首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
利用多种观测及分析资料对台风温比亚(1818)暴雨过程的降水演变、极端降水特点及环境场物理量特征等进行分析。此次台风暴雨日降水量极端性显著,降水主要分为登陆前后、深入内陆并转向以及冷空气作用和变性3个阶段,其中第2阶段为最强降水时段。受其影响,河南、山东等地多个站点的日降水量突破历史极值。温比亚(1818)最大小时降水量达127.7 mm,其中74个站点小时降水量超过80 mm,短时强降水维持时间长达14 h,高降水效率及长持续时间造成极端降水。对流层中、低层存在标准化异常小于-4倍标准差的异常低压环流,造成极端低层辐合,叠加高空急流和高压边缘的极端高空辐散,动力条件极端性显著,200 hPa辐散和850 hPa辐合均接近或远超1988—2017年日降水量排名前30(HT30)降水日的最大值。受台风东侧水汽输送影响,降水区假相当位温、整层大气可降水量和水汽通量散度无论与气候态相比,还是与HT30降水日相比,均具有显著极端性,且极端水汽维持时间长达30 h。  相似文献   

2.
利用分钟降水资料、FY-4A气象卫星高分辨率资料、多普勒天气雷达资料和ERA5再分析资料对2021年“7·20”河南极端暴雨过程中尺度系统精细结构及热动力发展机制进行观测分析和诊断研究, 结果表明: 该过程发生在“两高对峙”的鞍型场弱背景下, 其主导系统为500 hPa弱低压系统和低层偏东风切变线; 极端暴雨主要由水平尺度约300 km呈近乎圆形结构中尺度对流复合体产生, 其长时间维持与内部多个中尺度对流系统的合并及外围东南侧暖湿区新生单体的持续并入有关; 郑州站小时强降水(201.9 mm· h-1)由几乎静止的低质心β中尺度弓状回波产生, 其分钟降水量持续在3~4.7 mm; 边界层风场的动力辐合触发强烈对流, 使得强降水区上空θse锋区长时间处于中性层结, 其高层辐散气流在西北太平洋副热带高压附近构成次级环流下沉支; 中层500 hPa低压区气旋式曲率附近正涡度平流和925 hPa偏东气流持续暖平流输送、低层变形场锋生作用, 以及来自华东近海边界层急流异常强盛的水汽输送是此次极端过程发展维持的热动力学成因。  相似文献   

3.
陈红专  叶成志  陈静静  罗植荣 《气象》2019,45(9):1213-1226
利用NCEP/NCAR再分析资料,首先分析了2017年6月下旬至7月初湖南持续性暴雨天气过程的环流背景和大尺度水汽输送特征,然后引入NOAA的轨迹模式HYSPLIT,分阶段定量分析了暴雨的水汽输送特征以及区域水汽收支情况。结果表明:天气系统的有效配置和稳定维持是强降雨持续的主要原因,持续性暴雨与全球范围的水汽输送和水汽辐合相联系,低空急流的演变和进退与暴雨落区和强度的演变关系密切。影响此次强降水过程的水汽通道主要有三支,第一支由索马里越赤道急流经孟加拉湾和我国西南地区输入暴雨区,第二支由印度洋中东部越赤道气流经孟加拉湾南部和南海北部输入暴雨区,第三支由来自南半球的越赤道气流自南海南部一路北上输入暴雨区,第三阶段还有一支水汽由赤道西太平洋穿越菲律宾进入南海后再北上输入暴雨区。过程第一、二阶段的水汽输送主要来自孟加拉湾,其次是南海,第三阶段来自孟加拉湾和南海(包括西太平洋)的水汽输送各占一半。受地形影响,孟加拉湾通道的水汽主要输送至暴雨区700 hPa,其他来自低纬洋面的通道水汽主要输送到850 hPa及以下各层。暴雨区水汽输入主要来自南边界和西边界,且主要由低层输入暴雨区,以水平水汽通量辐合的形式在暴雨区上空低层大量汇聚,经由强烈的垂直上升运动输送至对流层中高层积累和凝结,从而导致降水的产生,降水的强弱与边界水汽输入和区域水汽辐合的强弱变化一致。  相似文献   

4.
基于国家自动站及区域自动站降水观测资料、欧洲中心大气再分析资料(ERA5)分析了河南“21·7”过程的降水特征及环流和物理量的异常性,并对比1981年以来郑州和鹤壁50 mm以上强降水过程的物理量特征。结果表明:1)“21·7”强降水过程在累计降水量、强降水覆盖范围、日雨量和小时雨强等方面均表现出显著极端性,过程累计降水量超过400 mm的站点集中分布在太行山东麓沿山地区和伏牛山东侧迎风坡一侧,与地形关系十分密切。2)南亚高压增强东伸,副热带高压异常偏强偏北,低纬度地区活跃的低值系统等大气环流异常,导致了水汽稳定持久向河南输送,太行山和伏牛山沿山一带水汽辐合偏离气候态最强超过-10σ,表现出显著极端性。3)“21·7”过程中,动力条件的异常特征十分显著,200 hPa的辐散中心分别位于伏牛山和太行山东麓沿山一带,相较历史气候态偏离度达到2σ~5σ;伏牛山沿山一带850 hPa涡度偏离气候态程度较太行山东麓一带更大,达6σ;而700 hPa上升运动则是太行山东麓一带极端性更强,标准差达-3σ~-5σ。4)与1981年以来同区域暴雨过程相比,“21·7”过程中,850 hPa涡度和700 hPa垂直速度的标准差为历次过程最大(最小)或次大(次小)者,对暴雨极端性有指示意义,地形附近历次暴雨过程物理量统计显示,伏牛山和太行山东麓的850 hPa辐合及700 hPa垂直速度平均偏离气候态超过3σ(-3σ),且偏离程度与日雨量呈正相关。  相似文献   

5.
华南前汛期持续暴雨环流分型初步研究   总被引:3,自引:0,他引:3       下载免费PDF全文
采用1961—2010年NCEP/NCAR逐日再分析资料和台站观测降水量资料,按一定标准选取了华南前汛期24个持续暴雨过程;并且按基本判据确定逐年华南夏季风降水开始日期。然后依据南亚高压环流型和相对于该年夏季风降水开始的早晚,将这些暴雨过程划分为夏季风降水前、后南亚高压东部型,夏季风降水后南亚高压带状、西部型共4个类型;其中,夏季风后南亚高压西部型次数最多、平均持续时间最长。所有类型持续暴雨的相同点是:广东东北部附近均为暴雨频率和雨量高值区;暴雨期间华南150 h Pa位势高度增加、500 h Pa位势高度减少;华南处在150 h Pa偏西风急流南侧辐散区中;850 h Pa华南沿海有明显的西南气流,低层辐合在华南东北部最明显;两广沿海为可降水量大值区;华南的整层水汽输送主要呈现西南向。不同点是:夏季风后南亚高压西部型平均雨量较小,夏季风后南亚高压带状型与西部型在印度洋上存在明显的偏东风高空急流;夏季风后南亚高压类型在两广沿海的可降水量数值较大。  相似文献   

6.
刘煦  马艳  凌艺  江敦双  万夫敬 《气象科技》2019,47(5):818-829
利用常规气象观测资料和ECMWF再分析资料,对2013年5月26—27日(简称"05·26"过程)和2014年5月10—11日(简称"05·10"过程)青岛的两次气旋暴雨过程进行对比分析。结果表明:"05·26"过程强降水开始前850hPa相对湿度大,降水持续时间长,"05·10"过程强降水开始前850hPa相对湿度小,且具有明显的短时强降水的特征。较好的低层风速、湿度条件,持续较长的上升运动以及源源不断的水汽输送是"05·26"过程降水时间长,累计雨量大的主要原因。地面辐合线的触发作用以及强的垂直上升速度则是"05·10"过程产生短时强降水的有利条件。  相似文献   

7.
利用MICAPS观测降水数据、欧洲气象中心ERA5再分析资料和FY-4A卫星云顶亮温数据,对2021年7月20日河南极端暴雨进行综合分析。结果表明,此次暴雨受200 hPa两槽一脊、大陆高压、副热带高压(副高)西伸北抬和台风“烟花”西移、“查帕卡”台风倒槽等多尺度天气系统共同影响,黄淮气旋的西南气流与副高和“烟花”之间的东南气流稳定控制河南地区,边界层急流供应充沛水汽,在太行山和嵩山迎风坡辐合抬升,致使河南暴雨长时间维持,产生极端降水量。西南气流穿过从广东和广西延伸到河南的高湿带,副高和“烟花”引导东南气流经过从东海洋面延伸到河南的相对较弱湿区,这两条水汽输送带在太行山和嵩山地形阻挡下汇合在河南北部,为暴雨供应水汽。丰富的可降水量、水汽过饱和、深厚暖云层以及降水系统较强的水汽消耗率为郑州高降水效率提供有利条件。郑州低层大气经历多次从强层结不稳定到弱层结不稳定的转化,边界层急流引起的垂直风切变和气流辐合对层结稳定度变化有重要影响。黄淮气旋内部中尺度涡旋对河南暴雨发生发展至关重要,不但提供西南气流,还产生较强的位势高度纬向平流,增强边界层急流。嵩山与太行山余脉构成喇叭口地形,边界层急流在嵩山北侧和东侧爬坡,促使山前水汽堆积,激发和加强暴雨。中尺度云团合并小尺度云团,发展成结构密实的孤立云团,稳定少动,对暴雨有重要影响。降水区上空广义湿位涡异常,由于广义湿位涡能够刻画中尺度系统的垂直风切变、涡度以及大气湿斜压性和层结不稳定等动力和热力因素垂直结构特点,所以对中尺度系统和降水落区有一定指示意义。  相似文献   

8.
本文利用再分析资料、GDAS等资料,引入HYSPLIT模式定性定量地分析泸州9月7~8日特大暴雨过程的水汽输送特征,并对水汽来源进行了模拟。结果表明:(1)该过程是由高空低槽、低涡切变以及低空急流共同影响导致的,强降水发生区域与850hPa低涡位置具有很好的对应关系。(2)影响此次强降水的水汽主要来源于南海、孟加拉湾和贵州、湖南等周边省份,其中周边省份的本地水汽贡献最大,850hPa(1500m)上水汽贡献率达44%,孟加拉湾和南海两者的水汽贡献率也达到了39%。(3)三维空间显示水汽主要来源于850hPa高度附近或以下区域。   相似文献   

9.
受季风槽影响,2018年8月30—31日华南地区出现一次极端暴雨过程,单日站点累计降水量达1?056.7 mm,刷新了广东有历史纪录以来新的极值。对于此次极端降水事件,常用的业务模式包括欧洲中期天气预报中心全球模式(ECMWF)、日本气象厅谱模式(JMA)和中国气象局广东快速更新同化数值预报系统(CMA-GD),都低估了降水强度。利用深圳市气象局业务对流尺度集合预报系统分析了此次特大暴雨过程,结果表明:对流尺度集合预报系统对本次特大暴雨过程具有比较好的预报能力,概率匹配平均最大雨量达348.7 mm·(24 h)-1,集合平均的强降水中心和观测基本一致,观测极值附近区域发生大暴雨(≥150 mm)概率最大值达到80%。选取了较“好”和较“差”集合成员预报进行对比分析,发现较“好”成员预报的强降水中心位置和观测基本一致,而较“差”成员预报的降水中心位置则偏向福建地区。较 “好”成员预报出莲花山南侧地面中尺度辐合线较长时间的维持和缓慢移动,导致强降水雨团在莲花山脉附近不断地触发和维持,同时地形的阻挡作用使得对流系统在地形附近区域持续维持,造成了罕见的特大暴雨;而较“差”成员辐合区位于莲花山以北,对流形成后向东、向北移动,最终导致强降水预报位置偏向福建地区。  相似文献   

10.
利用FY-4A静止气象卫星、FY-3D极轨气象卫星资料和ERA5再分析资料,深入分析“21·7”河南暴雨环境场及云宏微观特征,首次利用FY-4A观测研究此次事件对流云微物理特征。结果表明:“21·7”河南暴雨是一次极端强降水事件,河南省位于大陆高压和副热带高压之间的鞍型场内,有利于其上空低涡云系的发展和维持。2021年7月20日两股水汽输送交汇于河南中北部,为郑州极端降水提供了有利条件。20日14:00—16:00(北京时,下同)郑州长时间位于对流云团冷云区边界亮温梯度大值区,该时段对流发展旺盛;12:00—14:00云光学厚度跃增,且在15:00仍维持较大值,表明该时段云中液态粒子大量合并,液态水含量丰富,光学厚度峰值出现时间先于降水量峰值出现时间,FY-4A云光学厚度跃增且维持较大值对强降水出现时间及量级有重要的预警意义。对流云粒子有效半径(re)随温度(T)的增长曲线(T-re关系)表明:20日16:00河南上空的雨胚形成区最为深厚,云中不同高度的re整体维持在20~25 μm,表明云中上升气流较强,有利于地面强降水发生。  相似文献   

11.
RIEMS‘ ability to simulate extreme monsoon rainfall is examined using the 18-month (April 1997 September 1998) integrated results. Model-simulated heavy precipitation over the Yangtze River valley during 11-30 June 1998 is compared with the observation, and the relationships between this heavy rainfall process and the large-scale circulations, such as the westerly jet, low-level jet, and water vapor transport,are analyzed to further understand the mechanisms for simulating heavy monsoon rainfall. The analysis results show that (1) RIEMS can reproduce the pattern of heavy precipitation over the Yangtze River valley during 11-30 June 1998, but it is shifted northwestwards. (2) The simulated West Pacific Subtropical High (WPSH) that controls the East Asia Monsoon evolution is stronger than the observation and is extended westwards, which possibly leads to the north westward shift of the heavy rain belt. (3) The Westerly jet at 200 hPa and the Low-level jet at 850 hPa, both of which are related to the heavy monsoon rainfall,are reasonably reproduced by RIEMS during 11-30 June 1998~ although the intensities of the simulated Westerly/Low-level jets are strong and the location of the Westerly jet leans to the southeast,which may be the causes of RIEMS producing too much heavy rainfall in the north of the Yangtze River valley.  相似文献   

12.
本文利用WRF模式对近海台风“烟花”及“查帕卡”影响2021年7月19日至21日河南极端暴雨的过程进行数值模拟。控制试验(CTL)对台风路径、强度、大尺度环流形势,以及河南暴雨的强度和空间分布型等均给出合理的模拟,基本再现了本次河南极端暴雨的发展过程。敏感性试验表明,在移除台风“烟花”后,副热带高压系统显著南压并在南侧形成东南风急流,河南地区的南风分量减弱、东风增强,东西方向的水汽输送占主导,有利于降水分布型由CTL试验的南—北向转变为东—西向;另一方面,由于低层东南风急流相较于移除“烟花”前的东风急流偏弱,河南降雨区的局地辐合减弱,水汽通量净流入值较CTL试验降低5.81%,且中纬度冷气团西移减慢,引起局地相当位温梯度减弱,最终导致移除台风“烟花”试验的降雨强度偏弱。移除台风“查帕卡”后,大尺度环流形势几乎未受影响,河南南侧的水汽输送略有减弱,因此强降水分布基本与CTL试验类似,降雨强度略有减小。与台风“烟花”相比,“查帕卡”对河南暴雨的影响较弱。  相似文献   

13.
孟加拉湾对流对广西秋季暴雨影响分析   总被引:2,自引:2,他引:2  
利用综合观测数据1 °×1 °FNL和2.5 °×2.5 °NCEP再分析资料、以及卫星云顶黑体辐射温度资料(TBB),对2015年11月广西出现的三次暴雨过程(8日、11—12日和20日)的850 hPa水汽通量散度及水汽输送特征进行了对比分析。8日和20日暴雨的低层水汽主要来自南海,11—12日连续暴雨的水汽来自南海和孟加拉湾。暴雨前后TBB的分析表明,在暴雨发生前2~3 d,孟加拉湾对流发展到最强,孟加拉湾对流对广西秋季暴雨具有前兆信号特征。暴雨前后TBB时空剖面表明,暴雨发生前孟加拉湾对流有向广西波动传播的特征。模式敏感性实验显示,当关闭孟加拉湾对流2~3 d后,广西48 h累计雨量减小。   相似文献   

14.
利用多源气象资料,对台风“温比亚”引发豫东降水的极端性特征及极端降水产生机制进行分析,提炼预报着眼点。此次降水是河南继驻马店“75·8”暴雨之后的又一次罕见特大暴雨,表现为过程雨量极大、破极值站数最多、降水强度极大、强降水时段集中的特征。结果表明:(1)高低空系统耦合为特大暴雨的发生发展创造了良好的环境条件,极端降水的产生主要受台风北侧螺旋云系影响,并有持续不断的强回波单体在同一个地点移动,冷空气与台风环流相互作用是重要的预报着眼点,重点分析台风和副热带高压的相对运动及西风带对台风的引导作用。(2)河南东部水汽输送条件一直处于较好的状态,这是降水维持较长时间的重要因素,急流中心区域和强度的变化对降水量多少有指示意义。(3)豫东地区对流不稳定和斜压不稳定均比较明显,低层MPV1<0、MPV2>0的区域与强降水落区有较好的对应关系。(4)强辐合中心位于台风中心的北侧,降水强度与辐合强度有较好的对应关系,螺旋度大值区分布对强降水的分布区域有较好的指示意义。  相似文献   

15.
利用常规观测资料和NCEP 1°×1°再分析资料,通过对2008-2018年共11年间发生在江苏省的区域性中雪、区域性大雪、区域性暴雪天气过程的对比分析,发现影响江苏区域性降雪的主要天气系统是500 hPa西风槽、700 hPa西南急流和地面冷空气。决定降雪量级的因素主要是700 hPa西南急流强度和范围,降雪区上空水汽输送强度、水汽辐合强度、水汽辐合厚度也与降雪量级有一定的正相关关系。暴雪时700 hPa水汽通量≥14 g·cm-1·hPa-1·s-1,且水汽来源更为丰富,均来自于孟加拉湾和南海;大雪和中雪时,700 hPa水汽通量分别≥12 g·cm-1·hPa-1·s-1和10 g·cm-1·hPa-1·s-1。暴雪期间,水汽辐合区内水汽通量散度都≤-1×10-7g·s-1·hPa-1·cm-2,水汽辐合厚度达200~400 hPa,明显强于大雪和中雪。有利于江苏发生区域降雪过程的温度垂直分布条件为:地面≤2℃、t925≤-1℃、t850≤-2℃、t700≤-1℃、t500≤-14℃。随着降雪量级的增大,中低层温度阈值呈降低趋势。中低层逆温是产生区域性大雪及暴雪的必要条件,而中雪发生时不一定都有逆温层结,只要近地层温度条件合适,就能产生降雪。随着降雪量级的增大,逆温层强度明显增强、厚度明显增厚。暴雪、大雪和中雪时逆温强度阈值分别为3~8℃、2~8℃和1~3℃,其逆温层厚度分别为150~200 hPa、100~200 hPa和50~100 hPa。降雪过程中上升运动强中心位于600400 hPa。暴雪时,上升运动区相对大雪和中雪时的更为深厚,基本整层都为上升运动区,垂直运动发展旺盛。暴雪和大雪时上升运动中心值均≤-0.7 Pa·s-1,中雪时中心值≤-0.3 Pa·s-1。  相似文献   

16.
利用常规气象观测资料、地面区域气象站逐小时观测数据、NCEP再分析资料、FY-2G云顶亮温资料、喀什CR/CC雷达产品,对南疆西部两次极端暴雨中的短时强降水环境条件和中尺度特征进行对比分析。结果表明:两次过程均发生在500 hPa“东西夹攻”的有利环流背景下,100 hPa南亚高压分别呈东部型和双体型,低空急流、切变线和地面中尺度辐合线是两次强降水重要的触发系统。500 hPa低涡(低槽)自身携带的偏西局地水汽通道和700~850 hPa偏南、偏东两支水汽通道把充沛的水汽输送至暴雨区,为强降水的出现提供了有利的水汽条件,其中低层偏东水汽输送对此次暴雨的贡献更大。两次强降水出现在对流云团发展最强盛、范围最大时或TBB梯度最大处。雷达回波特征存在明显不同,“过程1”影响系统为线性多单体强风暴,最大反射率因子达65 dBZ,具有中小尺度辐合、辐散和旋转特性,强降水期间VIL维持40 kg/m2以上并有跃增现象,更有利于强对流出现。“过程2”影响系统为分散性普通单体风暴,径向速度高层辐散不明显,VIL值明显小于“过程2”。  相似文献   

17.
利用自动气象站资料、FY-2G卫星TBB(black body temperature)产品、多普勒雷达组网资料和NCEP FNL分析资料对超强台风利奇马(1909)极端强降雨观测特征、热动力结构演变和水汽输送进行分析。结果表明:此次台风大暴雨覆盖华东大部,极端强降雨区(过程雨量超过350 mm)位于浙江东部和山东中部,21个国家级气象站突破日雨量历史极值;副热带高压、台风和西风槽相互作用以及华东沿海强劲东南风急流为台风利奇马(1909)长时间维持与强降雨发生提供了有利的环境条件。浙江东部极端强降雨主要由发展极为强盛的台风本体产生,垂直深厚涡旋系统强烈的上升运动和台风眼墙区密实的深对流系统导致雨强大且降雨集中;而山东中部极端强降雨则与台风非对称结构演变和冷空气侵入密切相关。倒槽锋生、台风北侧3条螺旋雨带北移汇入及地形迎风坡处的列车效应导致山东中部远距离暴雨发生,随着500 hPa干冷空气从低层不断侵入,在台风西侧118°E附近形成向西倾斜的假相当位温锋区,暖湿气流爬升引发第2阶段稳定性降雨。  相似文献   

18.
利用NCEP/NCAR再分析资料(0.25°×0.25°)、FY-2G卫星的黑体亮度温度(TBB)、双偏振雷达、加密自动站资料,对2019年台风“利奇马”引发浙江极端暴雨过程的成因进行分析,结果表明:(1)“利奇马”引发的浙江特大暴雨过程是一次深厚台风本体降水,具有范围广、总量大、局地雨强极端的特点,山脉地形对降水的增幅作用显著。(2)台风登陆前后850 hPa水汽通量、850 hPa辐合和200 hPa辐散都超过气候平均值3~4个标准差,异常强的动力抬升和水汽输送为此次极端降水提供了有利的背景条件,物理量的异常度可作为判断极端降水的重要因子。(3)活跃的西南季风和副高南部的偏东急流为“利奇马”提供了充足的水汽和能量。925 hPa水汽通量辐合大值区域与暴雨落区的形态和位置对应较好,且辐合强度的变化对降水量具有一定的指示意义。(4)登陆前后台风中心密闭云区范围大、结构紧实,其中有多个中尺度对流系统强烈发展且移动缓慢,是浙江东部沿海地区产生极端降水的主要原因。基于双偏振雷达的降水估测产品在短临预报中参考价值高。(5)中层的弱干冷空气和低层的强暖湿气流促进了对流不稳定层结的发展和维持,在地面中尺度辐合线和地形的强迫抬升下不断触发中尺度对流系统并产生“列车效应”,是此次过程中西北部山区特大暴雨产生的重要原因。  相似文献   

19.
中国东部夏季极端降水事件及大气环流异常分析   总被引:1,自引:0,他引:1  
主要利用1961~2014年中国东部地区438个台站的逐日降水资料和NCEP/NCAR的再分析资料,从大气内部动力角度对夏季不同极端降水情况下的环境场进行分析,结果表明:对长江中下游地区而言,在极端降水频次偏多年时,850 hPa风场及整层水汽输送距平场均表明东亚夏季风偏弱,有利于更多的水汽输送到长江中下游地区,500 hPa鄂霍次克海阻塞高压持续日数偏多,有利于冷空气南下,200 hPa东亚副热带急流偏南,且30°N以南偏西风异常有利于辐散,而在斜压波包从西北东南向传播为极端降水事件分发生集聚了能量;对华北地区极端降水频次偏多年而言,850 hPa风场及整层的水汽输送距平场均表明东亚夏季风偏强,有利于更多的水汽输送到华北地区,500 hPa高度距平场日本海正距平,贝加尔湖蒙古地区为负距平,华北地区东高西低,200 hPa东亚副热带急流偏北,从而导致我国华北地区极端降水频次偏多,能量传播也为西北东南向。这些结果表明极端降水的变化,与大气内部的动力作用和能量的传播有密切的关系。  相似文献   

20.
利用ARPS模式对2007年3月3-4日河南一次大范围强降水过程进行了数值模拟,并在此基础上,分析了该暴雨过程的天气形势和水汽条件,计算了暴雨发生过程中选定区域内水汽输送、水汽收支和空中各相态水物质的量值大小及其转化关系。结果表明:这次强降水主要是受850 hPa西南涡和地面江淮气旋影响;水汽来自孟加拉湾和南海;计算区...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号