首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Today Africa is a small emitter, but it has a large and faster-than-average growing population and per capita income that could drive future energy demand and, if unconstrained, emissions. This paper uses a multi-model comparison to characterize the potential future energy development for Continental and Sub-Saharan Africa under different assumptions about population and income. Our results suggest that population and economic growth rates will strongly influence Africa’s future energy use and emissions. We show that affluence is only one face of the medal and the range of future emissions is also contingent on technological and political factors. Higher energy intensity improvements occur when Africa grows faster. In contrast, climate intensity varies less with economic growth and it is mostly driven by climate policy. African emissions could account for between 5 % and 20 % of global emissions, with Sub-Saharan Africa contributing between 4 % and 10 % of world emissions in 2100. In all scenarios considered, affluence levels remain low until the middle of the century, suggesting that the population could remain dependent on traditional bioenergy to meet most residential energy needs. Although the share of electricity in final energy, electric capacity and electricity use per capita all rise with income, even by mid-century they do not reach levels observed in developed countries today.  相似文献   

2.
Climate and land use patterns are expected to change dramatically in the coming century, raising concern about their effects on wildfire patterns and subsequent impacts to human communities. The relative influence of climate versus land use on fires and their impacts, however, remains unclear, particularly given the substantial geographical variability in fire-prone places like California. We developed a modeling framework to compare the importance of climatic and human variables for explaining fire patterns and structure loss for three diverse California landscapes, then projected future large fire and structure loss probability under two different climate (hot-dry or warm-wet) and two different land use (rural or urban residential growth) scenarios. The relative importance of climate and housing pattern varied across regions and according to fire size or whether the model was for large fires or structure loss. The differing strengths of these relationships, in addition to differences in the nature and magnitude of projected climate or land use change, dictated the extent to which large fires or structure loss were projected to change in the future. Despite this variability, housing and human infrastructure were consistently more responsible for explaining fire ignitions and structure loss probability, whereas climate, topography, and fuel variables were more important for explaining large fire patterns. For all study areas, most structure loss occurred in areas with low housing density (from 0.08 to 2.01 units/ha), and expansion of rural residential land use increased structure loss probability in the future. Regardless of future climate scenario, large fire probability was only projected to increase in the northern and interior parts of the state, whereas climate change had no projected impact on fire probability in southern California. Given the variation in fire-climate relationships and land use effects, policy and management decision-making should be customized for specific geographical regions.  相似文献   

3.
Projections of greenhouse gas (GHG) emissions are critical to enable a better understanding and anticipation of future climate change under different socio-economic conditions and mitigation strategies. The climate projections and scenarios assessed by the Intergovernmental Panel on Climate Change, following the Shared Socioeconomic Pathway (SSP)-Representative Concentration Pathway (RCP) framework, have provided a rich understanding of the constraints and opportunities for policy action. However, the current emissions scenarios lack an explicit treatment of urban emissions within the global context. Given the pace and scale of urbanization, with global urban populations expected to increase from about 4.4 billion today to about 7 billion by 2050, there is an urgent need to fill this knowledge gap. Here, we estimate the share of global GHG emissions driven by urban areas from 1990 to 2100 based on the SSP-RCP framework. The urban consumption-based GHG emissions are presented in five regional aggregates and based on a combination of the urban population share, 2015 urban per capita CO2eq carbon footprint, SSP-based national CO2eq emissions, and recent analysis of urban per capita CO2eq trends. We find that urban areas account for the majority of global GHG emissions in 2015 (61.8%). Moreover, the urban share of global GHG emissions progressively increases into the future, exceeding 80% in some scenarios by the end of the century. The combined urban areas in Asia and Developing Pacific, and Developed Countries account for 65.0% to 73.3% of cumulative urban consumption-based emissions between 2020 and 2100 across the scenarios. Given these dominant roles, we describe the implications for potential urban mitigation in each of the scenario narratives in order to meet the goal of climate neutrality within this century.  相似文献   

4.
Future levels of water stress depend on changes in several key factors including population, climate-change driven water availability, and a carbon dioxide physiological-forcing effect on evaporation and run-off. In this study we use an ensemble of the HadCM3 climate model forced with a range of future emissions scenarios combined with a simple water scarcity index to assess the contribution of each of these factors to the projected population living in water stress over the 21st century.Population change only scenarios increase the number of people living in water stress such that at peak global population 65% of people experience some level of water stress. Globally, the climate model ensemble projects an increase in water availability which partially offsets some of the impacts of population growth. The result is 1 billion fewer people living in water stress by the 2080s under the high end emissions scenarios than if population increased in the absence of climate change.This study highlights the important role plant-physiological forcing has on future water resources. The effect of rising CO2 is to increase available water and to reduce the number of people living in high water stress by around 200 million compared to climate only projections. This effect is of a similar order of magnitude to climate change.  相似文献   

5.
全球气候变暖已经成为不争的事实,人们逐渐认识到依靠大量能源消费的生产方式、不惜牺牲环境的经济增长模式、无节制大量消费的生活方式应该从根本上得到改变.城市作为工业、建筑、交通的载体,也是高能耗、高碳排放的主要源头,需要改变传统城市发展的模式来应对全球变暖的挑战,发展低碳城市被认为是未来最有希望的经济发展动力.首先采用IPCC能源转换模型对南京市碳排量进行测算,选取南京的人口数量、GDP、人均GDP、人口城市化率、产业结构多元化系数(ESD)、能源消费结构多元化系数(ESCD)和能源强度作为对比数列,以南京CO2排放总量作为参考数列,运用灰色系统关联模型进行关联度计算并排序.结果显示,南京市碳排放量关联度从大到小依次为ESD、人口数量、城市化率、ECSD、能源强度、人均GDP、GDP,这与南京工业生产因化石能源的大量使用对城市碳排放量贡献占总排量一半以上的分析结果相吻合.最后详细分析各指标对南京建设低碳城市的影响,并提出对策建议.  相似文献   

6.
The current global geographic distribution of malaria results from a complex interaction between climatic and non-climatic factors. Over the past century, socio-economic development and public health measures have contributed to a marked contraction in the distribution of malaria. Previous assessments of the potential impact of global changes on malaria have not quantified the effects of non-climate factors. In this paper, we describe an empirical model of the past, present and future-potential geographic distribution of malaria which incorporates both the effects of climate change and of socio-economic development. A logistic regression model using temperature, precipitation and gross domestic product per capita (GDPpc) identifies the recent global geographic distribution of malaria with high accuracy (sensitivity 85% and specificity 95%). Empirically, climate factors have a substantial effect on malaria transmission in countries where GDPpc is currently less than US$20,000. Using projections of future climate, GDPpc and population consistent with the IPCC A1B scenario, we estimate the potential future population living in areas where malaria can be transmitted in 2030 and 2050. In 2050, the projected population at risk is approximately 5.2 billion when considering climatic effects only, 1.95 billion when considering the combined effects of GDP and climate, and 1.74 billion when considering GDP effects only. Under the A1B scenario, we project that climate change has much weaker effects on malaria than GDPpc increase. This outcome is, however, dependent on optimistic estimates of continued socioeconomic development. Even then, climate change has important effects on the projected distribution of malaria, leading to an increase of over 200 million in the projected population at risk.  相似文献   

7.
This study explores the implications of shifting the narrative of climate policy evaluation from one of costs/benefits or economic growth to a message of improving social welfare. Focusing on the costs of mitigation and the associated impacts on gross domestic product (GDP) may translate into a widespread concern that a climate agreement will be very costly. This article considers the well-known Human Development Index (HDI) as an alternative criterion for judging the welfare effects of climate policy. We estimate what the maximum possible annual average increase in HDI welfare per tons of CO2 would be within the carbon budget associated with limiting warming to 2°C over the period 2015–2050. Emission pathways are determined by a policy that allows the HDI of poor countries and their emissions to increase under a business-as-usual development path, while countries with a high HDI value (>0.8) have to restrain their emissions to ensure that the global temperature rise does not exceed 2°C. For comparison, the well-known multi-regional RICE model is used to assess GDP growth under the same climate change policy goals.

Policy relevance

This is the first study that shifts the narrative of climate policy evaluation from one of GDP growth to a message of improving social welfare, as captured by the HDI. This could make it easier for political leaders and climate negotiators to publicly commit themselves to ambitious carbon emission reduction goals, such as limiting global warming to 2°C, as in the (non-binding) agreement made at COP 21 in Paris in 2015. We find that if impacts are framed in terms of growth in HDI per t CO2 emission per capita instead of in GDP, the HDI of poor countries and their emissions are allowed to increase under a business-as-usual development path, whereas countries with a high HDI (>0.8) must control emissions so that global temperature rise remains within 2°C. Importantly, a climate agreement is more attractive for rich countries under the HDI than the GDP frame. This is good news, as these countries have to make the major contribution to emissions reductions.  相似文献   


8.
全球长期减排目标与碳排放权分配原则   总被引:9,自引:1,他引:8       下载免费PDF全文
全球长期减排目标将对世界未来的碳排放形成严重制约,减排义务的分担原则涉及各国的发展空间,事关根本利益。部分发达国家倡导人均排放趋同原则,回避发达国家的历史责任,中国等发展中国家提出人均累积排放趋同原则,强调公平性。按人均累积排放量计算,发达国家自工业革命以来的CO2排放量已远超出其到2050年前应有的限额,其当前和今后相当长时期的高人均排放都将继续挤占发展中国家的排放空间。因此,发达国家在哥本哈根会议的中近期减排承诺中必须深度减排,以实现全球长期减排目标下的排放轨迹,并为发展中国家留有必要的发展空间。同时必须对发展中国家给予充足的资金和技术支持,作为对其过度挤占发展中国家发展空间的补偿,使发展中国家能够在可持续发展框架下,提高应对气候变化的能力。我国在对外坚持公平原则,努力争取合理的排放空间的同时,对内要加强向低碳经济转型,努力实现保护全球气候和国内可持续发展的双赢。  相似文献   

9.
The future forests of eastern North America will be shaped by at least three broad drivers: (i) vegetation change and natural disturbance patterns associated with the protracted recovery following colonial era land use, (ii) a changing climate, and (iii) a land-use regime that consists of geographically variable rates and intensities of forest harvesting, clearing for development, and land protection. We evaluated the aggregate and relative importance of these factors for the future forests of New England, USA by simulating a continuation of the recent trends in these drivers for fifty-years, nominally spanning 2010 to 2060. The models explicitly incorporate the modern distribution of tree species and the geographical variation in climate and land-use change. Using a cellular land-cover change model in combination with a physiologically-based forest landscape model, we conducted a factorial simulation experiment to assess changes in aboveground carbon (AGC) and forest composition. In the control scenario that simulates a hypothetical absence of any future land use or future climate change, the simulated landscape experienced large increases in average AGC—an increase of 53% from 2010 to 2060 (from 4.2 to 6.3 kg m−2). By 2060, climate change increased AGC stores by 8% relative to the control while the land-use regime reduced AGC by 16%. Among land uses, timber harvesting had a larger effect on AGC storage and changes in tree composition than did forest conversion to non-forest uses, with the most pronounced impacts observed on private corporate-owned land in northern New England. Our results demonstrate a large difference between the landscape’s potential to store carbon and the landscape’s current trajectory, assuming a continuation of the modern land-use regime. They also reveal aspects of the land-use regime that will have a disproportionate impact on the ability of the landscape to store carbon in the future, such as harvest regimes on corporate-owned lands. This information will help policy-makers and land managers evaluate trade-offs between commodity production and mitigating climate change through forest carbon storage.  相似文献   

10.
Global GDP projections for the 21st century are needed for the exploration of long-term global environmental problems, in particular climate change. Greenhouse gas emissions as well as climate change mitigation and adaption capacities strongly depend on growth of per capita income. However, long-term economic projections are highly uncertain. This paper provides five new long-term economic scenarios as part of the newly developed shared socio-economic pathways (SSPs) which represent a set of widely diverging narratives. A method of GDP scenario building is presented that is based on assumptions about technological progress, and human and physical capital formation as major drivers of long-term GDP per capita growth. The impact of these drivers differs significantly between different shared socio-economic pathways and is traced back to the underlying narratives and the associated population and education scenarios. In a highly fragmented world, technological and knowledge spillovers are low. Hence, the growth impact of technological progress and human capital is comparatively low, and per capita income diverges between world regions. These factors play a much larger role in globalization scenarios, leading to higher economic growth and stronger convergence between world regions. At the global average, per capita GDP is projected to grow annually in a range between 1.0% (SSP3) and 2.8% (SSP5) from 2010 to 2100. While this covers a large portion of variety in future global economic growth projections, plausible lower and higher growth projections may still be conceivable. The GDP projections are put into the context of historic patterns of economic growth (stylized facts), and their sensitivity to key assumptions is explored.  相似文献   

11.
随着气候变化影响加剧,全球气候治理进程加速,实现碳达峰已经成为全球气候行动的核心,各国也相继制定碳中和目标并开展行动。中国在第75届联合国大会一般性辩论上提出了碳达峰碳中和目标,部分已实现碳达峰的发达经济体也提出了各自的碳中和承诺。文中从“整体-阶段”及“焦点-公平”视角分析了欧盟和美国等主要发达经济体碳达峰的历程和特点,以及其碳中和目标和规划。研究发现,发达经济体在碳达峰过程中普遍经历了较长的爬坡期(58~136年)和平台期(4~20年),在碳达峰时,发达经济体的能源结构以油气为主,油气占一次能源消费比重为57%~77%,其人均排放量、历史累计排放以及人均GDP也都处于较高水平,在碳达峰前后总体处于经济与碳排放脱钩状态。各发达经济体的碳中和路径均以能源转型为重点,采用了多元化的政策工具,并且注重低碳和负碳技术的革新。根据发达经济体的政策展望,在实现碳中和时,均难以将绝对排放量降为零,都需要通过碳移除手段进行抵消。通过对比分析,发现中国的碳达峰和碳中和目标是具有雄心的气候承诺,相较其他发达经济体需要付出更大努力。建议运用全面综合的政策工具支撑碳中和目标的有效落实,加快中国的气候立法,在兼顾公正转型的同时推动能源结构调整,注重可再生能源和能效方面的新技术开发应用。  相似文献   

12.
通过系统地比较各主要国家CO2排放总量、人均排放量及排放强度等,总结发达国家碳排放特点,分析中国碳排放历程及各阶段出现的原因。比较分析发达国家和发展中国家应对气候变化的相关政策,结合中外碳排放特征,总结中国碳排放及应对气候变化面临的主要问题。提出中国新常态下应对气候变化的建议,包括在国际层面上,积极参与气候谈判,推动国际社会低碳化发展,在中国层面上,切实改变经济增长方式,引领经济低碳发展等。  相似文献   

13.
Terrestrial ecosystems provide a range of important services to humans, including global and regional climate regulation. These services arise from natural ecosystem functioning as governed by drivers such as climate, atmospheric carbon dioxide mixing ratio, and land-use change. From the perspective of carbon sequestration, numerous studies have assessed trends and projections of the past and future terrestrial carbon cycle, but links to the ecosystem service concept have been hindered by the lack of appropriate quantitative service metrics. The recently introduced concept of the Greenhouse Gas Value (GHGV) accounts for the land-atmosphere exchanges of multiple greenhouse gases by taking into consideration the associated ecosystem pool sizes, annual exchange fluxes and probable effects of natural disturbance in a time-sensitive manner.We use here GHGV as an indicator for the carbon sequestration aspects of the climate regulation ecosystem service, and quantify it at global scale using the LPJ-GUESS dynamic global vegetation model. The response of ecosystem dynamics and ecosystem state variables to trends in climate, atmospheric carbon dioxide levels and land use simulated by LPJ-GUESS are used to calculate the contribution of carbon dioxide to GHGV. We evaluate global variations in GHGV over historical periods and for future scenarios (1850–2100) on a biome basis following a high and a low emission scenario.GHGV is found to vary substantially depending on the biogeochemical processes represented in LPJ-GUESS (e.g. carbon–nitrogen coupling, representation of land use). The consideration of disturbance events that occur as part of an ecosystem's natural dynamics is crucial for realistic GHGV assessments; their omission results in unrealistically high GHGV. By considering the biome-specific response to current climate and land use, and their projections for the future, we highlight the importance of all forest biomes for maintaining and increasing biogeochemical carbon sequestration. Under future climate and carbon dioxide levels following a high emission scenario GHGV values are projected to increase, especially so in tropical forests, but land-use change (e.g. deforestation) opposes this trend. The GHGV of ecosystems, especially when assessed over large areas, is an appropriate metric to assess the contribution of different greenhouse gases to climate and forms a basis for the monetary valuation of the climate regulation service ecosystems provide.  相似文献   

14.
The magnitude and character of the global resource base of fossil fuels is a key determinant of the evolution of the future global energy system and corresponding fossil fuel carbon emissions. What is less well understood is the potential magnitude of impact of the availability of fossil fuels, due to the interaction with biomass energy, on agriculture, land use, ecosystems and therefore carbon emissions from land-use change. This paper explores these links and implications. We show that if oil resources are limited, then the consequently higher price for liquids induces both the use of coal-to-liquids technology deployment, but also enhanced production of bioenergy crops particularly in a business-as-usual scenario. This in turn implies greater pressure to convert unmanaged ecosystems to produce bioenergy, and higher rates of terrestrial carbon emissions from land use.  相似文献   

15.
Patterns of national climate policy performance and their implications for the geopolitics of climate change are examined. An overview of levels of emissions performance across countries is first provided. Substantial changes in emissions trends over time are documented, notably with GHG emissions trajectories, which are shaped less and less by the developed/developing country divide. Various patterns of policy convergence and divergence in the types of policies states implement are then surveyed. Four broad types of explanation that may account for these trends are then explored: (1) variation in the institutional form of country-level governance regimes, (2) patterns of dependence on fossil fuel energy, (3) broad systemic differences among states (specifically in their population densities, carbon intensity, and per capita incomes, and (4) variations in the traditions of economic intervention by states. The article contributes to the growing body of work on comparative climate policy, and provides a first attempt at exploring the comparative politics of instrument choice. The analysis challenges the continued importance of a North–South divide for the future of climate policy, thus reinforcing a sense of the ‘new geopolitics’ of climate change. Some of the implications of the analysis for debates about the form of future international agreement on mitigation policy are also explored.

Policy relevance

The article contributes to the understanding of the variety of institutional conditions under which policy makers develop policy and thus the constraints and opportunities for the design of international agreements under these conditions.  相似文献   

16.
ABSTRACT

The per capita CO2 emissions (PCCE) of many developing countries like China have been rising faster than total CO2 emissions, and display spatial divergence. Such temporal growth and spatial divergence will have a significant influence on efforts to mitigate CO2 emissions. Given the research gap on the impact of the structural transition in population on PCCE, we constructed an econometric model using the dynamic panel method. The results reveal that the population structural transition has a significant nonlinear impact on PCCE, as the rate of population growth in China decelerates. Both demographic ageing and urban-rural migration have a stronger impact on PCCE than other factors. This effect, however, decreases beyond a certain threshold. An increase in the number of households due to urbanization and family downsizing has resulted in a positive effect on PCCE, without a threshold turning point. The research also finds that an increased share of the service sector in employment can reduce PCCE only if the sector employs more than 31.56% of the total employed population. Overall, these findings indicate that policymakers should pay attention to the prominence of the demographic structural transition for effective climate policy.

Key policy insights
  • Policymakers should address rising per capita carbon emissions (PCCE) and their spatial divergence in future climate policies, not just total CO2 emissions.

  • The transitioning demographics of ageing and urbanization in China show a nonlinear, inverted U-shaped effect on PCCE instead of a continuously positive effect.

  • Based on the nonlinear effect of employment structure on PCCE, policymakers should focus on the relationship between the structural transition of the economy and PCCE in future climate mitigation policies.

  相似文献   

17.
《Climate Policy》2013,13(4):303-318
Abstract

To stabilise atmospheric greenhouse gas concentrations, all countries will eventually need to be included in the effort to limit climate change. This article explores what potential future greenhouse gas allocation schemes might mean for key developing countries. The need for development is widely acknowledged, but growth in non-Annex I country emissions means that such development may need to take a different path to business as usual. The national interests of developing countries in negotiating potential future commitments are shaped by basic characteristics, notably emissions (both annual and historical cumulative), economic growth and population. These factors in turn shape the acceptability of allocations based on ability to pay, emissions intensity, or emissions per capita.

Results for six major developing countries (China, India, Brazil, South Africa, Argentina and Nigeria) show that the implications for developing countries differ widely. For example, ability to pay does not favour Argentina; a reduction based on emissions intensity is not appropriate for Brazil; and per capita allocations would be problematic for South Africa. It is difficult to conceive of a single allocation scheme that would be appropriate for all developing countries. This points to the need for differentiation between developing countries in terms of any potential future commitments.  相似文献   

18.
Fluvial flood risk in Europe in present and future climates   总被引:2,自引:0,他引:2  
In this work we evaluate the implications of climate change for future fluvial flood risk in Europe, considering climate developments under the SRES A2 (high emission) and B2 (low emission) scenario. We define flood risk as the product of flood probability (or hazard), exposure of capital and population, and vulnerability to the effect of flooding. From the European flood hazard simulations of Dankers and Feyen (J Geophys Res 114:D16108. doi:, 2009) discharges with return periods of 2, 5, 10, 20, 50, 100, 250 and 500 years were extracted and converted into flood inundation extents and depths using a planar approximation approach. Flood inundation extents and depths were transformed into direct monetary damage using country specific flood depth-damage functions and land use information. Population exposure was assessed by overlaying the flood inundation information with data on population density. By linearly interpolating damages and population exposed between the different return periods, we constructed damage and population exposure probability functions under present and future climate. From the latter expected annual damages (EAD) and expected annual population exposed (EAP) were calculated. To account for flood protection the damage and population exposure probability functions were truncated at design return periods based on the country GDP/capita. Results indicate that flood damages are projected to rise across much of Western Europe. Decreases in flood damage are consistently projected for north-eastern parts of Europe. For EU27 as a whole, current EAD of approximately €6.4 billion is projected to amount to €14–21.5 billion (in constant prices of 2006) by the end of this century, depending on the scenario. The number of people affected by flooding is projected to rise by approximately 250,000 to 400,000. Notwithstanding these numbers are subject to uncertainty, they provide an indication of potential future developments in flood risk in a changing climate.  相似文献   

19.
Seagrass meadows are natural carbon storage hotspots at risk from global change threats, and their loss can result in the remineralization of soil carbon stocks and CO2 emissions fueling climate change. Here we used expert elicitation and empirical evidence to assess the risk of CO2 emissions from seagrass soils caused by multiple human-induced, biological and climate change threats. Judgments from 41 experts were synthesized into a seagrass CO2 emission risk score based on vulnerability factors (i.e., spatial scale, frequency, magnitude, resistance and recovery) to seagrass soil organic carbon stocks. Experts perceived that climate change threats (e.g., gradual ocean warming and increased storminess) have the highest risk for CO2 emissions at global spatial scales, while direct threats (i.e., dredging and building of a marina or jetty) have the largest CO2 emission risks at local spatial scales. A review of existing peer-reviewed literature showed a scarcity of studies assessing CO2 emissions following seagrass disturbance, but the limited empirical evidence partly confirmed the opinion of experts. The literature review indicated that direct and long-term disturbances have the greatest negative impact on soil carbon stocks per unit area, highlighting that immediate management actions after disturbances to recover the seagrass canopy can significantly reduce soil CO2 emissions. We conclude that further empirical evidence assessing global change threats on the seagrass carbon sink capacity is required to aid broader uptake of seagrass into blue carbon policy frameworks. The preliminary findings from this study can be used to estimate the potential risk of CO2 emissions from seagrass habitats under threat and guide nature-based solutions for climate change mitigation.  相似文献   

20.
This article provides an overview of the recent modelling results on Russia's GHG emission trends, and reviews the success of mitigation policies in order to establish whether Russia's domestic target seems feasible. Various Russian GHG emission scenarios indicate that Russia's domestic target – emissions 25% below the 1990 level by 2020 – is not far from the business-as-usual emissions trajectory. In particular, two factors could deliver the required emissions reductions: the currently declining gross domestic product (GDP) growth and ongoing domestic mitigation policies. The former is more likely to secure the target level of emissions, because GDP growth has been contracting significantly in comparison to earlier forecasts of 3–5% annual growth, and this trend is expected to continue. The latter option – success with domestic mitigation measures – seems less likely, given the various meta-barriers to policy implementation, and the marginality of mitigation policies, problems with law-making processes, bureaucratic tradition, and informality of legislative and implementation systems.

Policy relevance

This article provides an assessment of the stringency of Russia's domestically set emissions limitation target by 2020 and the chances of Russia, the fourth largest GHG emitter in the world, achieving it. We base our assessment on a number of recent key sources that analyse Russia's GHG emission paths by applying socio-economic models, which have only been available in the Russian language prior to this publication. This knowledge is applicable for use by other negotiation parties to compare Russia's efforts to mitigate climate change to their own, and thus makes a contribution to facilitating a more equal burden-sharing of climate commitments under the future climate change agreement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号