首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
压缩天然气(Compression Natural Gas简称CNG)在制造、输送或贮存时,经常由于摩擦而产生静电,这些静电不仅聚集在管道、容器和储罐上,还聚集在加工设备上形成高压电位,对人身及设备的安全有着很大的威胁。更危险的是不可避免的会产生静电放电现象,静电电压有时可达数万伏,引燃爆炸性介质,加之具有突发性,难预测,发生频度高,损失惨重等特点,将会造成设备、财产重大损害和人员的伤亡。因此对CNG汽车加气站静电危害的防护,显得尤为重要。  相似文献   

2.
静电的防护与测量   总被引:1,自引:0,他引:1  
分析了静电的产生和危害,提出了静电的防护和检测方法。  相似文献   

3.
分析了静电的产生和危害,提出了静电的防护和检测方法.  相似文献   

4.
近年来,氢气的使用范围越来越广,但由于操作等原因,发生事故的现象也越来越多。本从物理学的角度对静电产生的原因,类型进行分析,同时分析静电对制氢,用氢的威胁和在实际操作中需要注意的事宜,减少或避免在操作过程中由于静电引起的危害。  相似文献   

5.
通过某油库卸油时发生燃烧爆炸的原因分析,指出静电形成的原因和危害,根据静电形成的原因,指出在装卸油气时应注意控制装卸速度、做好防静电接地并留足静电泄放时间,保证工作安全。  相似文献   

6.
结合防雷技术规范和实际工作中的经验,分析了计算机机房产生静电的途径和静电的危害,提出了防静电危害的几种经济有效方法,即电磁屏蔽、合理布线、接地及等电位连接,要求严格的机房还应让工作人员穿戴防静电服装、配带腕带,必要时使用静电消除设备。  相似文献   

7.
李家启  李黎  黄亚敏  秦健  曾理 《气象科技》2012,40(2):310-314
针对重庆一家制药厂2006年9月3日22:00发生的一起火灾,利用GPS/MAT资料反演空气水汽含量产品和气象地面观测资料,并结合制药厂生产工艺,重点分析静电火灾事故原因。结果表明:高温低湿极端气象条件(空气中水汽含量达到0.5g/cm3、地表温度在40℃以上)是静电火灾发生的先决条件;生产工艺中防静电措施不合理,使静电产生和大量积聚,并产生火花放电,致使大量挥发的石油醚蒸汽燃烧而引发火灾,为减少类似静电火灾事故的发生,提出了相应防范建议以供参考。  相似文献   

8.
静电与雷电的危害同源于静电火花,受到气象要素的制约。因此,在避雷检测工作中做好静电危害的检测与防治,是发挥气象科技优势,增强气象科技服务功能,扩大其服务范围的一项开拓性工作。本文主要就静电危害防治与检测,结合避雷检测工作提出几点看法。  相似文献   

9.
分析了静电的形成及危害,提出了影响油品静电的因素和油品静电的防护方法。根据多年检测汽车加油站的经验,绘制了加油机检测流程框图。  相似文献   

10.
静电处处存在,在日常生活中人们认为一般并无大害,所以往往忽略它。其实在一些特殊环境下,静电造成的危害却相当严重,会对人民生命财产造成巨大的威胁和损失。其导致的灾害主要产生在化工、石油、粉尘加工、炸药等易燃易爆物品的运输、装制、搅拌、喷射等生产过程中和很多电子设备的集成电路。山西临汾染化集团铁路站台火灾事故就是一例。2001年6月18日10时40分,山西临汾染化(集团)有限责任公司铁路专用站台,当氯苯储罐(100m3)向汽车空罐(7m3)内装灌时,在开装大约10s时发生火灾,虽抢救及时,仍造成停运3d…  相似文献   

11.
张霞  林丽 《河南气象》2002,(1):18-19
利用郑州站1951-2000年的降水和气温资料,对郑州地区的旱涝特征进行分析,并根据农谚筛选出与春季降水相关较好的因子,组建了春季旱涝预测方程。经试报和历史回代,方程准确率和历史拟合率均较好。  相似文献   

12.
利用常规观测资料、自动站资料、雷达及NCEP 1°×1°资料,在诊断2013年4月19日河北省一次回流多相态降水过程成因的基础上,总结了降雪漏报的原因。结果表明:冀中南降水区位于700hPa切变线南侧、700 hPa西南低空急流与850 hPa东北风急流交汇处,暖湿空气在冷垫上爬升和急流的次级环流为降水提供了动力条件,低空急流为降水提供了水汽条件。整层大气可降水量及变化可作为降水预报的重要参考。对比分析雨区和雪区的温度廓线发现:通过温度平流分析温度的垂直分布和演变比单独分析温度特性层高度对于辨别降水相态更为可靠,而雷达风廓线资料可作为识别冷暖平流进而辨别大气温度层结变化的有益补充。本次降水相态预报出现偏差的主要原因是对温度垂直分布和演变判断不够准确。  相似文献   

13.
利用郑州站1951~2000年的降水和气温资料,对郑州地区的旱涝特征进行分析,并根据农谚筛选出与春季降水相关较好的因子,组建了春季旱涝预测方程.经试报和历史回代,方程准确率和历史拟合率均较好.  相似文献   

14.
四川地区云和空中水资源分布与演变   总被引:6,自引:3,他引:3  
王维佳 《气象科技》2010,38(1):58-65
利用1971~2000年台站云降水资料和NCEP再分析资料,分析了四川地区云和空中水资源的分布与演变。研究发现:四川地区平均总云量为7.2成,低云量4.7成,全年阴天日数193.5天,降水日数154.0天,小到中雨日147.1天;全年大气可降水量为181.7kg.m-2。云有明显的季节变化特征,总云量夏季最高,春季次之,冬季最低,低云量夏季最高,秋季次之,冬季最低。大气可降水量夏季最大,秋季次之,冬季最少。云和小到中雨日的空间分布具有明显的地域性,且夏季分布与全年分布显著不同。在高原上,总云和低云、降水日、小到中雨日呈相反的变化趋势,总云在平均状态附近波动略有减少,而低云、降水日、小到中雨日在平均状态附近波动略有增加;在盆地内,云和降水日的演变趋势相同,总云量、低云量、降水日、小到中雨日都在线性减少。30年来四川地区大气可降水量线性变化则略有增多。  相似文献   

15.
16.
南京四季大气粗细粒子中PAHs的污染特征及来源   总被引:1,自引:0,他引:1       下载免费PDF全文
研究了南京2009—2010年大气粗、细粒子中PAHs(多环芳烃,Polycyclic Aromatic Hydrocarbons)在四季不同的组成特征及来源。结果表明,南京细粒子中PAHs的浓度范围是19.11~131.31 ng/m~3,而粗粒子是17.77~134.85 ng/m~3。局地排放与区域传输的综合作用,使得南京不同采样点的PAHs浓度相关度较高,具有相同的污染源及污染过程。除了秋季PAHs主要分布于粗粒径段,南京大气中PAHs以细粒子为主。春、冬季分别受到了来自ENE-S和NNW-NE方向污染气团的远距离输送影响,夏季局地排放的污染物受到了西南清洁气团的稀释作用,秋季不同于其他季节,仅以局地贡献为主。源解析结果显示,不同季节PAHs来源存在差异,最主要的排放源是机动车源,其次是燃煤/焦化,秋季受较多的生物质燃烧贡献。秋季特殊的排放源贡献,以及局地贡献为主的污染形式,可能是其浓度分布不同于其他季节的根本原因。  相似文献   

17.
利用1980-2016年站点观测数据和NCEP再分析资料对广西秋冬季暴雨进行了天气学分型,并用合成分析的方法给出了各类暴雨的天气形势特征。结果表明:广西秋冬季暴雨可分为台风类、切变类和副高边缘类三类。其中,前两类暴雨发生次数最多,主要发生在9-10月份。高低空系统配置显示,秋冬季暴雨发生时对流层上层都伴有较强的高空急流,而对流层中低层的影响系统不尽相同;在暴雨期间,前两类暴雨副高减弱东退,第三类暴雨副高则加强西伸;广西秋冬季三种类型暴雨在水汽、热力、动力及形成机制方面也各有异同,但与汛期暴雨相比,各类暴雨的主要影响系统位置稍有差异,无论是水汽条件,还是动力条件,秋冬季暴雨比汛期暴雨要求都高,其中副高边缘类暴雨在不同季节差异最为明显。  相似文献   

18.
未来东亚地区硫化物沉降及输送的预测   总被引:5,自引:0,他引:5  
采用东亚未来二氧化硫排放量的预测资料,利用东亚硫化物输送模式拟了未来15年东亚各地区的硫化物沉降量、相互输送量的变化趋势力其对土壤的影响。结果表明,未来15年东亚各地区的硫化物沉降量将日益增多,一些地区硫化物沉降量大大超出了土壤对酸沉降的承受能力,对周边地区硫化物的输送量也将进一步加大,形势相当严峻。  相似文献   

19.
张东  汪瑛  冯业荣  方一川 《气象科技》2014,42(2):302-308
利用室内地板温度、气温、露点、湿度,以及NCEP 1°×1°分析数据等资料,对2012年广东2—3月冬春过渡季节"回南天"(高湿天气)的5次个例的天气形势、气象要素特征和物理变化过程进行了分析。结果表明:冷空气影响结束后,广东上空迅速转受暖湿空气控制,当室外空气露点高于室内物体温度时"回南天"现象就会产生;"回南天"是出现在冷暖急转的天气背景下的;冬春季节当持续控制广东的冷高压脊快速减弱,同时925hPa上有明显的偏南气流时,预报员就要考虑是否会出现"回南天"现象;气温快速回升,露点高于室内物体温度是"回南天"出现的必要条件,要重点分析未来露点的变化;"回南天"有两种结束方式,即冷性结束和暖性结束。  相似文献   

20.
利用2005年1月至12月凭祥站自动与人工第二年平行观测气压资料,就自动与人工观测气压的差值及引起差异的原因进行了分析。结果表明:(1)自动观测气压值比人工观测气压值,日平均值普遍偏低0.3~0.4hPa。日最低气压在5~6月高温期差值最大,有时可达到1.3 hPa。(2)自动与人工观测气压的差值具有明显的日变化和季节变化。(3)自动与人工观测气压值主要分布在0.3~0.4hPa之间,在业务规定允许误差范围内(4)人工操作不当读数误差;观测时间不一致;仪器性能误差;自动观测在高温状况下的非线性以及其他原因均会导致自动与人工观测气压产生差异。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号