首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Analysis of profiles of meteorological measurements from a 160 m high mast at the National Test Site for wind turbines at Høvsøre (Denmark) and at a 250 m high TV tower at Hamburg (Germany) shows that the wind profile based on surface-layer theory and Monin-Obukhov scaling is valid up to a height of 50–80 m. At higher levels deviations from the measurements progressively occur. For applied use an extension to the wind profile in the surface layer is formulated for the entire boundary layer, with emphasis on the lowest 200–300 m and considering only wind speeds above 3 m s?1 at 10 m height. The friction velocity is taken to decrease linearly through the boundary layer. The wind profile length scale is composed of three component length scales. In the surface layer the first length scale is taken to increase linearly with height with a stability correction following Monin-Obukhov similarity. Above the surface layer the second length scale (L MBL ) becomes independent of height but not of stability, and at the top of the boundary layer the third length scale is assumed to be negligible. A simple model for the combined length scale that controls the wind profile and its stability dependence is formulated by inverse summation. Based on these assumptions the wind profile for the entire boundary layer is derived. A parameterization of L MBL is formulated using the geostrophic drag law, which relates friction velocity and geostrophic wind. The empirical parameterization of the resistance law functions A and B in the geostrophic drag law is uncertain, making it impractical. Therefore an expression for the length scale, L MBL , for applied use is suggested, based on measurements from the two sites.  相似文献   

2.
We present measurements from 2006 of the marine wind speed profile at a site located 18 km from the west coast of Denmark in the North Sea. Measurements from mast-mounted cup anemometers up to a height of 45 m are extended to 161 m using LiDAR observations. Atmospheric turbulent flux measurements performed in 2004 with a sonic anemometer are compared to a bulk Richardson number formulation of the atmospheric stability. This is used to classify the LiDAR/cup wind speed profiles into atmospheric stability classes. The observations are compared to a simplified model for the wind speed profile that accounts for the effect of the boundary-layer height. For unstable and neutral atmospheric conditions the boundary-layer height could be neglected, whereas for stable conditions it is comparable to the measuring heights and therefore essential to include. It is interesting to note that, although it is derived from a different physical approach, the simplified wind speed profile conforms to the traditional expressions of the surface layer when the effect of the boundary-layer height is neglected.  相似文献   

3.
The mean flow profile within and above a tall canopy is well known to violate the standard boundary-layer flux–gradient relationships. Here we present a theory for the flow profile that is comprised of a canopy model coupled to a modified surface-layer model. The coupling between the two components and the modifications to the surface-layer profiles are formulated through the mixing layer analogy for the flow at a canopy top. This analogy provides an additional length scale—the vorticity thickness—upon which the flow just above the canopy, within the so-called roughness sublayer, depends. A natural form for the vertical profiles within the roughness sublayer follows that overcomes problems with many earlier forms in the literature. Predictions of the mean flow profiles are shown to match observations over a range of canopy types and stabilities. The unified theory predicts that key parameters, such as the displacement height and roughness length, have a significant dependence on the boundary-layer stability. Assuming one of these parameters a priori leads to the incorrect variation with stability of the others and incorrect predictions of the mean wind speed profile. The roughness sublayer has a greater impact on the mean wind speed in stable than unstable conditions. The presence of a roughness sublayer also allows the surface to exert a greater drag on the boundary layer for an equivalent value of the near-surface wind speed than would otherwise occur. This characteristic would alter predictions of the evolution of the boundary layer and surface states if included within numerical weather prediction models.  相似文献   

4.
王栋成  邱粲  曹洁  董旭光  王静 《气象科学》2018,38(3):416-422
采用统计、相关分析等方法,对2014年济南站边界层风廓线雷达观测资料和L波段雷达探空资料进行了长期时空变化规律的对比,进而研究了地面无降雨、有降雨时段两者的风向、风速数据的相关关系及差值。结果得出全年有降雨、无降雨时段两者的风向、风速总体一致性较好,相关性较高,并具有较好可比性和互补性的结论,对了解固定式边界层风廓线雷达探测的准确性,改进观测资料质量控制方法等具有很好的参考价值。  相似文献   

5.
The present study solves a two-layer atmospheric wave equation model with a lower atmosphere concave wind profile and cold-air outbreak over sea, while simultaneously proving that such a wind shear may cause neutral boundary layer roll vortices in the presence of disturbing sources upstream. Without thermal effects, the wind shear-induced waves have band structures at the top of the boundary layer that are similar to cloud street patterns observed over sea. This study proves that dynamic and thermal effects can act independently to initiate the roll vortices in the lower atmosphere. At the same time, a quantitative comparison shows that dynamic effects play a large role in the formation of roll vortices in the initial stage of cold-air outbreak and will be surpassed by thermal effects soon after surface heating commences.  相似文献   

6.
The history of the development of Rossby-Number Similarity Theory for the neutral Planetary Boundary Layer (PBL) is reviewed. It is shown that the logarithmic profile derived by asymptotic matching is only valid in the matched layer and not in the surface layer proper. Derivation of the traditional PBL Resistance Laws from the theory is outlined. A best-fit polynomial through observations of geostrophic drag coefficients suggests that the traditional form of the Resistance Laws is inadequate. A new formulation is derived from a generalization of the theory that allows the logarithmic form of the wind profile in the matched layer to differ from that in the surface layer. This new formulation is evaluated against observations made during the 1967 Wangara Experiment. Finally, it is demonstrated how wind speed and wind shear profiles that are consistent with the new Resistance Laws may be obtained.  相似文献   

7.
In this study, a detailed model of an urban landscape has been re-constructed inthe wind tunnel and the flow structure inside and above the urban canopy has beeninvestigated. Vertical profiles of all three velocity components have been measuredwith a Laser-Doppler velocimeter, and an extensive analysis of the measured meanflow and turbulence profiles carried out. With respect to the flow structure inside thecanopy, two types of velocity profiles can be distinguished. Within street canyons,the mean wind velocities are almost zero or negative below roof level, while closeto intersections or open squares, significantly higher mean velocities are observed.In the latter case, the turbulent velocities inside the canopy also tend to be higherthan at street-canyon locations. For both types, turbulence kinetic energy and shearstress profiles show pronounced maxima in the flow region immediately above rooflevel.Based on the experimental data, a shear-stress parameterization is proposed, inwhich the velocity scale, us, and length scale, zs, are based on the level and magnitude of the shear stress peak value. In order to account for a flow region inside the canopy with negligible momentum transport, a shear stress displacement height, ds, is introduced. The proposed scaling and parameterization perform well for the measured profiles and shear-stress data published in the literature.The length scales derived from the shear-stress parameterization also allowdetermination of appropriate scales for the mean wind profile. The roughnesslength, z0, and displacement height, d0, can both be described as fractions of the distance, zs - ds, between the level of the shear-stress peak and the shear-stress displacement height. This result can be interpreted in such a way that the flow only feels the zone of depth zs - ds as the roughness layer. With respect to the lower part of the canopy (z < ds) the flow behaves as a skimming flow. Correlations between the length scales zs and ds and morphometric parameters are discussed.The mean wind profiles above the urban structure follow a logarithmic windlaw. A combination of morphometric estimation methods for d0 and z0 with wind velocity measurements at a reference height, which allow calculation of the shear-stress velocity, u*, appears to be the most reliable and easiest procedure to determine mean wind profile parameters. Inside the roughnesssublayer, a local scaling approach results in good agreement between measuredand predicted mean wind profiles.  相似文献   

8.
Boundary-layer measurements conducted at the Marsta site in Sweden from a winter-time situation (23–25 Feb.) with stable stratification have been analysed. The data comprise wind and temperature profile measurements up to 30 m, turbulence measurements at 2, 6 and 30 m and Doppler acoustic sounder data up to about 150 m. The upwind fetch at the site is flat and free from obstacles to a distance of ca 5 km for the particular sector chosen for the experiment.During the night, a two-layer vertical structure developed. Analysis of power spectra, co-spectra and variances in a shallow and very stable turbulent boundary layer near the ground show that the turbulence is fully developed and follow the universal behaviour.Above, at a height of 30 m, another turbulent layer is produced by increased wind shear near a low-level jet. This turbulent upper layer can be regarded as a layer of free shear flow. At this height, there also exist wave-turbulence interactions at low frequencies which sometimes cause a countergradient heat flux.  相似文献   

9.
Summary A simple one dimensional wind model, designed for diffusion calculations in flat environments with obstructions, is proposed. It covers the surface layer and up to a maximum height of 500 m with three levels. The lowest level is the internal boundary layer, in which the influence of the immediate environment is manifest. The second is the surface layer in which the wind profile is characterized by the fetch conditions further upstream. The third is the spiral layer, where the wind turns with height. The actual depth of the surface layer is estimated by the model. In both the surface layer and the internal boundary layer, Monin-Obukhov theory is applied. The spiral layer is represented by a classical Ekman-Taylor solution matched at the top of the surface layer. This conceptual model is then tested with data from a meteorological mast at Garching (near Munich, Germany).With 11 Figures  相似文献   

10.
The wind speed profile in a coastal marine environment is investigated with observations from the measurement program Rødsand, where meteorological data are collected with a 50 m high mast in the Danish Baltic Sea, about 11 km from the coast. When compared with the standard Monin—Obukhov theory the measured wind speed increase between 10 m and 50 m height is found to be systematically larger than predicted for stable and near-neutral conditions. The data indicate that the deviation is smaller for short (10–20 km) distances to the coast than for larger (>30 km) distances. The theory of the planetary boundary layer with an inversion lid offers a qualitative explanation for these findings. When warm air is advected over colder water, a capping inversion typically develops. The air below is constantly cooled by the water and gradually develops into a well-mixed layer with near-neutral stratification. Typical examples as well as scatter plots of the data are consistent with this explanation. The deviation of measured and predicted wind speed profiles is shown to be correlated with the estimated height and strength of the inversion layer.  相似文献   

11.
Ekman动量近似下中间边界层模式中的风场结构   总被引:2,自引:0,他引:2  
发展了一个准三维的、中等复杂的边界层动力学模式,该模式包含了EKman动量近似下的惯性加速度和Blackadar的非线性湍流粘性系数,它进一步改进了Tan和Wu(1993)提出的边界层理论模型。该模型在数值计算复杂性上与经典Ekman模式相类似,但由于包含了Ekman动量近似下的惯性项,使得该模式比传统Ekman模式更近于实际过程。中详细地比较了该模式与其他简化边界层模式在动力学上的差异,结果表明:在经典的Ekman模式中,由于忽略了流动的惯性项作用,导致在气旋性切变气流(反气旋性切变气流)中风速和边界层顶部的垂直速度的高估(低估),而在半地转边界层模式中,由于高估了流动惯性项的作用,结果与经典Ekman模式相反。同样,该模式可以应用于斜压边界层,对于Ekman动量下的斜压边界层风场同时具有经典斜压边界层和Ekman动量近似边界层的特征。  相似文献   

12.
The temperature and wind profiles in the planetary boundary layer (PBL) are investigated. Assuming stationary and homogeneous conditions, the turbulent state in the PBL is uniquely determined by the external Rossby number and the stratification parameters. In this study, a simple two-layer barotropic model is proposed. It consists of a surface (SL) and overlying Ekman-type layer. The system of dynamic and heat transfer equations is closed usingK theory. In the SL, the turbulent exchange coefficient is consistent with the results of similarity theory while in the Ekman layer, it is constant. Analytical solutions for the wind and temperature profiles in the PBL are obtained. The SL and thermal PBL heights are properly chosen functions of the stratification so that from the solutions for wind and temperature, the PBL resistance laws can be easily deduced. The internal PBL characteristics necessary for the calculation (friction velocity, angle between surface and geostrophic winds and internal stratification parameter) are presented in terms of the external parameters. Favorable agreement with experimental data and model results is demonstrated. The simplicity of the model allows it to be incorporated in large-scale weather prediction models as well as in the solution of various other meteorological problems.  相似文献   

13.
论塔层风 、温廓线   总被引:1,自引:0,他引:1  
赵鸣 《大气科学》1993,17(1):65-76
本文改进了Zilitinkevich的工作,得到在塔层内动力学上合理的风廓线.并近似推求了不稳定层结下边界层高度h的表达式,使风、温廓线能用于不同层结.由近地层理论从近地层风、温求出通量后,即可推求塔层风、温分布.325m气象塔资料证明这一廓线达到一定的精度.  相似文献   

14.
Wind profiles,momentum fluxes and roughness lengths at Cabauw revisited   总被引:1,自引:1,他引:1  
We describe the results of an experiment focusing on wind speed and momentum fluxes in the atmospheric boundary layer up to 200 m. The measurements were conducted in 1996 at the Cabauw site in the Netherlands. Momentum fluxes are measured using the K-Gill Propeller Vane. Estimates of the roughness length are derived using various techniques from the wind speed and flux measurements, and the observed differences are explained by considering the source area of the meteorological parameters. A clear rough-to-smooth transition is found in the wind speed profiles at Cabauw. The internal boundary layer reaches the lowest k-vane (20 m) only in the south-west direction where the obstacle-free fetch is about 2 km. The internal boundary layer is also reflected in the roughness lengths derived from the wind speed profiles. The lower part of the profile (< 40 m) is not in equilibrium and no reliable roughness analysis can be given. The upper part of the profile can be linked to a large-scale roughness length. Roughness lengths derived from the horizontal wind speed variance and gustiness have large footprints and therefore represent a large-scale average roughness. The drag coefficient is more locally determined but still represents a large-scale roughness length when it is measured above the local internal boundary layer. The roughness length at inhomogeneous sites can therefore be determined best from drag coefficient measurements just above the local internal boundary layers directly, or indirectly from horizontal wind speed variance or gustiness. In addition, the momentum and heat fluxes along the tower are analysed and these show significant variation with height related to stability and possibly surface heterogeneity. It appears that the dimensionless wind speed gradients scale well with local fluxes for the variety of conditions considered, including the unstable cases.  相似文献   

15.
Walmsley's (1992) proposal for a new PBL Resistance Law required blending between surface- and matched-layer logarithmic velocity profiles. Here it is suggested that blending should be restricted to the matched layer, in contrast to Walmsley's original formulation in which blending was done in the surface layer. This modification does not have any noticeable effect on the wind speed profile and only minimal impact on the wind shear, but it yields more realistic profiles of wind direction. In particular, all the adjustment of wind direction takes place above the surface layer.  相似文献   

16.
本文利用威宁县2022年6月2日一次冰雹天气过程风廓线雷达资料和威宁国家基准气候站降水资料,采用数理统计等方法对本次天气过程的风廓线雷达特征进行分析结果表明:冰雹、短时强降水开始前,低空急流的建立和垂直风切变的加强,急流造成的辐合加上近地层风向的切变作用为冰雹和强降水的产生提供了很好的动力条件;冰雹和短时强降水开始发生时,2000米高度以上有很大的正速度,可以作为一个指标判断对流发展的强弱情况;冰雹发生时折射结构常数(Cn2)值在-128~-110dB之间,也能很好的反映冰雹等强对流天气的开始,增强和结束过程。  相似文献   

17.
风廓线雷达资料在一次强对流天气过程中的应用   总被引:2,自引:0,他引:2  
通过分析2010年6月28日广州市南沙区强对流天气过程的风廓线雷达资料发现:风廓线雷达测得的温度廓线资料可以很直观地显示边界层逆温及高温区域随时间的变化;风廓线雷达产品(垂直速度和信号噪声比)能清楚地反映降水的开始、结束以及降水的强度;风廓线雷达可以很好的监测到低空急流的发生发展及水平风的垂直切变.对强对流天气的预报有...  相似文献   

18.
The solutions of downslope motions over a sloping terrain are solved analytically in terms of the atmos-pheric wave equations with a two-layer model.The physical meanings of the solutions are discussed.As thelower layer of the atmosphere is stable and deep with strong wind the solution represents strong downslopewind,while as the lower layer is strong stable with light wind the drainage flow is obtained.The dependenceof the strength of downslope motion on the atmospheric stratification,wind field structure as well as Scorerparameter is also examined.  相似文献   

19.
The characteristics of the atmospheric turbulent Ekman boundary layer have been qualitatively simulated in an annular rotating wind tunnel. Observed velocity spirals found to exist within the wind tunnel resembled qualitatively those found in the atmosphere in that a two-layer structure was evident, consisting of a log-linear portion topped by an outer spiral layer. The magnitude of the friction velocity u * obtained from the log-linear profile agreed with that measured directly, i.e., that obtained from the relation: u * = (u′w′)1/2. Also, the effects of surface roughness on the characteristics of the boundary layer agreed with expected results. In cases where the parametric behaviour predicted by theory departed from the observed behaviour, the probable cause was the inherent size limitations of the wind tunnel. The ability to maintain dynamic similarity is constrained by the limited radius of curvature of the wind tunnel. The vertical distribution of turbulent intensity in the wind tunnel was found to agree qualitatively with an observed atmospheric distribution. Also, a vertical distribution of eddy diffusivity was calculated from tunnel data and found to give qualitatively what one might expect in the atmosphere.  相似文献   

20.
The turning of wind with height and the related cross-isobaric (ageostrophic) flow in the thermally stable stratified boundary layer is analysed from a variety of model results acquired in the first Global Energy and Water Cycle Experiment (GEWEX) Atmospheric Boundary Layer Study (GABLS1). From the governing equations in this particular simple case it becomes clear that the cross-isobaric flow is solely determined by the surface turbulent stress in the direction of the geostrophic wind for the quasi-steady state conditions under consideration. Most models indeed seem to approach this relationship but for very different absolute values. Because turbulence closures used in operational models typically tend to give too deep a boundary layer, the integrated total cross-isobaric mass flux is up to three times that given by research numerical models and large-eddy simulation. In addition, the angle between the surface and the geostrophic wind is typically too low, which has important implications for the representation of the larger-scale flow. It appears that some models provide inconsistent results for the surface angle and the momentum flux profile, and when the results from these models are removed from the analysis, the remaining ten models do show a unique relationship between the boundary-layer depth and the surface angle, consistent with the theory given. The present results also imply that it is beneficial to locate the first model level rather close to the surface for a proper representation of the turning of wind with height in the stable boundary layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号