首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper,the RIEMS 2.0 model,source emission in 2006 and 2010 are used to simulate the distributions and radiative effects of different anthropogenic aerosols over China.The comparison between the results forced by source emissions in 2006 and 2010 also reveals the sensitivity of the radiative effects to source emission.The results are shown as follows:(1) Compared with those in 2006,the annual average surface concentration of sulfate in 2010 decreased over central and eastern China with a range of-5 to 0 μg/m~3;the decrease of annual average aerosol optical depth of sulfate over East China varied from 0.04 to 0.08;the annual average surface concentrations of BC,OC and nitrate increased over central and eastern China with maximums of 10.90,11.52 and 12.50μg/m~3,respectively;the annual aerosol optical depths of BC,OC and nitrate increased over some areas of East China with extremes of 0.006,0.007 and 0.008,respectively.(2)For the regional average results in 2010,the radiative forcings of sulfate,BC,OC,nitrate and their total net radiative forcing at the top of the atmosphere over central and eastern China were-0.64,0.29,-0.41,-0.33 and-1.1 W/m~2,respectively.Compared with those in 2006,the radiative forcings of BC and OC in 2010 were both enhanced,while that of sulfate and the net radiative forcing were both weakened over East China mostly.(3)The reduction of the cooling effect of sulfate in 2010 produced a warmer surface air temperature over central and eastern China;the maximum value was 0.25 K.The cooling effect of nitrate was also slightly weakened.The warming effect of BC was enhanced over most of the areas in China,while the cooling effect of OC was enhanced over the similar area,particularly the area between Yangtze and Huanghe Rivers.The net radiative effect of the four anthropogenic aerosols generated the annual average reduction and the maximum reduction were-0.096 and-0.285 K,respectively,for the surface temperature in 2006,while in 2010 they were-0.063 and-0.256 K,respectively.In summary,the change in source emission lowered the cooling effect of anthropogenic aerosols,mainly because of the enhanced warming effect of BC and weakened cooling effect of scattering aerosols.  相似文献   

2.
The authors used a high-resolution regional climate model(RegCM3) coupled with a chemistry/aerosol module to simulate East Asian climate in 2006 and to test the climatic impacts of aerosols on regionalscale climate.The direct radiative forcing and climatic effects of aerosols(dust,sulfate,black carbon,and organic carbon) were discussed.The results indicated that aerosols generally produced negative radiative forcing at the top-of-the-atmosphere(TOA) over most areas of East Asia.The radiative forcing induced by aerosols exhibited significant seasonal and regional variations,with the strongest forcing occurring in summer.The aerosol feedbacks on surface air temperature and precipitation were clear.Surface cooling dominated features over the East Asian continental areas,which varied in the approximate range of-0.5 to-2°C with the maximum up to-3-C in summer over the deserts of West China.The aerosols induced complicated variations of precipitation.Except in summer,the rainfall generally varied in the range of-1 to 1 mm d-1 over most areas of China.  相似文献   

3.
The air quality model system RAMS (Regional Atmospheric Modeling System)-CMAQ (Models-3 Community Multi-scale Air Quality) coupled with an aerosol optical/radiative module was applied to investigate the impact of different aerosol mixing states (i.e., externally mixed, half externally and half internally mixed, and internally mixed) on radiative forcing in East Asia. The simulation results show that the aerosol optical depth (AOD) generally increased when the aerosol mixing state changed from externally mixed to internally mixed, while the single scattering albedo (SSA) decreased. Therefore, the scattering and absorption properties of aerosols can be significantly affected by the change of aerosol mixing states. Comparison of simulated and observed SSAs at five AERONET (Aerosol Robotic Network) sites suggests that SSA could be better estimated by considering aerosol particles to be internally mixed. Model analysis indicates that the impact of aerosol mixing state upon aerosol direct radiative forcing (DRF) is complex. Generally, the cooling effect of aerosols over East Asia are enhanced in the northern part of East Asia (Northern China, Korean peninsula, and the surrounding area of Japan) and are reduced in the southern part of East Asia (Sichuan Basin and Southeast China) by internal mixing process, and the variation range can reach 5 W m-2. The analysis shows that the internal mixing between inorganic salt and dust is likely the main reason that the cooling effect strengthens. Conversely, the internal mixture of anthropogenic aerosols, including sulfate, nitrate, ammonium, black carbon, and organic carbon, could obviously weaken the cooling effect.  相似文献   

4.
The authors present spatial and temporal characteristics of anthropogenic sulfate and carbonaceous aerosols over East Asia using a 3-D coupled regional climate-chemistry-aerosol model, and compare the simulation with the limited aerosol observations over the region. The aerosol module consists of SO2, SO4^2-, hydrophobic and hydrophilic black carbon (BC) and organic carbon compounds (OC), including emission, advections, dry and wet deposition, and chemical production and conversion. The simulated patterns of SO2 are closely tied to its emission rate, with sharp gradients between the highly polluted regions and more rural areas. Chemical conversion (especially in the aqueous phase) and dry deposition remove 60% and 30% of the total SO2 emission, respectively. The SO4^2- shows less horizontal gradient and seasonality than SO2, with wet deposition (60%) and export (27%) being two major sinks. Carbonaceous aerosols are spatially smoother than sulfur species. The aging process transforms more than 80% of hydrophobic BC and OC to hydrophilic components, which are removed by wet deposition (60%) and export (30%). The simulated spatial and seasonal SO4^2-, BC and OC aerosol concentrations and total aerosol optical depth are generally consistent with the observations in rural areas over East Asia, with lower bias in simulated OC aerosols, likely due to the underestimation of anthropogenic OC emissions and missing treatment of secondary organic carbon. The results suggest that our model is a useful tool for characterizing the anthropogenic aerosol cycle and for assessing its potential climatic and environmental effects in future studies.  相似文献   

5.
Data on aerosol optical thickness(AOT) and single scattering albedo(SSA) derived from Moderate Resolution Imaging Spectrometer(MODIS) and Ozone Monitoring Instrument(OMI) measurements,respectively,are used jointly to examine the seasonal variations of aerosols over East Asia.The seasonal signals of the total AOT are well defined and nearly similar over the land and over the ocean.These findings indicate a natural cycle of aerosols that originate primarily from natural emissions. In contrast,the small-sized aerosols represented by the fine-mode AOT,which are primarily generated over the land by human activities,do not have evident seasonalscale fluctuations.A persistent maximum of aerosol loadings centered over the Sichuan basin is associated with considerable amounts of fine-mode aerosols throughout the year.Most regions exhibit a general spring maximum. During the summer,however,the aerosol loadings are the most marked over north central China.This occurrence may result from anthropogenic fine particles,such as sulfate and nitrate.Four typical regions were selected to perform a covariation analysis of the monthly gridded AOT and SSA.Over southwestern and southeastern China,if the aerosol loadings are small to moderate they are composed primarily of the highly absorptive aerosols. However,more substantial aerosol loadings probably represent less-absorptive aerosols.The opposite covariation pattern occurring over the coastal-adjacent oceans suggests that the polluted oceanic atmosphere is closely correlated with the windward terrestrial aerosols.North central China is strongly affected by dust aerosols that show moderate absorption.This finding may explain the lower variability in the SSA that accompanies increasing aerosol loadings in this region.  相似文献   

6.
Aerosols make a considerable contribution to the climate system through their radiative and cloud condensation nuclei effects, which underlines the need for understanding the origin of aerosols and their transport pathways. Seasonal distribution of mineral dust around the globe and its correlation with atmospheric circulation is investigated using satellite data, and meteorological data from ECMWF. The most important sources of dust are located in North Africa, the Middle East and Southwest Asia with an observed summer maximum, and East Asia with a spring peak. Maximum dust activity over North Africa and the Middle East in summer is attributed to dry convection associated with the summertime low-pressure system, while unstable weather and dry conditions are responsible for the spring peak in dust emission in East Asia. Intercontinental transport of mineral dust by atmospheric circulation has been observed, including trans-Atlantic transport of North African dust, trans-Pacific transport of Asian dust, and transport of dust from the Middle East across the Indian Ocean. The extent of African dust over the Atlantic Ocean and its latitudinal variation with season is related to the large-scale atmospheric circulation, including seasonal changes in the position of the intertropical convergence zone (ITCZ) and variation of wind patterns. North African aerosols extend over longer distances across the North Atlantic in summer because of greater dust emission, an intensified easterly low level jet (LLJ) and strengthening of the Azores-Bermuda anticyclonic circulation. Transport of East Asian aerosol is facilitated by the existence of a LLJ that extends from East Asia to the west coast of North America.  相似文献   

7.
不同污染条件下气溶胶对短波辐射通量影响的模拟研究   总被引:1,自引:0,他引:1  
将高光谱分辨率的气溶胶光学参数化方案应用于高精度的辐射传输模式BCC_RAD(974带)中,研究不同污染状况下气溶胶在地表与近地层大气中造成的直接辐射强迫与辐射强迫效率。发现气溶胶在地表产生的直接辐射强迫为负,在近地层大气中产生的直接辐射强迫为正,且随气溶胶浓度的升高变大,说明大气气溶胶的含量越高,单位气溶胶光学厚度产生的直接辐射强迫越大。将短波划分为3个波段:紫外、可见光和近红外,发现在紫外、可见光和近红外波段中,不同污染状况下气溶胶在地表造成的直接辐射强迫范围分别为:-1.36—-13.66、-3.03—-32.41和-2.74—-28.62 W/m2,在近地层大气中产生的直接辐射强迫范围分别为0.44—4.26、0.99—9.80和0.93—8.87 W/m2。通过进一步对比自然和人为气溶胶的影响,发现人为气溶胶在地表和大气层顶产生的负直接辐射强迫以及对整层和近地面大气造成的正直接辐射强迫均大于自然气溶胶的影响,且上述两种排放源的气溶胶对整层大气辐射收支的影响主要集中在800 hPa高度以下的大气中。按照地表直接辐射强迫大小来分析不同种类气溶胶的影响,结果为硫酸盐>有机碳>黑碳>海盐>沙尘;按照近地层大气直接辐射强迫大小排序则为黑碳>有机碳>沙尘>海盐>硫酸盐。最后,通过分析散射型气溶胶与吸收型气溶胶对辐射通量的影响,还探究了大气中散射与吸收过程的异同。   相似文献   

8.
A physically based cloud nucleation parameterization was introduced into an optical properties/radiative transfer module incorporated with the off-line air quality modeling system Regional Atmospheric Modeling System (RAMS)-Models-3 Community Multi Scale Air Quality (CMAQ) to investigate the distribution features of the first indirect radiative effects of sulfate, nitrate, and ammonium-sulfate-nitrate (ASN) over East Asia for the years of 2005, 2010, and 2013. The relationship between aerosol particles and cloud droplet number concentration could be properly described by this parameterization because the simulated cloud fraction and cloud liquid water path were generally reliable compared with Moderate Resolution Imaging Spectroradiometer (MODIS) retrieved data. Simulation results showed that the strong effect of indirect forcing was mainly concentrated in Southeast China, the East China Sea, the Yellow Sea, and the Sea of Japan. The highest indirect radiative forcing of ASN reached ?3.47 W m?2 over Southeast China and was obviously larger than the global mean of the indirect forcing of all anthropogenic aerosols. In addition, sulfate provided about half of the contribution to the ASN indirect forcing effect. However, the effect caused by nitrate was weak because the mass burden of nitrate was very low during summer, whereas the cloud fraction was the highest. The analysis indicated that even though the interannual variation of indirect forcing magnitude generally followed the trend of aerosol mass burden from 2005 to 2013, the cloud fraction was an important factor that determined the distribution pattern of indirect forcing. The heaviest aerosol loading in North China did not cause a strong radiative effect because of the low cloud fraction over this region.  相似文献   

9.
In this study, a regional air quality model system (RAQMS) was applied to investigate the spatial distributions and seasonal variations of atmospheric aerosols in 2006 over East Asia. Model validations demonstrated that RAQMS was able to reproduce the evolution processes of aerosol components reasonably well. Ground-level PM10 (particles with aerodynamic diameter ≤10 μm) concentrations were highest in spring and lowest in summer and were characterized by three maximum centers: the Taklimakan Desert (~1000 μg m-3), the Gobi Desert (~400 μg m-3), and the Huabei Plain (~300 μm-3) of China. Vertically, high PM10 concentrations ranging from 100 μg m-3 to 250 μg m-3 occurred from the surface to an altitude of 6000 m at 30o--45oN in spring. In winter, the vertical gradient was so large that most aerosols were restricted in the boundary layer. Both sulfate and ammonium reached their highest concentrations in autumn, while nitrate reached its maximum level in winter. Black carbon and organic carbon aerosol concentrations reached maximums in winter. Soil dust were strongest in spring, whereas sea salt exerted the strongest influence on the coastal regions of eastern China in summer. The estimated burden of anthropogenic aerosols was largest in winter (1621 Gg) and smallest in summer (1040 Gg). The sulfate burden accounted for ~42% of the total anthropogenic aerosol burden. The dust burden was about twice the anthropogenic aerosol burden, implying the potentially important impacts of the natural aerosols on air quality and climate over East Asia.  相似文献   

10.
利用耦合化学过程的区域气候模式RegCM3,模拟研究3种主要人为排放气溶胶(硫酸盐、黑碳、有机碳)对东亚区域气候的影响.计算分析近20 a来3种气溶胶的时空分布、综合辐射强迫作用及其对地面气温和降水的影响.模拟结果表明:3种气溶胶冬夏季分布有所不同,冬季气溶胶大值区主要分布在南方地区,而夏季大值区北移;气溶胶短波辐射强迫在大气层顶和地面均为负值;气溶胶的加入对东亚地区地表气温有明显影响,冬季降温中心位于四川盆地,夏季降温大值区位于华北地区.气溶胶直接气候效应使得冬季东亚大部分地区降水减少,夏季东亚地区降水与中国南方地区夏季气溶胶浓度有较好的相关关系,中国东部雨带有南移趋势.  相似文献   

11.
利用NCAR的新一代GCM CAM3.0模式耦合一个气溶胶同化系统,研究了中国区域黑碳气溶胶的直接气候效应。结果显示,中国区域黑碳气溶胶引起全球平均辐射强迫为0.13 W/m2,导致除了青藏高原和广西以外的中国大部分地区降温,其中东北、四川和内蒙古中北部降温最显著。由此造成海陆温差缩小,气压差降低,从而总体上使东亚夏季风减弱。但与硫酸盐气溶胶的影响相比,黑碳气溶胶使季风减弱的程度较小,长江中下游地区的降水有所增加。黑碳气溶胶加强了中国东南部地区的对流活动,这与硫酸盐气溶胶的作用相反。同时,探讨了中国区域硫酸盐和黑碳气溶胶的综合直接气候效应。结果表明,硫酸盐和黑碳气溶胶的综合作用与仅有硫酸盐气溶胶的情形十分相似,降水变化的区域也和硫酸盐的保持一致。  相似文献   

12.
 利用NCAR的新一代GCM CAM3.0模式耦合一个气溶胶同化系统,研究了中国区域黑碳气溶胶的直接气候效应。结果显示,中国区域黑碳气溶胶引起全球平均辐射强迫为0.13 W/m2,导致除了青藏高原和广西以外的中国大部分地区降温,其中东北、四川和内蒙古中北部降温最显著。由此造成海陆温差缩小,气压差降低,从而总体上使东亚夏季风减弱。但与硫酸盐气溶胶的影响相比,黑碳气溶胶使季风减弱的程度较小,长江中下游地区的降水有所增加。黑碳气溶胶加强了中国东南部地区的对流活动,这与硫酸盐气溶胶的作用相反。同时,探讨了中国区域硫酸盐和黑碳气溶胶的综合直接气候效应。结果表明,硫酸盐和黑碳气溶胶的综合作用与仅有硫酸盐气溶胶的情形十分相似,降水变化的区域也和硫酸盐的保持一致。  相似文献   

13.
在过去的20多年里,中外对硫酸盐气溶胶做了大量的研究,对它在大气中的排放、含量、光学特征和辐射强迫有了深入的认识;由于硝酸盐气溶胶在大气中平均含量比硫酸盐低很多,因此过去人们对硝酸盐的研究没有给予重视。然而,近年来的研究表明,硝酸盐气溶胶的散射性质在某些波段甚至强于硫酸盐;同时,由于未来对人为硫酸盐前体物的减排,硫酸盐气溶胶排放会大幅度减少,而硝酸盐气溶胶的排放却增长迅速,其在人为气溶胶中所占的比重越来越高,将会导致其在未来造成的辐射强迫有可能超过硫酸盐,使得其在地区范围内和季节尺度上成为重要的辐射强迫和气候影响因子。中国是硝酸盐气溶胶排放量较大的地区,硝酸盐对未来中国气候和气候变化的影响显得越来越重要。因此,就近年来有关硝酸盐气溶胶的排放和在大气中的浓度变化、光学厚度分布特征及其辐射强迫的研究进展做了回顾和介绍,并对其未来的研究做了展望。  相似文献   

14.
The air quality modeling system RAMS (Regional Atmospheric Modeling System)-CMAQ (Models-3 Community Multi-scale Air Quality) is developed to simulate the aerosol optical depth (AOD) and aerosol direct forcing (DF). The aerosol-specific extinction, single scattering albedo, and asymmetry factor are parameterized based on Mie theory taking into account the aerosol size distribution, composition, refractive index, and water uptake of solution particles. A two-stream solar radiative model considers all gaseous molecular absorption, Rayleigh scattering, and aerosols and clouds. RAMSCMAQ is applied to simulate all major aerosol concentrations (e.g., sulfate, nitrate, ammonium, organic carbon, black carbon, fine soil, and sea salt) and AOD and DF over East Asia in 2005. To evaluate its performance, the simulated AOD values were compared with ground-based in situ measurements. The comparison shows that RAMSCMAQ performed well in most of the model domain and generally captured the observed variations. High AOD values (0.2-1.0) mainly appear in the Sichuan Basin as well as in central and southeastern China. The geographic distribution of DF generally follows the AOD distribution patterns, and the DF at the top-of-the-atmosphere is less than -25 and -20 W m^-2 in clear-sky and all-sky over the Sichuan Basin. Both AOD and DF exhibit seasonal variations with lower values in July and higher ones in January. The DF could obviously be impacted by high cloud fractions.  相似文献   

15.
人为气溶胶对中国东部冬季风影响的模拟研究   总被引:1,自引:1,他引:0       下载免费PDF全文
采用美国国家大气研究中心(NCAR)的公共大气模式CAM5.1研究了人为气溶胶排放增加对中国东部冬季风的影响,同时通过对比中国东部地区不同人为气溶胶排放源的敏感性试验结果,探讨了人为硫酸盐、黑碳及总人为气溶胶(硫酸盐+黑碳)增加对东亚冬季风的影响。结果表明:冬季硫酸盐气溶胶排放增加的直接和第一间接效应减少了到达地表的短波辐射通量,引起了陆地地表和对流层低层降温,海平面气压升高,增加了海陆间气压梯度,使得东亚冬季风增强。其第二间接效应导致中国南部大尺度降水率减少;黑碳气溶胶排放增加导致到达地表的短波辐射通量减少和大气中短波辐射通量增加,其半直接效应部分抵消了直接效应,故地表温度变化微小且不显著。加热的对流层低层导致中国南部对流活动和对流降水率增加;总人为气溶胶排放增加导致的大气温度变化表现为弱的降温作用,引起中国北部对流和大尺度降水率减少,而南部对流降水率增加。总人为气溶胶和黑碳气溶胶排放增加是导致中国北(南)部的东亚冬季风增强(减弱)的重要因素。  相似文献   

16.
The direct climatic effect of aerosols for the 1980-2000 period over East Asia was numerically investigated by a regional scale coupled climate-chemistry/aerosol model,which includes major anthropogenic aerosols(sulfate,black carbon,and organic carbon) and natural aerosols(soil dust and sea salt) .Anthropogenic emissions used in model simulation are from a global emission inventory prepared for the Intergovernmental Panel on Climate Change Fifth Assessment Report(IPCC AR5) ,whereas natural aerosols are calculated online in the model.The simulated 20-year average direct solar radiative effect due to aerosols at the surface was estimated to be in a range of-9--33 W m-2 over most areas of China,with maxima over the Gobi desert of West China,and-12 W m-2 to-24 W m-2 over the Sichuan Basin,the middle and lower reaches of the Yellow River and the Yangtze River.Aerosols caused surface cooling in most areas of East Asia,with maxima of-0.8-C to-1.6-C over the deserts of West China,the Sichuan Basin,portions of central China,and the middle reaches of the Yangtze River. Aerosols induced a precipitation decrease over almost the entire East China,with maxima of-90 mm/year to-150 mm/year over the Sichuan Basin,the middle reaches of the Yangtze River and the lower reaches of the Yellow River.Interdecadal variation of the climate response to the aerosol direct radiative effect is evident,indicating larger decrease in surface air temperature and stronger perturbation to precipitation in the 1990s than that in the 1980s,which could be due to the interdecadal variation of anthropogenic emissions.  相似文献   

17.
Why Is the Climate Forcing of Sulfate Aerosols So Uncertain?   总被引:2,自引:0,他引:2  
l. IntroductionAlthough the aerosol has been recognized as an important factor which has innuence onthe past, present and future climate for a long time, it still has much uncertainty in assessingits climate forcing. The direct radiative forcing of sulfate aerosols has been estimated rangingfrom --0.3 W/ m2 to --0.9 W/ m2 in recent publications (Charlson et al., l992, Kiehl andBriegleb l993; Taylor and Penner 1994, Boucher and Anderson l995, Kieh1 and Rodhe l995;Chuang et al., l997, Penne…  相似文献   

18.
The spatial distributions and interannual variations of aerosol concentrations,aerosol optical depth(AOD) ,aerosol direct radiative forcings,and their responses to heterogeneous reactions on dust surfaces over East Asia in March 2006-10 were investigated by utilizing a regional coupled climate-chemistry/aerosol model. Anthropogenic aerosol concentrations(inorganic+carbonaceous) were higher in March 2006 and 2008,whereas soil dust reached its highest levels in March 2006 and 2010,resulting in stronger aerosol radiative forcings in these periods.The domain and five-year(2006-10) monthly mean concentrations of anthropogenic and dust aerosols,AOD,and radiative forcings at the surface(SURF) and at the top of the atmosphere(TOA) in March were 2.4μg m-3,13.1μg m-3,0.18,-19.0 W m-2,and-7.4 W m-2,respectively.Heterogeneous reactions led to an increase of total inorganic aerosol concentration;however,the ambient inorganic aerosol concentration decreased,resulting in a smaller AOD and weaker aerosol radiative forcings.In March 2006 and 2010,the changes in ambient inorganic aerosols,AOD,and aerosol radiative forcings were more evident.In terms of the domain and five-year averages,the total inorganic aerosol concentrations increased by 13.7%(0.17μg m-3) due to heterogeneous reactions,but the ambient inorganic aerosol concentrations were reduced by 10.5%(0.13μg m-3) .As a result,the changes in AOD,SURF and TOA radiative forcings were estimated to be-3.9%(-0.007) ,-1.7%(0.34 W m-2) ,and-4.3%(0.34 W m-2) ,respectively,in March over East Asia.  相似文献   

19.
运用区域气候模式RegCM3耦合入一个化学过程,对东亚地区三类人为排放气溶胶(硫酸盐、黑碳和有机碳)的时空分布特征及其对夏季风环流的影响进行了数值模拟研究。模拟结果显示,气溶胶的引入会引起东亚地区夏季850 hPa风场发生改变,我国江淮以东洋面上空出现了一个气旋式距平环流中心,中心以西的偏北风气流将削弱东亚地区夏季西南季风。通过讨论春季中国地区气溶胶浓度与夏季东亚地区850 hPa经向风的时滞关系,以及夏季中国地区气溶胶浓度与同期东亚地区850 hPa经向风的关系,可以发现,春、夏季中国地区气溶胶浓度均与夏季东亚地区850 hPa经向风有很好的负相关关系,当春季中国北方和夏季中国南方地区气溶胶浓度增加时,中国东部地区夏季偏南季风减弱。这可能与气溶胶改变了大气层顶和地表的辐射强迫,进而引起了海陆气压差异和位势高度场的变化有关。  相似文献   

20.
Taking winter and summer in eastern China as an example application, a grid-cell method of aerosol direct radiative forcing(ADRF) calculation is examined using the Santa Barbara DISORT Atmospheric Radiative Transfer(SBDART) model with inputs from MODIS and AERONET observations and reanalysis data. Results show that there are significant seasonal and regional differences in climatological mean aerosol optical parameters and ADRF. Higher aerosol optical depth(AOD)occurs in summer and two prominent high aerosol loading centers are observed. Higher single scattering albedo(SSA) in summer is likely associated with the weak absorbing secondary aerosols. SSA is higher in North China during summer but higher in South China during winter. Aerosols induce negative forcing at the top of the atmosphere(TOA) and surface during both winter and summer, which may be responsible for the decrease in temperature and the increase in relative humidity.Values of ADRF at the surface are four times stronger than those at the TOA. Both AOD and ADRF present strong interannual variations; however, their amplitudes are larger in summer. Moreover, patterns and trends of ADRF do not always correspond well to those of AOD. Differences in the spatial distributions of ADRF between strong and weak monsoon years are captured effectively. Generally, the present results justify that to calculate grid-cell ADRF at a large scale using the SBDART model with observational aerosol optical properties and reanalysis data is an effective approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号