首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
利用兰州大学半干旱气候与环境观测站(Semi-Arid Climate and Environment Observatory of Lanzhou University,简称SACOL)2008年12月观测资料,研究了稳定边界层湍流特征.使用涡动相关资料研究湍流通量时,定义湍流的平均时间τ内的中尺度运动是造成湍流统计量变化范围大的主要原因,稳定情形? τ取几十秒至几分钟.对梯度理查森数大于0.3的强稳定情形的湍流尺度分解(MRD)谱分析表明,感热通量在112.4~449.9 s存在谱隙,尺度大于谱隙的中尺度运动造成了通量观测资料离散性大,甚至有支配性影响.动量通量的谱隙在112.4~224.9 s之间.弱风时,中尺度运动的影响更大,垂直风速标准差以0.1的比率随中尺度风速变化;垂直风速标准差同广义风速表现出很好的相关性,并随着广义风速消失而消失.三维风速标准差与摩擦速度呈很好的线性关系,垂直、水平、横风风速的无量纲标准差分别为1.35、2.54、2.21.对湍流动能的研究发现,在梯度理查森数大于0.3的条件下,仍然存在连续的湍流.以湍动能为依据,分析了湍流的平稳时间长度,其长度随稳定度变化而变化,2008年12月7~11日从133.5 s变化到856.2 s,湍流平稳时间长度反映了中尺度运动的发生频率.  相似文献   

2.
Variability and Maintenance of Turbulence in the Very Stable Boundary Layer   总被引:2,自引:2,他引:0  
The relationship of turbulence quantities to mean flow quantities, such as the Richardson number, degenerates substantially for strong stability, at least in those studies that do not place restrictions on minimum turbulence or non-stationarity. This study examines the large variability of the turbulence for very stable conditions by analyzing four months of turbulence data from a site with short grass. Brief comparisons are made with three additional sites, one over short grass on flat terrain and two with tall vegetation in complex terrain. For very stable conditions, any dependence of the turbulence quantities on the mean wind speed or bulk Richardson number becomes masked by large scatter, as found in some previous studies. The large variability of the turbulence quantities is due to random variations and other physical influences not represented by the bulk Richardson number. There is no critical Richardson number above which the turbulence vanishes. For very stable conditions, the record-averaged vertical velocity variance and the drag coefficient increase with the strength of the submeso motions (wave motions, solitary waves, horizontal modes and numerous more complex signatures). The submeso motions are on time scales of minutes and not normally considered part of the mean flow. The generation of turbulence by such unpredictable motions appears to preclude universal similarity theory for predicting the surface stress for very stable conditions. Large variation of the stress direction with respect to the wind direction for the very stable regime is also examined. Needed additional work is noted.  相似文献   

3.
Large sudden wind-direction shifts and submeso variability under nocturnal conditions are examined using a micrometeorological network of stations in north-western Victoria, Australia. The network was located in an area with mostly homogeneous and flat terrain. We have investigated the main characteristics of the horizontal propagation of events causing the wind-direction shift and not addressed in previous studies. The submeso motions at the study site exhibit behaviour typical of flat terrain, such as the lower relative mesovelocity scale and smaller cross-wind variances than that for complex terrain. The distribution of wind-direction shifts shows that there is a small but persistent preference for counter-clockwise rotation, occurring for 55% of the time. Large wind-direction shifts tend to be associated with a sharp decrease in air temperature (74% of the time), which is associated with rising motion of cold air, followed by an increase in turbulent mixing. The horizontal propagation of events was analyzed using the cross-correlation function method. There is no preferred mean wind direction associated with the events nor is there any relationship between the mean wind and propagation directions. The latter indicates that the events are most likely not local flow perturbations advected by the mean flow but are rather features of generally unknown origin. This needs to be taken into account when developing parametrizations of the stable boundary layer in numerical models.  相似文献   

4.
Effects of wind on quasi-steady, shallow convection in the Martian boundary layer are studied using a large-eddy simulation model. Convection in the model is generated by the radiative flux divergence and the strength of the surface heat flux, which do not vary in time. The resulting convective boundary layer exhibits transient, irregular, horizontal cellular structures, transported by wind, and a lack of well-pronounced regular horizontal rolls, observed for analogous conditions on Earth. The dimensionless statistics of turbulence are generally similar to those generated in the windless conditions, and depend on the ratio F, defined in terms of the integrated radiative and turbulent heating rates in the boundary layer. The simulations show that variations of the radiative heating influence the temperature statistics, while their effects on the wind velocity are relatively small. The horizontal velocity variances do not show a strong dependence on parameter F, in contrast with the vertical velocity variances, which are strongly dependent on F.  相似文献   

5.
With the Ekman momentum approximation,the influence of atmospheric baroclinity on the dynamics of boundarylayer is studied.Some new results are obtained.These results show that the atmospheric baroclinity plays an importantrole in altering the horizontal velocity of Ekman boundary layer and its angle with the horizontal wind velocity compo-nent near the surface.There are three different physical factors affecting the nonlinear Ekman suction,the vertical mo-tion at the top of boundary layer:first,barotropic geostrophic relative vorticity at the ground;second,the thermal windvorticity induced by the baroclinity;and third,the nonlinear interaction between the barotropic geostrophic relativevorticity and the baroclinic thermal wind vorticity.These results may provide a better physical basis for theparameterization of boundary layer and the interpretation of the numerical modeling results.  相似文献   

6.
The height of the atmospheric boundary layer is derived with the help of two different measuring systems and methods. From radiosoundings the boundary layer height is determined by the parcel method and by temperature and humidity gradients. From lidar backscatter measurements a combination of the averaging variance method and the high-resolution gradient method is used to determine boundary layer heights. In this paper lidar-derived boundary layer heights on a 10 min basis are presented. Datasets from four experiments – two over land and two over the sea – are used to compare boundary layer heights from both methods. Only the daytime boundary layer is investigated because the height of the nighttime stable boundary layer is below the range of the lidar. In many situations the boundary layer heights from both systems coincide within ±200 m. This corresponds to the standard deviation of lidar-derived 10-min values within a 1-h interval and is due to the time and space variability of the boundary layer height. Deviations appear for certain situations and depend on which radiosonde method is applied. The parcel method fails over land surfaces in the afternoon when the boundary layer stabilizes and over the ocean when the boundary layer is slightly stable. An automatic radiosonde gradient method sometimes fails when multiple layers are present, e.g. a residual layer above the growing convective boundary layer. The lidar method has the advantage of continuous tracing and thus avoids confusion with elevated layers. On the other hand, it mostly fails in situations with boundary layer clouds  相似文献   

7.
A numerical modelling study is presented focusing on the effects of mesoscale sea-surface temperature (SST) variability on surface fluxes and the marine atmospheric boundary-layer structure. A basic scenario is examined having two regions of SST anomaly with alternating warm/cold or cold/warm water regions. Conditions upstream from the anomaly region have SST values equal to the ambient atmosphere temperature, creating an upstream neutrally stratified boundary layer. Downstream from the anomaly region the SST is also set to the ambient atmosphere value. When the warm anomaly is upstream from the cold anomaly, the downstream boundary layer exhibits a more complex structure because of convective forcing and mixed layer deepening upstream from the cold anomaly. An internal boundary layer forms over the cold anomaly in this case, generating two distinct layers over the downstream region. When the cold anomaly is upstream from the warm anomaly, mixing over the warm anomaly quickly destroys the shallow cold layer, yielding a more uniform downstream boundary-layer vertical structure compared with the warm-to- cold case. Analysis of the momentum budget indicates that turbulent momentum flux divergence dominates the velocity field tendency, with pressure forcing accounting for only about 20% of the changes in momentum. Parameterization of surface fluxes and boundary-layer structure at these scales would be very difficult because of their dependence on subgrid-scale SST spatial order. Simulations of similar flow over smaller scale fronts (<5 km) suggest that small-scale SST variability might be parameterized in mesoscale models by relating the effective heat flux to the strength of the SST variance.  相似文献   

8.
A large-eddy simulation (LES) study is presented that investigates the spatial variability of temporal eddy covariance fluxes and the systematic underestimation of representative fluxes linked to them. It extends a prior numerical study by performing high resolution simulations that allow for virtual measurements down to 20 m in a convective boundary layer, so that conditions for small tower measurement sites can be analysed. It accounts for different convective regimes as the wind speed and the near-surface heat flux are varied. Moreover, it is the first LES imbalance study that extends to the stable boundary layer. It reveals shortcomings of single site measurements and the necessity of using horizontally-distributed observation networks. The imbalances in the convective case are attributed to a locally non-vanishing mean vertical advection due to turbulent organised structures (TOS). The strength of the TOS and thus the imbalance magnitude depends on height, the horizontal mean wind and the convection type. Contrary to the results of a prior study, TOS cannot generally be responsible for large energy imbalances: at low observation heights (corresponding to small towers and near-surface energy balance stations) the TOS related imbalances are generally about one order of magnitude smaller than those in field experiments. However, TOS may cause large imbalances at large towers not only in the case of cellular convection and low wind speeds, as found in the previous study, but also in the case of roll convection at large wind speeds. In the stably stratified boundary layer for all observation heights neither TOS nor significant imbalances are observed. Attempting to reduce imbalances in convective situations by applying the conventional linear detrending method increases the systematic flux underestimation. Thus, a new filter method is proposed.  相似文献   

9.
何京伟  谈哲敏 《气象科学》2001,21(4):433-444
在边界层动力学中,涡动粘性系数是影响边界层风场结构的一个重要参数。本文利用边界层动力学中的Ekman动量近似理论,给出了涡动粘性系数随高度缓变条件下的Ekman动量近似边界层模式解,着重讨论了边界层的风场结构、水平散度、垂直涡度以及边界层顶部的垂直速度。结果分析表明:与常值涡动粘性系数情况相比,在边界层低层随高度增加的涡动粘性系数可以导致低层边界层风速随高度迅速增加,即风速垂直切变增加,同时风速矢与地转风之间的夹角减小。惯性项作用可以导致上述作用在气旋性区域减小、而在反气旋性区域增大。随高度增加的涡动粘性系数导致水平散度绝对值、垂直涡度绝对值以及边界层顶部的垂直速度绝对值在气旋性区域减小,而在反气性旋区域增大。涡动粘性系数与惯性之间的非线性相互作用是边界层动力学中重要过程。  相似文献   

10.
Formation of horizontal convective rolls in urban areas   总被引:6,自引:0,他引:6  
The formation of horizontal convective rolls (HCRs) in urban areas is investigated in this paper using observations and fine-scale numerical simulations. Cloud streets organized parallel to the mean boundary-layer wind (a manifestation of HCRs) are seen in the Fengyun-2C satellite imagery around local noon in Beijing. Observed vertical velocity and horizontal wind fields from an urban wind profiler suggest that the time scale for alternating updraft and downdraft in the boundary layer is about 30 min, and the length of the updraft/downdraft is about 9 km. Numerical simulations show that most HCRs occur in the urban areas with − zi / L < 25 (zi: the boundary-layer depth, L: the Monin–Obukhov length). Sensitivity tests reveal that HCRs are common in urban boundary layers, while rural areas are more conducive to forming cellular convection; the aspect ratio of HCRs in urban areas is smaller than the typical value over natural landscapes.  相似文献   

11.
Nocturnal Boundary-Layer Regimes   总被引:17,自引:6,他引:11  
This study analyzes turbulence data collected over a grassland site in the nocturnal boundary layer. Examination of the dependence of the nocturnal boundary layer on stability suggests three regimes: a) the weakly stable case, b) a transition stability regime where many of the variables change rapidly with increasing stability and c) the very stable case. The value of z/L where the downward heat flux is a maximum defines the stability boundary between the weakly stable and transition regimes, where L is the Obukhov length. In the present analysis, the downward heat flux reaches a maximum at z/L approximately equal to 0.05 for 10 m, although comparison with other data indicates that this is not a universal value. For weaker stability, the heat flux decreases with decreasing z/L due to weaker temperature fluctuations. In the transition stability regime, the heat flux decreases rapidly with increasing stability due to restriction of vertical velocity fluctuations by the increasing stratification.For weakly stable conditions, the variances scale according to Monin-Obukhov similarity theory. For very stable conditions, the variances are contaminated by non-turbulent horizontal motions and do not follow the scaling laws. An alternative length scale based on variances is developed which explains more of the variance of the transfer coefficients compared to the Obukhov length.  相似文献   

12.
A comprehensive planetary boundary-layer (PBL) and synoptic data set is used to isolate the mechanisms that determine the vertical shear of the horizontal wind in the convective mixed layer. To do this, we compare a fair-weather convective PBL with no vertical shear through the mixed layer (10 March 1992), with a day with substantial vertical shear in the north-south wind component (27 February). The approach involves evaluating the terms of the budget equations for the two components of the vertical shear of the horizontal wind; namely: the time-rate-of-change or time-tendency term, differential advection, the Coriolis terms (a thermal wind term and a shear term), and the second derivative of the vertical transport of horizontal momentum with respect to height (turbulent-transport term). The data, gathered during the 1992 STorm-scale Operational and Research Meteorology (STORM) Fronts Experiments Systems Test (FEST) field experiment, are from gust-probe aircraft horizontal legs and soundings, 915-MHz wind profilers, a 5-cm Doppler radar, radiosondes, and surface Portable Automated Mesonet (PAM) stations in a roughly 50 × 50 km boundary-layer array in north-eastern Kansas, nested in a mesoscale-to-synoptic array of radiosondes and surface data.We present evidence that the shear on 27 February is related to the rapid growth of the convective boundary layer. Computing the shear budget over a fixed depth (the final depth of the mixed layer), we find that the time-tendency term dominates, reflecting entrainment of high-shear air from above the boundary layer. We suggest that shear within the mixed layer occurs when the time-tendency term is sufficiently large that the shear-reduction terms – namely the turbulent-transport term and differential advection terms – cannot compensate. In contrast, the tendency term is small for the slowly-growing PBL of 10 March, resulting in a balance between the Coriolis terms and the turbulent-transport term. Thus, the thermal wind appears to influence mixed-layer shear only indirectly, through its role in determining the entrained shear.  相似文献   

13.
During the Energy Balance Experiment, patch-to-patch irrigation generated gradients in soil moisture in a north-south oriented cotton field. An internal boundary layer (IBL) developed as a result of strong horizontal advection from relatively dry upstream patches to relatively wet downstream patches associated with the prevailing northerly winds. This generated large eddies of multiple sizes, which had significant influences on the structure of turbulence in the IBL. The power spectra and cospectra of wind speed, temperature, humidity, and energy fluxes measured at two heights within the IBL are presented and used to investigate the influence of the IBL on surface layer turbulence. The spectra and cospectra were greatly enhanced by external disturbances at low frequencies. The peak frequencies of these disturbances did not change with height. The spectra and cospectra typically converged and were parallel to the Kansas spectrum at high frequencies (in the inertial subrange). A clear gap in the spectra of horizontal wind velocity existed at intermediate frequencies when the surface layer was stable. The results indicate that large eddies that originated in the upstream convective boundary layer had considerable impacts on the spectra and cospectra of surface layer turbulence. The influence of these large eddies was greater (1) when the IBL was well-developed in the near surface layer than when the IBL did not exist, (2) at higher levels than at lower levels, and (3) when the atmospheric surface layer (ASL) was unstable than when the ASL was stable. The length scales of these large eddies were consistent with the dominant scales of surface heterogeneity at the experiment site.  相似文献   

14.
冯凯  王嵘 《大气科学学报》1994,17(4):508-511
分析任意气压场在中性、非线性正压边界层中风场的调整问题。结果表明:任意初始风场,将向给定的气压调整。具休调整过程是通过绝对涡度振荡及粘性系数的耗散,其调整的时间尺度为[O(t(-3/2))],比自由大气地转适应时间尺度[O(t(-1))]快。  相似文献   

15.
16.
An observational analysis of the structures and characteristics of a windy atmospheric boundary layer during a cold air outbreak in the South China Sea region is reported in this paper. It is found that the main structures and characteristics are the same as during strong wind episodes with cold air outbreaks on land. The high frequency turbulent fluctuations(period<1 min) are nearly random and isotropic with weak coherency, but the gusty wind disturbances(1 min相似文献   

17.
Wind-tunnel simulations of theatmospheric stable boundary layer (SBL) developedover a rough surface were conducted by using athermally stratified wind tunnel at the Research Institutefor Applied Mechanics (RIAM), Kyushu University. Thepresent experiment is a continuation of the workcarried out in a wind tunnel at Colorado StateUniversity (CSU), where the SBL flows were developed over asmooth surface. Stably stratified flows were createdby heating the wind-tunnel airflow to a temperature ofabout 40–50°and by cooling the test-section floor toa temperature of about 10°. To simulate therough surface, a chain roughness was placed over thetest-section floor. We have investigated the buoyancyeffect on the turbulent boundary layer developed overthis rough surface for a wide range of stability,particularly focusing on the turbulence structure andtransport process in the very stable boundary layer.The present experimental results broadly confirm theresults obtained in the CSU experiment with the smoothsurface, and emphasizes the following features: thevertical profiles of turbulence statistics exhibitdifferent behaviour in two distinct stability regimes with weak and strong stability,corresponding to the difference in the verticalprofiles of the local Richardson number. The tworegimes are separated by the critical Richardsonnumber. The magnitudes in turbulence intensities andturbulent fluxes for the weak stability regime aremuch greater than those of the CSU experiments becauseof the greater surface roughness. For the very stableboundary layer, the turbulent fluxes of momentum andheat tend to vanish and wave-like motions due to theKelvin–Helmholtz instability and the rolling up andbreaking of those waves can be observed. Furthermore,the appearance of internal gravity waves is suggestedfrom cross-spectrum analyses.  相似文献   

18.
利用多普勒雷达风廓线产品、ERA5再分析资料和WRF模式,分析了2018年6月27日皖北一次特大暴雨过程中边界层急流的日变化特征及其对特大暴雨形成的作用。结果表明:特大暴雨发生期间存在边界层急流,急流最强达到了18 m·s-1,强降水主要发生在急流快速增强的时段;急流前部的边界层辐合线是对流的触发因子,强降水落区位于急流核前部。急流为对流系统加强提供水汽和能量,且边界层急流和雷暴高压对峙使对流系统稳定少动,在对流系统西侧激发新的对流单体,有利于特大暴雨的发生;此次过程中天气系统的影响时间主要决定了强降水的落区,而边界层急流的日变化决定了强降水发生的时间段;边界层急流在夜间具有超地转特征,午后具有次地转特征,地转偏差和水平平流作用是导致夜间边界层急流增强的主要原因。  相似文献   

19.
The Role of Shear in the Morning Transition Boundary Layer   总被引:1,自引:1,他引:0  
We use large-eddy simulation (LES) to better define the early stages of the morning transition boundary layer. Previous LES studies relating to the morning transition boundary layer focus on the role of the entraining convective boundary layer (CBL). By using a combination of different domain sizes and grid lengths, the full evolution from the stable boundary layer (SBL) to the CBL is modelled here. In the early stages of the morning transition the boundary layer is shown to be a combination of a shallow mixed layer capped by a significant shear driven stable boundary layer (the so-called mixed CBL–SBL state). The mixed CBL–SBL state is the key to understanding the sensitivity to shear. Turbulent kinetic energy budgets also indicate that it is shear driven. The negative flux from the mixed CBL–SBL state extends much further above the minimum than is typically found for the CBL later in the day, and the depth of penetration scales as w m /N i , where w m is the combined friction and convective velocity scale and N i the static stability at the inversion top.  相似文献   

20.
One-dimensional turbulence (ODT) is a single-column simulation in which vertical motions are represented by an unsteady advective process, rather than their customary representation by a diffusive process. No space or time averaging of mesh-resolved motions is invoked. Molecular-transport scales can be resolved in ODT simulations of laboratory-scale flows, but this resolution of these scales is prohibitively expensive in ODT simulations of the atmospheric boundary layer (ABL), except possibly in small subregions of a non-uniform mesh.Here, two methods for ODT simulation of the ABL on uniform meshes are described and applied to the GABLS (GEWEX Atmospheric Boundary Layer Study; GEWEX is the Global Energy and Water Cycle Experiment) stable boundary-layer intercomparison case. One method involves resolution of the roughness scale using a fixed eddy viscosity to represent subgrid motions. The other method, which is implemented at lower spatial resolution, involves a variable eddy viscosity determined by the local mesh-resolved flow, as in multi-dimensional large-eddy simulation (LES). When run at typical LES resolution, it reproduces some of the key high-resolution results, but its fidelity is lower in some important respects. It is concluded that a more elaborate empirically based representation of the subgrid physics, closely analogous to closures currently employed in LES of the ABL, might improve its performance substantially, yielding a cost-effective ABL simulation tool. Prospects for further application of ODT to the ABL, including possible use of ODT as a near-surface subgrid closure framework for general circulation modeling, are assessed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号