首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
采用2009—2013年CFSR(Climate Forecast System Reanalysis)大气和海洋再分析资料对黄海海气间热量通量和动量通量的特征进行统计分析,并通过FVCOMSWAVE浪流耦合模式对典型寒潮过程中风浪的影响效果进行模拟研究与对比分析。统计结果显示,通量受海表大风、海气温差及海洋环流等因子影响,秋冬季节强烈,春夏季节相对较弱,在寒潮活跃的冷季该海域的海流处于弱流期,风浪对海面通量的作用明显增强。海温特征也显示冷季的不稳定性显著强于暖季,因此该海域冷季具有更强的海气热量通量。沿岸站点的比较显示,南部吕泗站面向更开阔的东海海域,其平均波高高出北部20%左右。这与沿海南部通量强于北部特征对应。数值模拟显示,在寒潮过程中,海气界面热量通量和动量通量输送比多年月平均状态显著增强,动量通量增大1~5倍,热量通量增大1~6倍。寒潮过程入海冷锋走向、强度、移动方向显著影响海面热量通量和动量通量大值区的分布。偏北路寒潮纬向型冷锋入海,其强度东部大于西部,造成通量大值区形成在黄海东北部,而偏西路寒潮经向型冷锋入海,其强度南部大于北部,造成通量大值区形成在黄海南部。同时偏北路径寒潮强度大于偏西路径,海气动量通量响应较偏西路径强约25%,热量通量强约50%。耦合风浪作用的模拟显示,海气间热量通量和动量通量明显增大,对不同强度风浪,浪高增加1.5倍,动量通量最大值增大约2倍,热量通量增大10~160 W/m2;浪高减弱至0.5倍,动量通量最大值则减弱约40%,热量通量减小10~55 W/m2。冷锋及其驱动的风浪强烈影响区域海气通量时空特征。  相似文献   

2.
为了定量评估北京气候中心(BCC)发展的BCC_CSM对当代全球海表温度和混合层深度的模拟能力,以WOA09(World Ocean Atlas 2009)观测资料作为检验模式的气候态实况场,提取包括BCC_CSM在内的CMIP5中的17个海气耦合模式的模拟结果,评估BCC_CSM模拟的全球海表温度和混合层深度的气候平均态并分析造成偏差的可能原因。结果表明:BCC_CSM模拟的海表温度在北半球中高纬的误差较大,而在其余纬度的模拟性能较佳。偏差的产生主要归因于海洋环流偏差。BCC_CSM模拟的最深混合层在北半球中高纬和南半球高纬地区的误差较大,同时这些区域也是多模式模拟差异最大的区域;其模拟的最浅混合层在南半球中高纬的偏差较大。冬季大西洋经向翻转环流的模拟在北大西洋下沉的位置偏南导致北半球高纬地区海表温度偏冷。由此认为包括BCC_CSM在内的许多海气耦合模式需重点改进对南、北半球深对流海域物理过程的描述,以提高气候预测的可信度。  相似文献   

3.
付超  李维亮 《气象学报》1996,54(3):373-378
在一个纬向平均模式中加入大尺度瞬变涡旋经向热量和水汽通量参数化方案。模拟出涡动通量的空间分布和时间变化。实验表明,涡动通量在中高、纬地区大气能量输送过程中起重要作用。应用上述参数化方案提高了模式的模拟能力。  相似文献   

4.
程军  张瑾 《大气科学学报》2017,40(6):769-777
大西洋经向翻转环流(the Atlantic Meridional Overturning Circulation,AMOC)由低纬输送大量热量至高纬度北大西洋海区,并通过热通量由海洋输送给大气,主导了附近区域的气候形态,并对北半球尺度的气候变化产生显著影响。本文根据CMIP5多模式多增暖情景的预估模拟结果,通过与增暖前控制试验的对比发现,全球增暖可导致该海区湍流热通量的减小,且减小的幅度随增暖强度增大,模拟结果与观测一致。进一步研究发现,热通量的减小存在季节差异,冬季的减小幅度远大于夏季。结合淡水扰动试验的分析表明,全球增暖下AMOC强度的减弱导致大西洋经向热输送减少,进而导致高纬度北大西洋海洋向大气的热输送减小。  相似文献   

5.
表层洋流对外强迫响应敏感度的数值研究   总被引:2,自引:1,他引:1  
利用数值模拟研究了海表流场对外强迫(风应力和海表热通量)的响应特征,探讨了其对该类外强迫异常响应的敏感性以及较敏感区域。在确认本文所用的海洋环流模式能够较好地模拟表层海洋流场的气候状态之后,通过几个敏感性试验与控制(对照)试验结果的比较,发现海洋表层环流对海表风应力异常响应的敏感区域主要在赤道附近及大洋西边界海区;相对于热带外地区,热带海域(20°S~20°N)的风应力异常对于大洋表层环流的变化有着更重要的显著作用,它不仅会导致热带海域表层流场有较大的变化,对中高纬海区的表层流场特别是西边界流也有明显影响;海洋表层环流对海表热通量异常的响应除了在赤道附近海域明显之外,在中高纬海区也十分显著;在外强迫有同等异常幅度(20%)的情况下,大洋西边界海域对热通量的响应明显要强于对风应力的响应。此外,热通量异常还对南太平洋东海岸的洋流和南极大陆的绕极环流有较为明显的影响。  相似文献   

6.
近30a来北半球对流层大气月均环流的涡动减弱现象   总被引:1,自引:1,他引:0  
利用1980-2009年NCEP/NCAR月平均再分析资料,研究了在全球变暖背景下北半球对流层大气涡动减弱现象。结果表明:北半球涡度拟能30a来整体呈减弱趋势,在北太平洋地区和极地减弱尤为显著,12.5~50°N为影响北半球大气涡动变化的关键区域。由于对流层200hPa以下大气的增暖,特别是中高纬地区显著增暖,减弱了经向温度梯度,使得副热带西风急流的强度亦呈减弱趋势。这与涡度拟能的变化有显著的正相关关系。分析了北半球正压Rossby波动诊断量E和热量经向涡动通量的变化,表明中纬度波能传播在不同地区有不同趋势,而热量的经向涡动输送与涡度拟能的变化也呈现显著的正相关关系,减弱明显。研究结果对深刻认识大气环流变化规律和理解全球变暖的可能影响具有重要意义。  相似文献   

7.
系统辨识(1):辨识导引   总被引:1,自引:1,他引:0  
海气交界面的能量交换与海洋平流共同决定海表面温度(sea surface temperature,SST)异常的形成、维持与衰减。基于作者近期的研究,本文回顾了海表面热通量(surface heat flux,SHF)反馈以及SST方差与海表热通量及海洋热输送方差之间的关系。海表热通量异常可近似为一个与SST成正比的线性反馈项与一个大气强迫项之和。SHF的反馈参数取决于SST和SHF间的滞后交叉协方差以及SST自协方差。这种反馈总体上为负反馈,减弱SST异常,海表湍流部分起主导作用。最强的反馈可见于南北两半球的中纬度,最大值出现在大洋的西部和中部位置并延伸至高纬度地区。SHF反馈于北半球秋冬两季增强,春夏两季减弱。这些反馈特征在CMIP3耦合气候模式中得到合理的模拟。然而,多数模式中反馈的强度与再分析资料的估值相比略为偏弱。与再分析资料的估值相比,"平均模式"反馈参数比单一模式有更相似的空间形态以及较小的均方根差。基于海表面能量收支平衡,SST的方差可以表示为3个要素的积:1)海表面辐射和湍流通量以及海洋热输送的方差之和;2)一个衡量SST持续性的传输系数G;3)一个反映海表热通量以及海洋热输送之间协方差结构的有效因子e。SST方差的地理分布类似于海表热通量及海洋热输送的方差之和,但为G和e因子所修正。  相似文献   

8.
海气交界面的能量交换与海洋平流共同决定海表面温度(sea surface temperature,SST)异常的形成、维持与衰减。基于作者近期的研究,本文回顾了海表面热通量(surface heat flux,SHF)反馈以及SST方差与海表热通量及海洋热输送方差之间的关系。海表热通量异常可近似为一个与SST成正比的线性反馈项与一个大气强迫项之和。SHF的反馈参数取决于SST和SHF间的滞后交叉协方差以及SST自协方差。这种反馈总体上为负反馈,减弱SST异常,海表湍流部分起主导作用。最强的反馈可见于南北两半球的中纬度,最大值出现在大洋的西部和中部位置并延伸至高纬度地区。SHF反馈于北半球秋冬两季增强,春夏两季减弱。这些反馈特征在CMIP3耦合气候模式中得到合理的模拟。然而,多数模式中反馈的强度与再分析资料的估值相比略为偏弱。与再分析资料的估值相比,“平均模式”反馈参数比单一模式有更相似的空间形态以及较小的均方根差。基于海表面能量收支平衡,SST的方差可以表示为3个要素的积:1)海表面辐射和湍流通量以及海洋热输送的方差之和;2)一个衡量SST持续性的传输系数G;3)一个反映海表热通量以及海洋热输送之间协方差结构的有效因子e。SST方差的地理分布类似于海表热通量及海洋热输送的方差之和,但为G和e因子所修正。  相似文献   

9.
华北地区平流雾过程湍流输送及演变特征   总被引:5,自引:2,他引:3  
利用2006年2月在天津市南部地区开展的大气湍流观测资料, 分析了平流雾生消过程中湍流输送及演变特征。结果表明: 平流雾生消过程中, 大气稳定度参数数值主要集中在弱不稳定到弱稳定范围内, 且多呈现弱不稳定状态。雾前, 大气呈弱不稳定状态, 热量的垂直和水平输送短时加强, 且水平输送较垂直输送更显著; 雾生成初期, 大气呈弱稳定层结, 湍流动量和热量的垂直及水平输送均很弱; 雾中, 大气多呈弱不稳定状态, 稳定度参数、 动量、 热量及水平与垂直热通量之比值随时间均呈多峰形振荡, 随着雾的消散, 大气由弱不稳定逐渐演变为稳定状态; 雾后, 低层大气再次呈现弱不稳定层结特征, 动量和热量输送呈单峰形日变化特征。平流雾生消过程中, 热量的水平输送随不稳定度增强而迅速减小; 大气呈稳定层结时, 热量的水平输送显著大于垂直输送, 其比值约为2。同时, 摩擦速度、 水平与垂直热通量之比值呈多峰形振荡, 振幅分别可达1.2 m/s及50。  相似文献   

10.
利用船测近海层湍流热通量资料验证OAFlux数据集   总被引:1,自引:0,他引:1  
美国伍兹霍尔海洋研究所(Woods Hole Oceanographic Institution,WHOI)的客观分析海气通量(Objectively Analyzed air-sea Fluxes,OAFlux)数据集中的近海层湍流热通量数据被公认为最可信,并被广泛地用于气候模式模拟结果检验。利用NOAA ETL(Environmental Technology Laboratory)两个固定观测站点的科学试验的船测通量数据库(TOGA COARE试验观测资料和KAWJEX试验观测资料),对OAFlux的热通量进行验证。结果表明:OAFlux的潜热通量普遍高于船测值,并且风速较大时,两者差异较大。风速对潜热通量的变化趋势起主导作用,海表和大气湿度差影响甚微。低风条件下,OAFlux的潜热通量和船测值差异则很小。海面湍流感热交换很弱,通量值本身依然受到风速的主导作用,但由于感热通量值与观测仪器误差十分接近,导致比较分析异常困难。分析结果表明:在上述两个观测试验期内,由于海表空气湿度和大气的湿度差变化不显著,海气相互作用的强度主要取决于海面风速的变化。  相似文献   

11.
An annual cycle of an atmospheric general circulation model (AGCM) is presented. The winter and summer zonal averages of the atmospheric fields are compared with an observed climatology. The main features of the observed seasonal means are well reproduced by the model. One of the main discrepancies is that the simulated atmosphere is too cold, particularly in its upper part. Some other discrepancies might be explained by the interannual variability. The AGCM surface fluxes are directly compared to climatological estimates. On the other hand, the calculation of meridional heat transport by the ocean, inferred from the simulated energy budget, can be compared to transport induced from climatologies. The main result of this double comparison is that AGCM fluxes generally are within the range of climatological estimates. The main deficiency of the model is poor partitioning between solar and non-solar heat fluxes in the tropical belt. The meridional heat transport also reveals a significant energy-loss by the Northern Hemisphere ocean north of 45° N. The possible implications of model surface flux deficiencies on coupling with an oceanic model are discussed.This paper was presented at the International Conference on Modelling of Global Climate Change and Variability, held in Hamburg 11–15 September 1989 under the auspices of the Meteorological Institute of the University of Hamburg and the Max Planck Institute for Meteorology. Guest Editor for these papers is Dr. L. Dümenil  相似文献   

12.
Scintillation measurements with a HeNe and a CO2 laser were used to derive turbulent fluxes of heat and momentum in the surface layer. This was achieved by the structure constant or dissipation technique, i.e., by relating the measured structure constants and inner scales of refractive index fluctuations to structure constants of temperature fluctuations and dissipation rates of turbulent kinetic energy, respectively, and then assuming Monin-Obukhov similarity.The resulting heat fluxes agree well with measurements using the eddy correlation technique but for averaging periods of 10 min, the optical data show a much smoother and physically more plausible behaviour. The optically derived friction velocities are in good agreement with estimates derived from wind velocity and surface roughness. It was also observed that for stationary conditions, 1-min averaged optical measurements already provide good estimates for longer averaged heat and momentum fluxes.Even though some uncertainty remains about the empirical constants and Monin-Obukhov similarity expressions used, the method clearly proves to be of great value for monitoring surface-layer turbulence.  相似文献   

13.
 A systematic comparison of observed and modeled atmospheric surface heat and momentum fluxes related to sea surface temperature (SST) variability on interannual time scales in the tropical Pacific is conducted. This is done to examine the ability of atmospheric general circulation models (AGCMs) in the Atmospheric Model Intercomparison Project (AMIP) to simulate the surface fluxes important for driving the ocean on interannual time scales. In order to estimate the model and observed response to such SST variability, various regression calculations are made between a time series representing observed ENSO SST variability in the tropical Pacific and the resulting surface flux anomalies. The models exhibit a range of differences from the observations. Overall the zonal wind stress anomalies are most accurately simulated while the solar radiation anomalies are the least accurately depicted. The deficiencies in the solar radiation are closely related to errors in cloudiness. The total heat flux shows some cancellation of the errors in its components particularly in the central Pacific. The performance of the GCMs in simulating the surface flux anomalies seems to be resolution dependent and low-resolution models tend to exhibit weaker flux responses. The simulated responses in the western Pacific are more variable than those of the central and eastern Pacific but in the west the observed estimates are less robust as well. Further improvements in atmospheric GCM flux simulation through better physical parametrization is clearly required if such models are to be used to their full potential in coupled modeling and climate forecasting. Received: 24 August 1999 / Accepted: 11 September 2000  相似文献   

14.
 In this study we investigate the role of heat, freshwater and momentum fluxes in changing the oceanic climate and thermohaline circulation as a consequence of increasing atmospheric CO2 concentration. Two baseline integrations with a fully coupled ocean atmosphere general circulation model with either fixed or increasing atmospheric CO2 concentrations have been performed. In a set of sensitivity experiments either freshwater (precipitation, evaporation and runoff from the continents) and/or momentum fluxes were no longer simulated, but prescribed according to one of the fully coupled baseline experiments. This approach gives a direct estimate of the contribution from the individual flux components. The direct effect of surface warming and the associated feedbacks in ocean circulation are the dominant processes in weakening the Atlantic thermohaline circulation in our model. The relative contribution of momentum and freshwater fluxes to the total response turned out to be less than 25%, each. Changes in atmospheric water vapour transport lead to enhanced freshwater input into middle and high latitudes, which weakens the overturning. A stronger export of freshwater from the Atlantic drainage basin to the Indian and Pacific ocean, on the other hand, intensifies the Atlantic overturning circulation. In total the modified freshwater fluxes slightly weaken the Atlantic thermohaline circulation. The contribution of the modified momentum fluxes has a similar magnitude, but enhances the formation of North Atlantic deep water. Salinity anomalies in the Atlantic as a consequence of greenhouse warming stem in almost equal parts from changes in net freshwater fluxes and from changes in ocean circulation caused by the surface warming due to atmospheric heat fluxes. Important effects of the momentum fluxes are a poleward shift of the front between Northern Hemisphere subtropical and subpolar gyres and a southward shift in the position of the Antarctic circumpolar current, with a clear signal in sea level. Received: 3 May 1999 / Accepted: 11 December 1999  相似文献   

15.
Atmospheric surface layer meteorological observations obtained from 20-m-high meteorological tower at Mangalore, situated along the west coast of India are used to estimate the surface layer scaling parameters of roughness length (z o) and drag coefficient (C D), surface layer fluxes of sensible heat and momentum. These parameters are computed using the simple flux–profile relationships under the framework of Monin–Obukhov (M–O) similarity theory. The estimated values of z o are higher (1.35–1.54 m) than the values reported in the literature (>0.4–0.9 m) probably due to the undulating topography surrounding the location. The magnitude of C D is high for low wind speed (<1.5 m s?1) and found to be in the range 0.005–0.03. The variations of sensible heat fluxes (SHF) and momentum fluxes are also discussed. Relatively high fluxes of heat and momentum are observed during typical days on 26–27 February 2004 and 10–11 April 2004 due to the daytime unstable atmospheric conditions. Stable or near neutral conditions prevail after 1700 h IST with negative SHF. A mesoscale model PSU/NCAR MM5 is run using a high-resolution (1 km) grid over the study region to examine the influence of complex topography on the surface layer parameters and the simulated fluxes are compared with estimated values. Spatial variations of the frictional velocity (u *), C D, surface fluxes, planetary boundary layer (PBL) height and surface winds are noticed according to the topographic variations in the simulation.  相似文献   

16.
Boundary-layer heat and moisture budgets from fife   总被引:1,自引:0,他引:1  
Aircraft stacks were flown upwind and downwind of the First ISLSCP Field Experiment (FIFE) site in Kansas to measure the heat and moisture budgets of the boundary layer under fairly clear skies for four daytime periods. In this paper, we evaluate the terms in the conservation equation. The vertical flux divergence and advection do not account for the difference between surface and low-level aircraft flux estimates. Budget estimates of the surface fluxes using the aircraft data agree well with surface flux measurements, but extrapolation of the aircraft fluxes gives surface fluxes that are too low. With the 5 km cutoff filter used, the aircraft underestimate for sensible heat flux is about 40%, and for the latent heat flux about 30%. Part of the underestimation is attributable to long-wavelength contributions (longer than the 5 km filter), but more investigation is needed.  相似文献   

17.
Annual mean ocean surface heat fluxes have been studied as a function of horizontal resolution in the ECMWF model (cycle 33) and compared with Oberhuber's COADS (1959–1979) based empirical estimates. The model has been run at resolutions of T21, T42, T63 and T106 for 15 months with prescribed monthly varying climatological SST and sea ice. The T42 simulation was extended to 2 years, which enabled us to determine that many differences between the resolution runs were significant and could not be explained by the fact that individual realizations of an ensemble of years can be expected to give different estimates of the annual mean climate state. In addition to systematic differences between the modeled and the observed fluxes, the simulated fields of surface shortwave and longwave radiation showed much more spatial variability than the observed estimates. In the case of the longwave radiation this may be attributable more to deficiencies in the observations than to errors in the model. The modeled latent and sensible heat fields were in better agreement with observations. The primary conclusion concerning the dependence of ocean surface fluxes on resolution is that the T21 simulation differed significantly from the higher resolution runs, especially in the tropics. Although the differences among the three higher resolution simulations were generally small over most of the world ocean, there were local areas with large differences. It appears, therefore, that in relation to ocean surface heat fluxes, a resolution greater than T42 may not be justified for climate model simulations, although the locally large differences found between the higher resolution runs suggest that convergence has not been achieved everywhere even at T106.  相似文献   

18.
Summary In this paper, we examine the effects of land-surface heterogeneity on the calculation of surface-energy and momentum fluxes in a meso-scale atmospheric model. A series of numerical experiments has been carried out with a combination of different resolutions for the atmosphere and the land surface, which allows an examination of the aggregation and dynamic effects associated with land-surface heterogeneity. The numerical results show that for a given atmospheric model resolution, increased land-surface resolution leads to better estimates of surface-energy and momentum fluxes, and for a given land-surface resolution, increased atmospheric model resolution also improves the estimates of these fluxes. This latter result contradicts the prevailing view that subgrid variation in atmospheric data plays only a minor role in estimating the fluxes. It is also shown that subgrid land-surface heterogeneity leads to increased turbulent fluctuations. The responsible mechanisms of this effect are both the subgrid variation of surface-energy fluxes and their impact upon the development of convective cells. It is suggested that subgrid atmospheric motions induced by surface heterogeneity may be an important factor which needs to be considered in subgrid closure schemes for atmospheric models. Received August 28, 2000/Revised June 1, 2001  相似文献   

19.
A global nine-layer primitive equation model is developed to investigate the dynamic and thermodynamic influences of plateaus and high mountains on the atmospheric circulation. Besides topography, the effects of solar radiation, longwave radiation, large-scale condensation, cumulus convection and surface fluxes of heat momentum are also included in the model, In order that the finite-difference approximations represent fairly accurately the circulation in both higher and lower latitudes, we use Mercator projection in lower latitudes and Stereographic projection in higher latitudes.The simulated sea level pressure, wind field, precipitation distribution and vertical circulation in summer and winter are given, respectively, and they are compared with the observations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号