首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
使用常规地面、探空资料以及风廓线雷达和环境监测站污染物资料,对2015年11月7—11日沈阳市一次持续性重污染天气过程进行分析,结果表明:(1)此次污染过程持续时间长,PM2.5浓度维持在500μg·m-3以上近21 h,期间峰值达到1 287.83μg·m-3,主要污染物为CO;(2)平稳的高空环流、弱气旋性环流及高湿条件为这次重污染天气的发生、发展和维持提供了有利的气象条件,0℃左右的温度长时间维持也为该次过程的一个主要特征;(3)重污染期间从地面到850 h Pa高度上水平风速均接近2 m·s-1,整层大气静稳,伴随着较好的湿度条件和多个逆温层结的存在,抑制了污染物的垂直输送;(4)卫星遥感监测显示吉林和黑龙江一带有大量火点存在,此时正值冬季秸秆燃烧,大气轨迹分析显示,污染期间偏北风为污染物的传输提供了有利的气象条件。  相似文献   

2.
关中一次重污染天气过程气象特征分析   总被引:1,自引:0,他引:1  
利用常规观测资料、风廓线资料、PM2.5质量浓度资料及HYSPLIT-4模式,对2016年12月31日—2017年1月6日陕西关中盆地一次霾重污染天气过程的气象特征进行了分析。结果表明:此次过程发生在500hPa纬向平直气流、地面东高西低的典型环流形势下,稳定的大气层结和边界层逆温强烈抑制了污染物的垂直扩散;边界层风场存在500m之下的偏南风、500~1 000m偏北风和1~1.5km的纬向小风速区的三层结构特征,弱偏南风的水汽输送、弱对流不稳定和中高层的弱纬向风的阻挡,使得污染物在边界层内充分混合并堆积。污染物质量浓度与低层风关系密切,当低层为弱偏南风时,相对湿度逐渐上升,PM2.5质量浓度升高;反之,当气流转为偏北风时,相对湿度明显下降,PM2.5质量浓度降低。输送至西安的气团路径共有西北、偏南及本地路径三类,西北气流携带的大颗粒污染物、偏南气流的增湿效应及污染物的输送和本地污染源的叠加,共同造成了盆地的重污染天气的发生,其中直行偏南路径占比最高为38%,本地路径次之,占比25%。  相似文献   

3.
利用2015年黄石市5个监测站点可吸入颗粒物(PM10)和细颗粒物(PM2.5)的在线监测数据和风向、风速、气温、气压等常规地面气象要素观测资料,分析了黄石市大气PM10和PM2.5的质量浓度水平分布特征及其与气象参数的关系。结果表明:2015年黄石市5个监测站点大气PM10和PM2.5年均浓度范围分别为95.8—108.6μg·m^-3和64.3—68.9μg·m^-3,均超过国家二级标准;季均质量浓度呈现显著的冬季高夏季低的变化规律,冬季PM10和PM2.5的质量浓度分别为(143.9±62.2)μg·m^-3和(95.5±44.5)μg·m^-3,夏季PM10和PM2.5的质量浓度分别为(75.2±24.0)μg·m^-3和(50.7±17.3)μg·m^-3。5个监测站中,下陆区、西塞山区和铁山区的PM10和PM2.5颗粒物污染较为严重;各站点大气PM10和PM2.5质量浓度显著相关。大气颗粒物浓度与气象因素的分析显示,黄石市大气颗粒物浓度与气温呈显著的负相关关系,与气压呈正相关关系,与风速和相对湿度的相关性不显著,受风向影响变化较大。  相似文献   

4.
利用地面细颗粒物(PM2.5)浓度和气象常规观测资料、地基 AERONET观测资料、GFED生物质燃烧排放清单和大气化学—天气耦合模式WRF-Chem,模拟研究了华北地区2014年10月气象要素和大气污染物的时空演变,重点关注北京10月7~11日的一次重霾事件及其天气形势、边界层气象特征、输送路径、PM2.5及其化学成分浓度变化等特征,以及秸秆燃烧对华北和北京地区细颗粒物浓度和地面短波辐射的影响。与观测资料的对比结果显示,模式可以很好地模拟北京地区地面气象要素和PM2.5质量浓度,考虑秸秆燃烧排放源可以明显改进北京PM2.5浓度模拟的准确性,但在重度污染情况下,模式总体上低估气溶胶光学厚度和高估地面短波辐射。10月7~11日北京地区重霾事件主要是不利气象条件下人为污染物累积和区域输送造成,也受到华北地区南部秸秆燃烧的影响。河南北部、河北南部和山东西部大面积秸秆燃烧释放的气态污染物和颗粒物在南风的作用下输送至北京,秸秆燃烧对北京地区地面PM2.5、有机碳(OC)、硝酸盐、铵盐、硫酸盐和黑碳(BC)的平均贡献率分别为24.6%、36.8%、23.2%、22.6%、7.1%和19.8%,秸秆燃烧产生的气溶胶可以导致北京地面平均短波辐射最大减小超过20 W m-2,约占总气溶胶导致地表短波辐射变化的24%。  相似文献   

5.
一次持续性雾霾天气过程的阶段性特征及影响因子分析   总被引:4,自引:0,他引:4  
苗爱梅  李苗  王洪霞 《干旱气象》2014,32(6):947-953
应用常规与非常规气象观测资料及PM2.5浓度监测资料,对2013年1月20~24日山西区域一次持续性雾霾天气过程进行分析。研究发现:(1)本次雾霾天气过程具有明显的阶段性特征。2013年1月20日14时至23日11时,由于相对湿度的变化导致了3次轻雾转大雾过程;23日14~20时,由于PM2.5浓度的增大经历了1次轻雾转霾的天气过程。(2)地面弱的气压场和较小的风速以及PM2.5浓度的上升和相对湿度的增大为本次持续性雾霾天气过程的形成和发展提供了有利条件。(3)边界层逆温的存在是雾霾低能见度过程形成的必要条件,边界层有逆温层而不出现雾霾天气的条件是:相对湿度〈50%,PM2.5日均值浓度〈75μg·m-3;逆温层下相对湿度的大小是区别雾和霾天气的指标。(4)相对湿度和PM2.5是决定能见度大小的关键因子,其对能见度的影响体现出明显的阶段性特征,当相对湿度〈90%时,PM2.5浓度对能见度的作用强于相对湿度,是影响能见度变化的主要因子,但随着相对湿度的增大,其对能见度的影响相对增强,当能见度降至1 km以下时,相对湿度成为影响能见度变化的主要因子。  相似文献   

6.
天津冬季重霾污染过程及气象和边界层特征分析   总被引:3,自引:2,他引:1  
京津冀大气灰霾污染严重,天津市作为其核心组成之一其污染形势亦严峻。选取2013年2月20~28日天津重霾污染时段7站PM2.5(空气动力学当量直径小于等于2.5μm的颗粒物,即细颗粒物)和气态污染物数据,结合北京污染数据、地面气象要素、能见度、边界层温湿和风廓线、后向轨迹,深入分析重霾污染过程特征及气象和边界层成因。结果显示,研究时段天津PM2.5、SO2、NO2、CO和O3浓度均值为150、87、56、2.4和22μg m-3,气态污染物各站差异显著,但仅有SO2全面超过国家空气质量一级标准(50μg m-3),而PM2.5具有区域同步变化特征,且严重超标,是一级标准(35μg m-3)的2~8倍,最高小时均值高达364μg m-3;高浓度PM2.5是导致低能见度的主因,能见度小于10 km对应PM2.5阈值为50μg m-3。弱风和高湿度导致局地排放累积,PM2.5始增,在高湿度条件下,持续偏南风促使其稳步增加,配合弱北风和弱东风PM2.5震荡上扬,污染高值阶段,南北气流短时迅速切换,区域污染传输叠加污染的循环累积,PM2.5浓度峰值达到最高;除因边界层强东风导致的平流逆温外,高浓度PM2.5与平流逆温密切相关;高污染时段高湿主要集中在500 m以下,且随高度递减幅度较大;位于200~600 m的低空急流一定程度抑制污染上升,尤其持续强东风使PM2.5浓度稳步降低到二级水平,污染迅速有效清除最终依赖整层的强西北风。北京、环绕天津的河北中部和西南部地区对天津重污染有显著贡献。  相似文献   

7.
连续雾霾天气污染物浓度变化及天气形势特征分析   总被引:8,自引:2,他引:6  
利用MICAPS资料、地面观测资料、NCEP资料和衡水市环境监测站细颗粒物(PM2.5)及PM10浓度资料,对2013年1月衡水市出现的连续雾霾天气从PM10及细颗粒物浓度演变、雾霾天气污染物浓度与地面要素关系、中低层环流形势特征进行了分析,结果表明:1)雾霾天气期间06:00(北京时间,下同)至07:00和16:00至21:00为PM10和细颗粒物浓度较低时段,PM10最大值出现在15:00,细颗粒物最大值出现在02:00,两者并不同时达到极值。2)雾霾天气污染物浓度与地面湿度并不是简单的正相关或负相关关系,还和许多其它因素有关。3)衡水市污染源主要来源于工业污染源、扬尘污染、冬季燃煤采暖、局部污染源及区域性污染。4)雾霾天气相对湿度和能见度基本呈负相关,气压变化不大,风向频率最多为北到东北风,平均风速一般都在2 m/s以下。雾日时大部分时段为雾和霾的混合物。5)重污染日期间500 hPa为平直偏西气流或西北偏西气流,没有明显的槽脊活动。而污染较轻的时段500 hPa为明显的西北气流控制或有槽脊活动。6)雾霾天气期间大部分日数08:00在850hPa以下都存在逆温层;地面气压场偏弱,尤其河北平原一带基本为均压场。最后对雾霾天气影响及对策进行了简单探讨。  相似文献   

8.
利用北京市环境保护监测中心和美国大使馆的细颗粒物(PM2.5)逐时监测数据,中国科学院大气物理研究所325 m气象梯度塔资料以及实况天气图和探空资料,对2015年11月27日至12月1日北京的PM2.5重污染过程的边界层特征进行了分析。研究发现:这次重污染过程持续时间长、强度大,其中PM2.5浓度超过75 μg/m3的时次共计126 h,超过150 μg/m3共计116 h,小时最高PM2.5浓度为522 μg/m3。在高低空环流场配置的影响下,近地面静风和多层逆温结构抑制了污染物在水平和垂直方向上的输送,加上边界层内的深厚湿层,使得其中气溶胶不断吸湿增长,高PM2.5浓度得以维持。在重污染期间,湍流动能较低,不利于污染物的水平和垂直扩散。垂直方向的湍流动能一直占水平方向的15%~20%左右,水平湍流动能占主要贡献。摩擦速度与湍流动能呈现出相似的变化趋势,不同高度之间的摩擦速度差别不大。超出前后时次一个数量级的湍流强度尖峰的出现是湍流场发生调整的一个信号,是PM2.5浓度发生剧烈转变的前兆,预示着污染状况更加糟糕。重污染过程中感热通量的输送方向为从地面向大气输送,感热通量和潜热通量都大幅减少,并且表现出明显的日变化特征。对湍流功率谱计算和分析表明,在重污染过程期间,时间尺度为5 min至6 h的中尺度过程对从地面到大气方向的动量和热量通量输送做出了重要贡献。  相似文献   

9.
江苏盐城地区一次持续雾-霾天气过程的综合分析   总被引:7,自引:3,他引:4  
2013年12月上旬江苏盐城地区出现了一次历史罕见的持续重度雾-霾天气,利用盐城市常规气象观测资料、NCEP再分析资料(1°×1°)及环境监测中心站的污染物浓度资料等,对此次过程的环流背景、气象要素、大气层结特征以及动力条件、污染情况等进行了综合性分析。结果发现:12月上旬中高层冷空气势力弱,以纬向环流为主;低层弱的水平风场为雾-霾的发生发展提供了有利的环流背景;稳定的层结特征,近地面高强度的贴地逆温和持续较低的混合层高度是此次雾-霾天气长时间维持的重要因素;边界层内弱正散度及负涡度是此次雾-霾天气得以维持发展的动力因子;通过后向轨迹分型和火点监测资料分析发现:污染物的长距离输送在此次重污染天气的形成过程中起到了一定作用。最后,文中建立了能见度和PM_(2.5)浓度、相对湿度的非线性回归方程,对能见度的预报效果较好,为实际业务应用中雾-霾的预报提供了有利的依据。  相似文献   

10.
针对2016年12月29日—2017年1月6日山西省太原市内发生的一次重污染天气过程,通过分析常规天气条件,SO2、PM2.5和PM10的排放清单以及后向轨迹模式,探讨本次重污染事件的成因。结果表明:本次污染事件持续时间长,重度染污持续将近5 d,多种污染物浓度严重超标,细粒子是污染过程的主要贡献;太原市处于冷空气较弱和水汽条件较好的大尺度大气环流形势下,为冷高压持续稳定,近地面风速小、风力弱地面形势下,形成了大范围、长时间的静稳天气;在污染期间太原地区主要受到来自西北和西部共四种气流输送类型的控制,其中来自西北的气流输送轨迹对应的污染物浓度明显小于其他三条轨迹对应的污染物浓度,输送轨迹的输送高度可能是造成轨迹对应污染物浓度之间差异的一个原因,结合污染物排放源分布发现这次污染事件的形成受本地源和长/近距离输送的共同影响,其中本地源的贡献更为显著。  相似文献   

11.
利用空气质量历史监测数据、地面气象要素及激光雷达探测资料,综合分析了2019年1月10—15日长春市一次霾污染过程,探讨了污染过程中污染物和气象要素的变化特征与影响机制。结果表明:此次霾污染过程中12—13日污染最重,PM2.5和PM10质量浓度均超过150 μg·m-3,气溶胶消光最强,超过70%的PM2.5/PM10比值大于0.7,指出了细粒子对重污染事件的贡献;重污染期间近地面风速偏小、相对湿度增加、变压较小,同时低空风出现明显的风向转变,弱下沉运动与逆温以及较低的边界层共同削弱了大气的水平和垂直扩散能力,有利于污染物累积,导致霾污染。500 hPa天气形势表明长春市位于槽前脊后,850 hPa高度场为弱西风,相对湿度大;海平面气压场存在低压气旋及弱西南气流,该气流有利于将污染物输送至长春市,造成霾污染加剧;1月14—15日高空槽加深东移,850 hPa西北气流增强,近地面气压梯度力变大,污染物得到扩散,霾污染逐渐结束。  相似文献   

12.
利用气象与环境监测数据,结合后向轨迹和秸秆焚烧火点监测资料,从环流形势、气象要素、污染源和污染传输特征等方面,对哈尔滨2017年10月18-20日持续性重污染天气过程进行分析。结果表明:这次重污染过程连续48 h为重度或严重污染,首要颗粒物为PM2.5,PM2.5平均浓度为438 μg·m-3,局地PM2.5浓度高达1487 μg·m-3。重污染过程分为两个阶段,每个阶段主要污染物呈双峰分布。在重污染过程中,高空环流平直,浅槽前暖平流占主导地位,地面为弱低压均压场控制。地面风速小,平均风速仅为1.5 m·s-1,风速≤ 1.5 m·s-1静小风频率为71%,风场辐合,有利于污染物积聚。在重污染发展的过程中,地面相对湿度(RH)增大有利于颗粒物吸湿增长和污染加剧;在重污染减弱的过程中,PM2.5浓度减少至每阶段谷值时间比RH减小至谷值时间滞后4-5 h。在边界层内有逆温层顶高为200 m左右、逆温强度>2.0℃·(100 m)-1的贴地逆温层,层结稳定,垂直扩散条件差。污染物主要来源于秸秆焚烧,其次来源于取暖燃煤。静稳气象条件下本地污染物积累叠加远距离较高浓度的秸秆焚烧污染物输送导致哈尔滨这次重污染过程。  相似文献   

13.
近年来中国东北地区污染事件频发,为揭示该地区重污染天气分布特征,利用2014—2017年中国东北地区40个城市空气质量数据及对应的高低空天气形势资料,统计分析得到中国东北地区大气污染状况的变化特征以及区域重污染事件的天气学特征。结果表明:2015—2017年中国东北地区PM2.5和PM10年平均质量浓度呈下降趋势,其中PM2.5年平均质量浓度下降的更快,PM2.5最大值出现在辽宁和吉林中部地区约为90—100 μg·m-3,SO2年平均质量浓度较高值分布在辽宁西部地区约为50 μg·m-3,而NO2最大值出现在沈阳—长春—哈尔滨一带,约为45 μg·m-3,CO质量浓度最大值分布在东北沿海地区约为1.6 mg·m-3,相反中国东北地区O3年平均质量浓度呈上升趋势,最大值出现在沿海的大连及营口等地,约为100 μg·m-3。污染物浓度变化具有鲜明的季节变化特征,不同地区PM2.5和PM10与AQI最大值均出现在冬季,SO2冬季质量浓度最大值出现在沈阳(180 μg·m-3),NO2与CO冬季最大值出现在哈尔滨(80 μg·m-3,1.8 mg·m-3)。相反,O3最大值出现在夏季沈阳地区约为140—150 μg·m-3。重度污染级别(200 μg·m-3≤PM2.5 < 300 μg·m-3)和严重污染级别(PM2.5>300 μg·m-3)的空气质量表现出以哈尔滨为中心,向周围迅速减少,辽宁中部又略有增加的特征;中度污染(150 μg·m-3≤PM2.5 < 200 μg·m-3)的天数沈阳>哈尔滨>长春,轻度污染(100 μg·m-3≤PM2.5 < 150 μg·m-3)的天数是沈阳>长春>哈尔滨。引发中国东北地区重污染的天气形势大致可分为高压型,低压型和北高南低型3种,出现比例分别为62%、27%和11%;高压型850 hPa高压脊东移经过中国东北地区,地面处于高压南部或弱高压中心,有时在黑龙江北部或辽宁西南部连续有弱小的低压生成并快速东移过境;低压型850 hPa低压系统发展并东移经过中国东北地区,地面处于低压后弱高压中;北高南低型850 hPa和地面中国东北地区受北面高压和南面低压的共同影响。  相似文献   

14.
利用泰安市2018—2019年降水、风和PM2.5逐小时观测数据,分析了降水和风对PM2.5浓度的影响,并对PM2.5进行了源解析。结果表明:降水对PM2.5有一定清除作用,降雨日PM2.5平均质量浓度较非降雨日平均降低约7.2%,秋冬季节最为显著。降水对PM2.5的清除率与降水强度、降水前PM2.5初始浓度及降水时间均有关。当降水强度大于4 mm·h-1时,清除率多在40%以上;当降水强度小于2 mm·h-1、初始浓度低于75 μg·m-3或降水强度小于1 mm·h-1、初始浓度在75—100 μg·m-3范围,且降水持续时间在5 h以内时容易出现PM2.5浓度反弹现象。不同风向风速对泰安地区霾粒子清除也有明显差异,西南偏西风和东北偏东风更容易造成泰安地区霾污染,重污染期间风速超过5 m·s-1偏南风和风速超过3 m·s-1偏北风均对污染物具有有效清除作用。而区域风场相关矢结果表明重污染期间PM2.5污染物主要从广西—湖南—江西一带、安徽南部及浙江北部在西南气流引导下传输至泰安地区,本地源贡献则较少。  相似文献   

15.
利用地面大气颗粒物质量浓度观测资料、探空和NECP再分析资料以及地面激光雷达探测资料,对2021年3月13—15日沈阳地区污染事件过程展开分析,探讨大气污染物质量浓度、大气环流背景与气溶胶垂直分布等特征。结果表明: 3月13日PM2.5质量浓度最高值出现在06:00—07:00,约为220.0—230.0 μg·m-3,15日12:00开始显著降低,而PM10质量浓度在15:00出现显著增加,为258.3 μg·m-3。SO2和NO2浓度较高值均出现在3月13日10:00时左右,分别为40.1 μg·m-3和101.3 μg·m-3。CO质量浓度最高值出现在13日16:00—17:00,约为8.8 mg·m-3。沈阳地区臭氧的最高值均出现在午后,13日和14日午后(12:00—16:00)臭氧最大值为102.4—113.7 μg·m-3。蒙古气旋东移过程中逐渐发展加强,其后部西北风将沙尘向东南方向输送。沈阳地区沙尘发展旺盛时存在不稳定层结,同时伴有显著的上升运动,有利于沙尘粒子的垂直混合和向下游输送。3月15日02:00(北京时间15日10:00)气溶胶消光最大值出现在0.7 km处,消光系数约为6.0 km-1。近地面激光雷达退偏比显著增加至0.4—0.5,近地面以非球形粒子(粗颗粒物)为主的沙尘或浮尘。  相似文献   

16.
利用2015—2017年唐山市空气质量日空气质量指数、小时PM2.5浓度和气象数据,分析了唐山市重污染特征及PM2.5重污染生成、消散气象条件。结果表明:2015—2017年唐山市重污染天数为减少趋势,年平均重污染天数36 d。冬季发生重污染天数最多,秋季次之。重污染天气中首要污染物为PM2.5、PM10和O3,PM2.5为首要污染物占比87%,PM10占比6%,O3占比7%。小时PM2.5浓度与相对湿度、总云量、24 h变温正相关,与风速、气温、风向、1 h降水负相关。冬季相关性最好,其次是秋季和春季。90%PM2.5重污染相对湿度均为50%以上,冬季和秋季高达98%;风速大于4 m·s-1时,有0.7%的PM2.5达到重污染;降水对PM2.5有一定清除作用。升温、湿度增加和负变压有助于污染天气形成,生成过程中平均风速为1.8 m·s-1,主导风向为SW,其次是S、W。降温、湿度下降、正变压、降水有助于污染天气消散,消散过程中平均风速为3.1 m·s-1,主导风向为E,其次是NE、N。各方位3 m·s-1的风具有清除能力,偏北风具有较好清除能力,风速较其他方向风速小。  相似文献   

17.
利用2018年12月至2019年2月滨州、德州和聊城PM2.5、PM10、NO2、SO2、CO和O3逐日质量浓度及其对应的气象资料,分析了鲁西北大气污染特征和影响因子。结果表明:2018年冬季鲁西北大气污染比较严重,聊城、德州和滨州轻度及以上污染天数分别占61%、60%和54%,重度以上染污天数分别占24%、11%和9%;首要污染物均为PM2.5、PM10和NO2,其中PM2.5占60%以上。PM2.5、PM10、SO2、NO2和CO日变化呈双峰双谷型,谷值分别出现在04-07时和15-17时,且下午比清晨更低,峰值出现在上午和下午交通高峰期后2-3 h,且峰值上午大于下午;O3呈单峰型分布,09时出现极小值,18-19时出现极大值。PM2.5是鲁西北主要的首要污染物,与PM10、CO、NO2均为显著正相关,并通过0.01水平显著性检验,与NO2的相关性在低相对湿度(< 60%)时大于高相对湿度(≥ 60%),与CO的相关性在高相对湿度时大于低相对湿度;污染时段(PM2.5>75 μg·m-3)的平均相对湿度和平均温度明显大于清洁时段(PM2.5 ≤ 75 μg·m-3),清洁时段风速和气压比污染时段明显偏大。  相似文献   

18.
利用第三代空气质量预报模式LOTOS-EUROS(Long Term Ozone Simulation-European Operational Smog)对2018年中国长三角地区细颗粒物(PM2.5)浓度的时空分布进行数值模拟,通过对比模拟结果与地面观测值,验证模式对PM2.5长期特征模拟的合理性并探讨长三角地区PM2.5的时空分布特征。结果表明:LOTOS-EUROS模式可以较好地再现中国长三角地区PM2.5浓度的时空分布特征,监测站点观测值和模拟值的整体相关系数达到0.64,可以用于长三角地区细颗粒物的模拟。长三角地区PM2.5浓度呈冬高夏低,西北高东南低的特征。冬季PM2.5浓度高值出现在长三角地区的西北部,安徽省等地区的浓度水平最大值可达到160 μg·m-3;春季和秋季PM2.5浓度的高值集中在30°N以北、120°E以西地区,浓度为40-80 μg·m-3;而夏季PM2.5浓度水平大幅度降低,大部分地区维持在20-40 μg·m-3,低值中心出现在长三角地区东南部沿海城市,低于10 μg·m-3,最低值可达5 μg·m-3。  相似文献   

19.
利用2015年1月至2017年12月中国环境监测总站全国城市空气质量实时发布平台中公布的克拉玛依5个监测点数据和同时期克拉玛依国家基本气象站的观测数据,分别研究了克拉玛依市4个行政区的PM2.5浓度的时空变化特征以及气象条件对克拉玛依PM2.5浓度变化的影响。结果表明:从月份上看,克拉玛依每年的1月、2月、12月PM2.5浓度最高,3月、11月PM2.5浓度较高,其中,独山子每年2月的PM2.5浓度均最高,2016年2月独山子PM2.5平均浓度最高,达到134 μg·m-3,超过国家一级标准值的2.8倍,属于中度污染,从季节上看,克拉玛依四季PM2.5浓度变化呈现波峰波谷变化趋势,表现为冬季最高,春季次之,夏季、秋季各区变化不一的特点,采暖期的PM2.5浓度高于非采暖期的PM2.5浓度;克拉玛依PM2.5浓度在空间上的总体分布为:独山子区>白碱滩区>克拉玛依区>乌尔禾区;从风向、风速、气温、气压和相对湿度等气象要素与PM2.5浓度的相关性来看,气压、相对湿度与PM2.5浓度呈显著正相关,气温、风速、风向与PM2.5浓度呈负相关,其中气温、风向与PM2.5浓度呈显著负相关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号