depth being 76 m, is taken as an example of equivalent water depth truncated mooring system optimal design and calculation, and is performed to obtain the conformation parameters of the truncated mooring system. The numerical results indicate that the present truncated mooring system design is successful and effective.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号