首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
利用2013—2022年西安市国家气象站和区域气象站观测资料及MICAPS资料,采用统计学方法、天气学分析法对近10 a西安暴雨特征进行分析。结果表明:(1)10 a中,2021年暴雨日最多,为24 d,其他年份在6~16 d之间;暴雨集中出现在7月中旬到8月中旬,8月上旬暴雨日最多,累计达14 d;强降水频次日变化分布呈双峰型,主要集中在12时前后和00时前后;强降水极值雨强频次分布具有三峰型特征,第一峰区在08—12时,第二峰区位于01时,第三峰区位于16时,易发时段为下午到傍晚。(2)暴雨日呈北少南多的分布特征,南部山区为9~23 d,城区及北部区县暴雨日为3~7 d;暴雨极值大值区主要位于周至、长安、蓝田、临潼;4月暴雨日最少,主要集中在周至和蓝田,5月暴雨日增多,主要在南部区县,6月暴雨主要发生在城区和南部区县,7月和8月暴雨范围逐渐东西向扩大,9月逐渐收缩。(3)影响西安区域性暴雨的环流形势分为副高-西风槽型、西风槽型、低涡型、西北气流型等4 种概念模型。(4)西安稳定性暴雨,雨强起伏变化不大,一般CAPE值<100 J/kg,K指数<36 ℃,SI指数>0 ℃,CIN值>50 J/kg,0 ℃层高度在48~51 km;对流性暴雨,小时雨强大,一般CAPE值>800 J/kg,K指数>36 ℃以上;SI指数<0 ℃,CIN值<50 J/kg,0 ℃层高度51~54 km。CAPE值越大、K指数越大,SI指数越小,越有利于对流系统发展。  相似文献   

2.
成飞飞行空域包含高原、盆地、山区等多种地形,局地气候显著,短时强降水频发。本文使用国家气象信息中心2017-2021年多资料融合逐小时降水数据、国家自动站探空观测数据。统计分析出盆周沿山区为盆地短时强降水高发区;101°E~102°E,31°N~32°N区域为高原短时强降水高发区。利用百分位法得到高原地区强对流指数阈值:CAPE值≥1930.5J/kg;BCAPE值≥1974.7J/kg;抬升指数≥2.6℃;大气可降水量≥86.1mm;K指数≥37.2℃;SI指数≤-0.9℃。盆地地区强对流指数阈值:CAPE值≥2230.6J/kg;BCAPE值≥2264.4J/kg;抬升指数≥1.8℃;大气可降水量≥93.0mm;K指数≥40.8℃;SI指数≤-1.8℃。建立短时强降水不同下垫面强对流指数阈值,为今后短时强降雨客观预报方法,提供新的思路和方向。  相似文献   

3.
近6年陕甘宁三省5—9月短时强降水统计特征   总被引:5,自引:1,他引:4       下载免费PDF全文
利用2005—2010年5—9月加密自动气象站1 h降水资料对陕甘宁三省不同强度短时强降水时空分布特征、天气学概念模型以及物理量特征进行研究,结果表明:短时强降水在陕甘宁三省存在4个活跃区和3个不活跃区;7—8月是短时强降水的多发期,两大峰值出现在7月下旬和8月中旬,日变化呈双峰分布,1 h降水量≥30 mm的短时强降水具有夜间多发性;通过典型个例的综合分析,建立了低槽-副高型、低涡-远距离台风型、两高切变型3类短时强降水概念模型;从物理量场来看,3类短时强降水均具有丰富的水汽和不稳定层结 (能量)、高于发生冰雹的0℃层高度、较厚的暖云厚度,且均发生在弱风切变环境中;低槽-副高型最为典型,其抬升凝结高度最高,500 hPa与850 hPa假相当位温差Δθse、抬升指数,K指数,对流有效位能量值最低,短时强降水发生频次高,1 h降水量大多在25 mm以内。低涡-远距离台风型水汽条件最好,深厚湿区、次天气尺度Ω系统和较低的抬升凝结高度使短时强降水发生范围最广,强度更强。两高切变型降水强度最大、持续时间最短并具有突发性, 其Δθse、抬升指数、K指数、对流有效位能最高,0~3 km垂直风切变最强,对流性特征明显,特别是强天气威胁指数接近300,强降水发生的同时往往伴有雷暴。  相似文献   

4.
利用常规观测资料、NCEP/NCAR再分析资料(1°×1°)和区域站资料,对2013年5月7—10日永州连续性暴雨过程进行天气动力学、热力学诊断分析。结果表明:该次持续性暴雨过程是在高空槽、高低空急流以及地面前期暖倒槽后期弱冷空气共同影响下产生的;降水期间湿层深厚,中低层相互配合的比湿骤降陡升可能预示着一次暴雨过程中较强降水的发生,以及变化的幅度与降水的多寡有联系;水汽通量散度负值的发展高度对强降水有影响;垂直速度的发展高度、强度范围与降水量有一定关联;K指数,SI指数、CAPE等热力学指数与强降水有着较好的对应关系。  相似文献   

5.
为了解云南短时强降水发生前本地化中尺度WRF(Weather Research Forecast)模式输出结果的物理量特征及其对短时强降水预报的作用,使用WRF模式对2016年云南主汛期(6—8月)5次短时强降水过程进行模拟,利用模式输出的高时空分辨率资料计算5次过程中85个样本在短时强降水发生前6 h水汽类、动力类及不稳定条件类的部分物理量值,使用箱线图分析各物理量的分布特征及其与短时强降水的关系,应用经验累积分布函数图确定各物理量的阈值。研究表明,水汽类物理量样本数据值分布较为集中,随着短时强降水的临近数值逐渐增大;动力类的6 km垂直风切变中位数值及平均值随时间变化很小,所有时次的6 km垂直风切变阈值均低于12 m/s,表明短时强降水发生前有弱垂直风切变;不稳定条件类中对流有效位能样本数据的离散程度较大,对短时强降水无指示意义;LI指数、K指数和700 hPa假相当位温样本数据离散度较小,其中K指数中位数值、平均值及阈值的上下限在短时强降水发生前1 h有显著增大的特征,且数据集中度达到最高,大的K指数值与短时强降水有较好的对应关系。使用物理量阈值推算短时强降水落点的方法对云南本地化WRF模式短时强降水的预报性能有改进作用。  相似文献   

6.
本文利用遵义市2016-2020年夏季逐时降水资料和ERA5再分析资料,分析遵义市夏季短时强降水的时空分布特征,并统计午后和后半夜前发生短时强降水的物理量特征,得到以下结论:(1)遵义市夏季短时强降水日变化呈现双锋结构,夜间的峰值主要发生在6月,白天峰值贡献主要来自7-8月。6月和7月的短时强降水是夜间多于白天,而8月则是白天多于夜间,且多为午后强对流。遵义市夏季短时强降水夜间出现异常值概率的大于白天。(2)有6个县的夜雨均值明显高于昼雨,且在昼雨的1倍以上,仅有凤冈和湄潭的夜雨均值低于昼雨均值,7个县日变化双峰结构较为明显,仁怀有明显的4峰结构,可能与我市西高东低的地形分布有关。(3)遵义市夏季短时强降水在西部、北部地区发生短时强降水的概率较高,西部主要集中在河谷地带,北部主要集中在娄山山脉,短时强降水平均站次6-8月逐渐减少,10站次以上站点逐渐北推且减少,可能与副高西伸北抬有关。(4)高海拔站点午后短时强降水对CAPE、K、LI要求更低,低海拔站点需要更好的抬升和中低层暖湿条件,850hPa与500hPa温差则是高海拔站点高于低海拔站点。(5)与14时相比,后半夜发生短时强降水对CAPE、LI、T850-500等要求变低,且抬升指数有4个站均值高于0℃,指示意义没有午后好,后半夜短时强降水K指数的要求变高,大气可降水量要求也是变高的,但主要是高海拔站点变高。  相似文献   

7.
淮河上游短时强降水天气学分型与物理诊断量阈值初探   总被引:2,自引:0,他引:2  
利用常规高空、地面气象观测资料和NCEP 1°×1°再分析资料,对2001—2010年淮河上游短时强降水过程进行中尺度天气分析和物理量场诊断。然后,根据该区域短时强降水的环流形势和主要影响系统,将短时强降水过程分为副高边缘型、低槽型和台风倒槽型,其中副高边缘型又分为副高和低槽共同影响型、副高控制型和下滑槽副高型,归纳各类短时强降水天气系统配置模型,并提炼出表征短时强降水天气的物理量阈值。结果表明,淮河上游77.8%的短时强降水与西太平洋副热带高压有关,中低层多有急流、切变线和低涡,地面影响系统多为倒槽、辐合线和弱冷锋。短时强降水发生在低层辐合、高层辐散、低层正涡度以及中层上升运动的动力条件下;中低层有较强暖湿空气输送,湿区深厚,强降水发生在假相当位温(θse)大值区顶部;0℃层高度较高,中层风切变小,低层风切变较大,有利于短时强降水发生。  相似文献   

8.
基于RPG-HATRPO-G3 14通道地基微波辐射计观测的大气亮温和反演的不稳定性指数K指数(KI)、抬升指数(LI)、沙瓦特指数(SI)、总指数(TTI)和对流有效位能(CAPE)产品,分析其在2015-2016年9次对流云降水前的变化特征,并与非降水日中的变化进行对比。结果表明,非降水日四季22 GHz亮温、58 GHz亮温及大气不稳定度指数均存在一定的日变化,且22 GHz亮温的日变化较明显;5种不稳定性指数夏、秋季的日变化差略大于冬、春季。9次对流云降水开始前2 h,22 GHz亮温在降水开始前34 min出现持续上升,早于58 GHz亮温出现持续下降的时间,且变化更为剧烈,其数值、变化值均大于四季非降水日均值、日变化差,对对流云降水的开始指示性较好;对流云降水开始前40 min左右,出现KI和TTI数值持续上升、LI和SI持续下降的现象,均早于CAPE出现持续上升的时间,这对于对流性降水的发生有指示意义; 5种指数的数值大小可以为对流云降水开始阈值的建立提供参考。在临近降水的-10~0 min(负值表示降水开始前时刻),22 GHz亮温、KI、SI和CAPE出现时间变化率大值的比例比其他时段高,但22 GHz亮温同时出现负变化率大值的比例也比其他时段高; KI和SI时间变化率大值的比例比CAPE高,综合考虑二者在对流云降水前的平均值出现持续变化的时间较早,KI和SI对对流云降水的指示意义较好。  相似文献   

9.
应用太原1996-2015年7个国家气象站、2008-2015年63个区域站6-9月逐时降水资料及相关探空、地面观测资料,对太原短时强降水日环流配置进行天气学分型,分析各流型下关键环境参数分布特征。结果表明,太原发生短时强降水的500 hPa环流形势有四种:冷涡型、高空槽型、高空槽加副高型、西北气流型。太原短时强降水常发生在比较温和的对流有效位能(CAPE)环境下,大部分过程CAPE值≤1500 J·kg^-1,冷涡型则≤1000 J·kg^-1。西北气流型850 hPa与500 hPa温差(ΔT850-500)大,静力不稳定度比其他型更强,且500 hPa有明显的干层存在。高空槽加副高型K指数大,且暖云厚度均值达3576 m,明显大于其他型2471~2608 m的均值。冷涡型全部、高空槽型85%的过程出现在弱0~6 km垂直风切变环境下,而高空槽加副高型、西北气流型0~6 km垂直风切变相对较大,35%以上达到中等强度。冷涡型、西北气流型短时强降水太原上空700 hPa水汽常比850 hPa更充沛。太原超过70 mm·h^-1的极端降水出现在西北气流型下,有中等强度的CAPE值、强层结不稳定、弱0~6 km垂直风切变、3550 m以上暖云厚度,中低空水汽充足,这些环境参量的配合对强降水效率有很好的指示意义。  相似文献   

10.
陈元昭  俞小鼎  陈训来 《气象》2016,42(2):144-155
为了了解珠江三角洲(简称珠三角)地区重大短时强降水(小时雨强≥50 mm)发生的环境特征,利用珠三角地区稠密自动气象站资料、探空资料、卫星资料等分析研究了近7年(2007—2013年)68个重大短时强降水事件的环境流型、T-lnp图形态和关键物理参数,结果表明珠三角地区重大短时强降水天气流型主要有台风型、西南季风型、北部湾低压型、冷(式)切变线型和热带云团型等5种;不同类型、不同季节出现的频率不同。台风型、西南季风型和北部湾低压型的大多数过程T-lnp图温度廓线和湿绝热线很接近,整层水汽含量丰富,对流有效位能(CAPE)大致呈"瘦弱"的狭长形形态;冷(式)切变线型温湿廓线呈上干下湿分布,CAPE大致呈较"胖"的狭长形;热带云团型温度廓线和湿绝热线很接近,CAPE形态较"胖"。850~500 hPa间温差△T_(85)都较小,一般在21~23℃,大气层结接近于湿中性层结,呈现弱的条件不稳定层结,表明大多数过程中有利于重大短时强降水发生的环境条件的关键点不是强对流预报中常关注的"高空冷空气的侵入",而是低层暖湿气流的输送;地面露点一般在23~25℃,暖云厚度在4100 m以上;大多数重大短时强降水发生前大气可降水量都在57 mm以上,其中台风型最大,其次是西南季风型、北部湾低压型、热带云团型,冷(式)切变线型最小,台风型、西南季风型、北部湾低压型CAPE一般小于1500 J·kg~1,属于比较温和的CAPE值,冷(式)切变线型、热带云团型平均CAPE≥1700 J·kg~(-1);对于所有类型对流抑制能(CIN)≤50 J·kg~1;除热带云团型外,大多数过程出现了低空急流;五种流型配置下,台风型、西南季风型大多处在弱到中等的0~6 km深层垂直风切变环境中,北部湾低压型和热带云团型处在弱的0~6 km垂直风切变环境中;冷(式)切变线型大多数过程处在中等强度的0~6 km垂直风切变环境中。可以将流型配置方法(分型)、重大短时强降水对应的关键环境参数以及根据箱线图展示的参数范围设定适宜的阈值的方法相结合,为珠三角地区显著强降水预报的改进提供有价值的参考。  相似文献   

11.
基于ECMWF产品福建省前汛期短时强降水预报方法   总被引:2,自引:1,他引:1       下载免费PDF全文
利用2014—2016年福建省1605个自动气象站逐时降水资料和ECMWF全球模式细网格预报产品,分析福建省前汛期短时强降水发生背景下模式预报物理量的分布特征,并基于阈值判定的方法建立短时强降水预报模型。结果表明:福建省内陆县市前汛期短时强降水发生频次较高,沿海县市发生频次低,且日变化特征表现出双峰结构。箱型图差异指数(Ibd)在评估相关变量对于区分短时强降水发生与否的敏感程度有较好的作用,比湿、整层可降水量等水汽变量Ibd最为显著,K指数、对流有效位能等变量的Ibd仅次于水汽变量,说明模式预报变量对于预测短时强降水有较好的表征作用。针对短时强降水事件的物理量集合,采用剔除异常值后的最小值作为判定阈值,通过训练集分析结果客观订正对流有效位能和3 h降水量两个高Ibd变量的阈值,建立潜势预报模型。对于福建省西部的关键区,检验集白天时段12 h时间分辨率预报TS评分可达0.5,夜间时段约为0.3。对于福建省进行分区建模预报,检验集预报结果显示白天时段比夜间准确率高、内陆县市比沿海县市准确率高。  相似文献   

12.
2016年8月22日夜间,青海省海东地区大部出现短时强降水天气,导致互助、平安等县(区)部分乡镇出现洪涝灾害,给当地群众造成严重损失。利用高空、地面观测、卫星云图、雷达等资料,采用中尺度天气图分析技术,得到预报此类短时强降水的一些依据:(1)短时强降水发生的主要影响系统是西伸到高原东部的副热带高压及自高原北侧移入的的短波槽;地面干线及辐合线也是短时强降水天气的中尺度触发机制。(2)700h Pa青海东部的东南暖湿气流为此次短时强降水提供充沛的水汽来源,并与中高层较干冷的大气形成"上干冷下湿热"的不稳定大气层结。(3)高空强辐散,中低层辐散、辐合交替配置为短时强降水提供了较好的动力条件。(4)短时强降水前期cape值显著增加,达到787.8J/K,cin值显著减小至16.3J/K,抬升指数达到1.69℃;短时强降水发生前6h青海东部有对流云发展,云顶亮温可达196~214K,强降水发生在TBB梯度最大的区域。(5)强降水的时间和落区与雷达CR的强回波区一致,且发生时当地最强CR值达56dBz,VIL值达到10kg.m~(-2)。  相似文献   

13.
选取了甘肃平凉地区2015-2019年6-8月发生的27次短时强降水事件。利用自动站逐小时降水资料和高空探测资料,按照短时强降水阈值分类统计法和常规天气分析方法对甘肃平凉地区夏季短时强降水时空分布、影响天气系统及大气环境背景进行了统计分析。结果表明:6月短时强降水频次少,强降水高发区为六盘山山区;7月频次明显增多,活跃地区为静宁、崇信、泾川一带;8月频次及强度达到峰值,密集区为平凉北部的崆峒山区、崇信南部河谷地带。6月短时强降水日变化呈现单峰型特征,以午后居多,1 h降水量在20-30 mm段发生频次最高,占6月频次的80%以上;7月和8月日变化呈多峰型结构,夜间短时强降水频次增多,1 h降水量大于30 mm的频次显著增加,约占7月和8月总频次的40%。分析总结了平凉地区短时强降水天气类型,即高空低槽类、副热带高压类、西北气流类。另外,对表征动力、水汽、不稳定条件的环境参数统计分析,结果显示K指数、CAPET850-T500Q850θse-850等物理量平均特征值对平凉地区强降水预报有较好的指示意义。  相似文献   

14.
南疆短时强降水概念模型及环境参数分析   总被引:1,自引:1,他引:0  
黄艳  俞小鼎  陈天宇  唐鹏 《气象》2018,44(8):1033-1041
利用南疆2010-2016年自动气象站及区域自动气象站逐小时降水量资料,NCEP/NCAR 1°×1°再分析资料以及探空资料,分析不同强度的短时强降水的时空分布,得出南疆短时强降水事件的天气型有明显的季节性特点和区域性特征。总结了典型短时强降水过程的环境背景场特征,建立了短时强降水的三种概念模型:中亚低槽(涡)型、西伯利亚低槽(涡)型和西风短波型。通过7个探空站的温湿廓线形态、地面露点温度、T_(850)-T_(500)、T_(700)-T_(500)、对流有效位能(CAPE)、对流抑制能量(CIN)、抬升凝结高度、0~6 km垂直风切变等分析了南疆短时强降水的环境背景:短时强降水Ⅰ型(整层湿)、短时强降水Ⅱ型(上湿下干)和短时强降水Ⅲ型(上干下湿)发生前大气水汽含量充沛、存在一定的CAPE和较明显的垂直风切变以及0℃层高度偏低、暖云层厚度偏厚等特征,而合适的CIN,有利于对流不稳定能量的积聚和爆发,促进短时强降水的发生;短时强降水Ⅳ型(干绝热型)存在大气层结较干和较大的T_(850)-T_(500)、T_(700)-T_(500);Ⅰ型和Ⅱ型是南疆短时强降水的主要类型,常出现在南疆中部、西部地区的盛夏和夏末,多为西伯利亚低值系统(低涡、低槽)型和中亚低值系统(低涡、低槽)型影响。  相似文献   

15.
河西干旱区短时强降水过程的中尺度分析   总被引:3,自引:0,他引:3  
运用中尺度天气分析技术,对河西西部干旱区3次短时强降水过程从高空、地面的影响系统、水汽条件、抬升条件、不稳定条件、高低层风场配置等方面进行了对比分析,找出了3次过程的相似点与不同之处,结果表明:500 hPa新疆有低压槽东移,低槽前部甘肃河东到张掖为高压脊或者歪脖子高压,青海高原有低涡或者切变线,相应的低层也为低槽、切变线或者低涡,地面有冷锋、辐合线配合的环流形势是河西西部短时强降水产生的关键,高空急流(200 hPa)或者高空显著流线入口区右侧、地面露点温度Td>10℃的高湿区、低层绝对湿度比湿>6 g/kg,中层500 hPa处在显著湿区、700 hPa假相当位温高能舌、K指数>30℃,CAPE值也明显增大为产生短时强降水提供了有利条件,最后建立了河西西部干旱区短时强降水中尺度天气分析概念模型。  相似文献   

16.
利用ERA-interim再分析资料、常规观测资料、雷达资料以及闪电定位仪资料,对2015年8月云南一次两高辐合形势下短时强降水发生的成因和中尺度特征进行分析。结果表明:(1)此次短时强降水过程具有分布范围广、降水时段集中、频次大等特点。(2)副热带高压和孟加拉湾外围持续的水汽输送,地面冷锋的抬升触发,低层辐合、高层辐散且散度辐合中心和上升运动中心叠置,有利于强烈上升运动形成,是短时强降水发生发展和维持的动力机制。(3)湿层深厚、暖云层厚度大,有利于降水效率的提高。(4)中尺度对流云团中随着云顶亮温小于-70℃区域面积的减小,短时强降水的频次也明显减少。(5)两高势力相当,形成对峙,导致低质心高效率的积云对流系统移动缓慢,呈准静止状态是短时强降水得以发生的重要原因。(6)此次过程伴有明显的闪电活动,且随着短时强降水站次数的增加,正闪次数明显增加,负闪次数明显减少。  相似文献   

17.
基于2013~2020年乐山地区9个国家自动站和136个区域自动站逐小时降水资料,应用诊断分析方法,系统研究了乐山地区短时强降水的时空分布及变化特征,探讨了短时强降水发生频次与地形因子的关系。结果表明:乐山地区短时强降水年均频次和极值均呈增加的趋势,强度较为稳定,变率不大。短时强降水在3~10月均有发生,其频次月分布呈现出单峰型的特征,集中发生在7~8月,占全年的77.7%,7月下旬~8月上旬发生频次又占7~8月总量的49.8%。短时强降水频次日变化呈单峰单谷结构,夜间发生概率最大,白天发生概率相对较小,22时~次日04时是短时强降水集中高发时段,虽然短时强降水在午后和傍晚的发生概率相对较小,但其强度较强,也应当引起重视。乐山地区短时强降水空间分布差异较大,存在两级分化的特点,与地形关系密切,总体呈西南部和东北部少、西北部—中部—东南部多的分布特征。短时强降水的发生与经纬度、海拔高度等地形因子显著相关,高发区主要集中在山谷喇叭口、岷江流域的河谷地带及城市热岛区。   相似文献   

18.
利用常规观测资料和云图资料数值产品资料等对西宁2016年8月22—23日的强降水天气过程进行了诊断和分析,结果表明:(1)此次强降水是西宁地区夏季典型的副热带高压内出现的强对流天气。具有利于强降水发生的大尺度环流系统配置,地面辐合线是此次强对流天气的中尺度触发机制。(2)水汽条件充沛,湿层较厚;低层暖高层冷形成了强的不稳定层结。(3)22日西宁地区θse的高能舌从700hPa延伸到500hPa,Δθse700-500≥10K;K指数为36℃,SI<0℃,CAPE值达到786.3J·kg~(-1),这些参数指示了大气的强不稳定。可以将上述指标作为西宁短时强降水预报的参考指标。过程中西宁上空0~6km的垂直风切变较弱。(4)过程中中尺度对流云团非常活跃,TBB≤-53℃的冷云团的位置和维持时间与强降水的落区和持续时间基本一致,可以考虑将TBB≤-53℃作为西宁地区强降水落区预报的中尺度特征指标。(5)强降水发生时雷达组合反射率显示最强回波达到了60dBZ,强降水的出现时间和落区与雷达组合反射率强回波的持续时间和强度有很好的对应。VIL在降水前期有大值,降水出现后有一个减小的过程。  相似文献   

19.
利用常规地面观测资料、区域自动站降水资料和NCEP再分析资料,根据Q矢量与湿位涡理论对2010年6月19-21日长江中下游暴雨过程进行诊断分析。结果表明:此次暴雨是由低层切变缓慢东移南压而造成;Q矢量绝对值大值区和Q矢量锋生函数大值区与强降水带相对应,值的变化也能反映出降水的增强与减弱,但Q矢量锋生函数中心与降水中心对应有时并不一致;Q矢量散度变化与雨带中心的加强减弱对应较好;强降水带处于正负值交界的等值线密集区,且其梯度的增大对应降水增强,梯度减小对应降水减弱。  相似文献   

20.
利用2010~2019年浙江省基准气象站和自动气象站逐小时降水的观测资料,对浙江省短时强降水的时空分布特征进行了统计分析,结果表明:1)2010 ~2019年浙江短时强降水累计发生频次为72601站次,随雨强增大呈指数式衰减。2)短时强降水空间分布不均匀,沿海向内陆发生频次减少,出现频次最高的地区位于温州西南部。夏半年随时间推进和影响系统演变,短时强降水的空间分布亦存在差异:5~6月浙西地区短时强降水多发,7月短时强降水全省分散分布无明显的区域集中特征,8~10月则主要在沿海地区多发。3)总体而言短时强降水的日变化峰值出现在17:00(北京时间,下同),且高强度短时强降水更倾向发生在午后到傍晚时段。夏秋季节短时强降水在午后到傍晚最为多发,峰值出现在17:00至18:00,这与副热带高压强盛,午后到傍晚热力和不稳定条件好,易触发强对流天气有关;春季除午后到傍晚外夜间和凌晨亦为短时强降水多发时段,可能与低空急流多在夜间和早晨发展加强有关。短时强降水的月变化特征呈现类双峰型分布,8月最为多发(26.0%)(主要由台风降水造成),其次为6月和7月。不同强度的短时强降水月变化特征存在较明显差异。而短时强降水的年际分布不均,2015年之后年际变化幅度增大,其中 2016 年短时强降水发生频次最高达8728站次,2017 年为发生频次最低仅5581站次。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号