首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
利用青藏高原玛多地区高寒草甸和玉树隆宝地区高寒湿地的观测资料,比较分析了土壤水分、地表反照率和土壤热通量在土壤完全融化期、土壤逐渐冻结期、土壤完全冻结期和土壤逐渐融化期的变化情况,并计算了各月份的感热通量和潜热通量。结果表明:在10~50 cm深处,土壤完全融化期高寒湿地土壤含水量为0.66~0.82 m3·m-3,高寒草甸土壤含水量为0.15~0.18 m3·m-3,土壤完全冻结期高寒湿地土壤含水量为0.13~0.21 m3·m-3,高寒草甸土壤含水量为0.01~0.04 m3·m-3。高寒草甸和高寒湿地地表反照率在土壤冻结期间较高,融化期间较低。高寒草甸土壤热通量年变化幅度小,高寒湿地土壤热通量年变化幅度大。高寒草甸月平均感热通量均高于高寒湿地,高寒湿地月平均潜热通量均高于高寒草甸。  相似文献   

2.
青海南部高寒草地土壤冻融交替期水热特征分析   总被引:2,自引:0,他引:2  
为进一步了解高寒草地土壤冻融交替过程及其对水热因子的响应机制,通过2014年8月1日至2015年8月1日不同土层土壤温度和水分观测资料的对比分析,较为系统地探讨了青南高寒草地土壤冻融期不同深度土层土壤温度和水分的变化特征。结果表明,青南高寒草地土壤冻融阶段大体可分为初冻期、稳定冻结中期、稳定冻结后期和消融期4个时期;不同土层土壤温度随气温的变化呈周期性波动,且随着土层的加深变幅减小;不同冻融期表层和亚表层土壤温度和水分波动幅度较大,下层土壤对水热因子的敏感性较小;土壤完全冻结的天数达44~115d,日冻融交替过程主要发生在表层和亚表层土壤。土壤冻融交替增强了土壤的保水性,对该区草地植被提前返青和初级生产力的提高具有促进作用。  相似文献   

3.
青藏高原多年冻土区典型下垫面冻融过程作用分析   总被引:2,自引:0,他引:2       下载免费PDF全文
利用青藏高原腹地安多站土壤观测资料,根据10cm土壤日最高和最低温度将冻土分为融化过程、完全融化、冻结过程和完全冻结四个阶段,并结合感热通量、积雪深度、相对湿度和降水资料定性的探讨了冻融过程对地气热量、水分交换的影响。结果表明:各层土壤在东亚季风爆发前期由上至下完成融化过程,10月中旬~12月上旬完成冻结过程,融化期普遍长于冻结期。土壤湿度大值区在时间上集中在高原雨季,空间上10cm深度以上为湿度大值区,而且上层土壤的温度梯度要明显大于下层。在融化阶段整层土壤的温度长期保持0℃的等温相变现象,此时,表层土壤温度日变化幅度为全年最大,最高日变幅达22.5℃。安多站地面除12月个别天数和1月上旬是冷源外,全年为地面热源,近地面感热通量从1月开始增大,到6月上旬达到峰值,之后逐渐减小。同时,感热通量的变化对相对湿度、降水和积雪的变化较为敏感。   相似文献   

4.
准确量化高寒湿地下垫面冻结过程中土壤热通量的变化特征,对认识高寒湿地—大气间水热交换过程有重要的科学意义。本文利用中国科学院麻多气候与环境综合观测站2014年5月至2015年5月的观测资料,分析了下垫面冻结过程中土壤热通量变化特征,探讨了冻结潜热对土壤热通量的贡献。基于温度积分计算土壤热通量的算法,指出在计算冻结过程中的土壤热通量时,需要同时考虑土壤热通量板以上的土壤热贮存及热通量板以上的冻结潜热。研究表明:(1)冻结锋面形成后,锋面所在深度土壤体积含水量迅速降低,锋面以下土壤热通量接近于零,土壤液态水开始冻结,冻结潜热向上穿过热通量板所在土壤层;降水下渗土壤后冻结所释放的潜热能使次日凌晨5 cm深度土壤热通量接近于零。(2)季节性冻结期,凌晨气温较高时穿过5 cm土壤层的向上土壤热通量很小,可能是由表层土壤发生了日冻融循环所致。土壤水释放的冻结潜热使土壤温度波动减弱并维持在冰点附近。高寒湿地下垫面仅在很浅的表层发生日冻融循环,无法通过5 cm土壤温度资料判断下垫面循环出现日期。(3)加入冻结潜热项,土壤热通量的计算值与实测值之间的均方根误差将会从11.5 W m-2下降到6.2 W m-2。以上研究结果对认识寒区陆面过程有重要的贡献。  相似文献   

5.
活动层作为多年冻土与大气系统之间能量和水分交换通道,其内部的水热状况是控制水循环和地表能量平衡的主要因素,并直接影响着寒区生态环境、水文过程以及多年冻土的稳定性。利用一维水热耦合模型CoupModel,对青藏高原风火山试验点活动层土壤剖面温湿度进行了模拟。模拟效率参数表明模拟结果很好地反映了研究区多年冻土活动层水热状况。基于已验证的模型,设置多种不同气候变化情形,来分析活动层内部水热状况对全球气候变化的响应。研究结果表明:(1)土壤温度与气温呈正相关关系,气温每升高1℃活动层平均增温约0.78℃,但随着土壤深度增加,增温幅度逐渐减小;(2)升温导致活动层土壤冻结和融化过程发生变化,且对融化过程的影响明显大于冻结过程;(3)活动层各深度土壤含水量随气温升高而增大,且增大幅度随土壤深度增加而不断增大;(4)在完全融化期,降水量增加降低了浅层土壤温度,升高了深层土壤温度,而完全冻结期土壤温度均随降水量增加而升高;(5)降水量增加导致活动层含水量增加,其中完全融化期土壤含水量变化最明显。因此,气候暖湿化将对青藏高原多年冻土区活动层土壤温湿度及冻融循环过程产生较大影响,可能不利于冻土发育。  相似文献   

6.
针对陆面模式冻融过程模拟偏差较大问题,基于Noah-MP模式对冻融参数化方案进行比较分析,并利用观测资料对模拟试验结果进行评估。结果表明:Noah-MP模式能够较好地模拟出青藏高原冻融过程特征;冻融过程模拟对冻融参数化方案相当敏感,冻结阶段到融化阶段期间,4组试验模拟值差异显著,融化阶段之后到冻结阶段之前,4组试验模拟值相当一致;相对于过冷水参数化方案,冻土渗透率参数化方案对冻融过程期间土壤温度的模拟更为敏感,过冷水参数化方案不同会导致冻融过程期间土壤液态水含量模拟值差异显著。地表能量通量模拟对冻融参数化方案相当敏感,4组试验地表能量通量模拟值在冻结阶段、冻结稳定阶段、融化阶段均存在显著差异。  相似文献   

7.
青藏高原湿地土壤冻结、融化期间的陆面过程特征   总被引:4,自引:0,他引:4       下载免费PDF全文
利用青藏高原中部玉树隆宝湿地2015年7月-2016年7月的观测资料,分析了土壤冻结、融化前后土壤温、湿度和地表能量收支特征,结果表明:冻土持续时期为12月至次年4月,深层土壤的冻结较浅层土壤滞后,融化过程快于冻结过程,5-40 cm土壤全部冻结历时51 d,全部融化历时19 d。土壤体积含水量年变化幅度达0.6 m3/m3。冻结过程5-40 cm土壤体积含水量下降,融化过程5-10 cm土壤体积含水量升高。土壤冻结之后,感热通量白天的值升高,潜热通量白天的值降低,净辐射和土壤热通量均降低,土壤热通量日变化幅度增大。土壤融化之后,潜热通量、净辐射和土壤热通量白天的值升高。地表反照率、鲍恩比、土壤热导率和土壤热扩散率冻结后增大融化后减小,土壤热容量冻结后减小融化后增大。  相似文献   

8.
利用国家重大科学研究计划项目"青藏高原沙漠化对全球变化的响应"北麓河站2014-2015年陆面过程观测资料,根据5 cm土壤日最高和最低温度将冻土分为融化过程、完全融化、冻结过程和完全冻结四个阶段,分析了地表感热通量Hs、潜热通量LE、地表土壤热通量G_0和波文比在不同冻融阶段的季节和日变化特征,并探讨了土壤冻融过程对地表能量及其分配的影响。结果表明,波文比和G_0的季节变化受土壤冻融阶段转变的影响显著,其中土壤完全融化使波文比减小,G_0变为正值;土壤冻结使波文比增大,G_0变为负值。冻结过程对Hs和LE变化趋势的影响不明显,但是使波文比显著增大;融化过程使Hs停止增长并出现减小趋势,使LE增大,从而使波文比显著减小。Hs的日变化在不同冻融阶段差异较小。LE的日变化主要与浅层土壤含水量的大小和日变化有关,其中完全融化和完全冻结阶段土壤含水量的日变化较小,土壤含水量越大,LE越大;在融化过程和冻结过程阶段,土壤含水量的日变化较大,且与R_(net)的日变化相反,限制了LE的增长。在冻结过程阶段,受冻融过程的影响,G_0的日变化小于其他阶段。  相似文献   

9.
利用国家重大科学研究计划项目"青藏高原沙漠化对全球变化的响应"北麓河站2014-2015年陆面过程观测资料,根据5 cm土壤日最高和最低温度将冻土分为融化过程、完全融化、冻结过程和完全冻结四个阶段,分析了地表感热通量Hs、潜热通量LE、地表土壤热通量G_0和波文比在不同冻融阶段的季节和日变化特征,并探讨了土壤冻融过程对地表能量及其分配的影响。结果表明,波文比和G_0的季节变化受土壤冻融阶段转变的影响显著,其中土壤完全融化使波文比减小,G_0变为正值;土壤冻结使波文比增大,G_0变为负值。冻结过程对Hs和LE变化趋势的影响不明显,但是使波文比显著增大;融化过程使Hs停止增长并出现减小趋势,使LE增大,从而使波文比显著减小。Hs的日变化在不同冻融阶段差异较小。LE的日变化主要与浅层土壤含水量的大小和日变化有关,其中完全融化和完全冻结阶段土壤含水量的日变化较小,土壤含水量越大,LE越大;在融化过程和冻结过程阶段,土壤含水量的日变化较大,且与R_(net)的日变化相反,限制了LE的增长。在冻结过程阶段,受冻融过程的影响,G_0的日变化小于其他阶段。  相似文献   

10.
张戈  赖欣  刘康 《高原气象》2023,(3):575-589
土壤冻融过程显著影响地表含水量和能量收支变化。利用玛曲2017年8月至2018年7月的土壤温度/湿度、涡动观测资料以及公用陆面模式(Community Land Model,CLM)最新版本CLM5.0的模拟资料,其中冻结过程阶段的辐射和能量通量使用模式模拟的数据,通过分析土壤冻融过程中土壤温湿度、地表能量平衡各分量的时间演变特征,探讨冻融过程中地表水热交换的特征。数据分析表明:(1)土壤冻融过程包括冻结过程、完全冻结、消融过程及完全消融四个阶段,各阶段中的土壤温度/湿度、辐射和能量通量存在明显的日变化,在冻结过程和消融过程阶段,土壤湿度随土壤温度变化显示出明显的日冻融循环。(2)冻融过程通过影响表层土壤水分影响地表辐射收支和能量分配。冻融过程中土壤中的水相变为冰,改变下垫面性质影响地表辐射收支。土壤中的液态水通过相变影响地表潜热通量,完全消融(冻结)阶段,地气之间能量交换以潜热(感热)通量为主。相比于以潜热通量为主的冻结过程阶段,消融过程阶段净辐射通量逐渐增大,地气之间能量交换主要受感热通量影响。土壤中水分的昼融夜冻导致频繁的潜热通量释放影响地表热通量。土壤热通量在冻结过程(G  相似文献   

11.
利用2017~2018年黄河源地区野外观测站数据,对黄河源区两个积雪期内土壤温湿及冻融特征进行了分析,并与CLM4.5模式模拟的积雪期土壤温、湿度及辐射分量进行了对比,结果表明:CLM4.5能很好地模拟出整个积雪期土壤温度的变化趋势;对不同土壤层在不同冻结阶段土壤含水量的模拟有所差异:在完全冻结阶段,对5cm土壤层含水量模拟偏高,而80cm偏低,对10~40cm土壤层含水量的模拟偏差较小;由于降雪及土壤冻融过程主要发生在积雪期,积雪反照率使得净辐射模拟在降雪时段偏差较无降雪时段略大。   相似文献   

12.
冻土变化对寒区基础建设、水文、生态等都有重要影响,在全球变暖背景下,探究土壤冻融过程具有重要现实意义。本文基于中国自然地理特征和冻土特性,划分出中国西部地区(以下简称西部地区)作为研究区域,并利用1981年1月至2020年6月ERA-5地表温度、土壤体积水含量和逐月气温数据,分析了近40年中国西部地区土壤冻融状况、活动层厚度和最大冻结深度空间分布,探讨了冻融状态与气温、海拔的相关性。研究结果表明:西部地区冻融起始时间空间分布具有由高海拔地区至低海拔地区冻结推迟、融化提前的特征。高海拔的藏北高原冻结最早,融化最晚,冻结持续时间最久昆仑山脉上零星区域冻结最长可持续300天以上。海拔低且土壤含水量低的西部西北塔里木盆地,冻结最晚,融化最早,融化持续时间最长,塔克拉玛干沙漠区域融化可维持在280天以上。多年冻土活动层厚度基本都超过2.0 m,只有喀喇昆仑山脉附近的区域才有较大范围活动层厚度低于2 m的区域,青藏高原的季节性冻土冻结深度最大,厚度可以达到2 m以上,塔里木盆地冻结深度最浅,厚度在0.6 m以内。1981-2020年间,西部地区冻结起始日推迟,融化起始日提前,开始冻结和完全冻结起始...  相似文献   

13.
基于组网观测的那曲土壤湿度不同时间尺度的变化特征   总被引:2,自引:0,他引:2  
李博  张淼  唐世浩  董立新 《气象学报》2018,76(6):1040-1052
利用第三次青藏高原大气科学试验的土壤湿度观测数据,分析了那曲多空间尺度组网观测的28个站2、5、10、20和30 cm 5个不同深度土壤湿度的季节变化和日变化特征,并对比讨论了土壤湿度站点间的差异。分析表明,各层土壤湿度均存在显著的季节变化。冬春季节,20 cm以上土壤湿度随深度变浅而减小。夏秋季节土壤湿度随深度增加而减小,并分别在7月上、中旬和9月出现两个峰值。10月以后进入土壤湿度衰减期。土壤温度和土壤湿度存在协同变化关系。在一定的温度范围内,土壤发生冻结-融化过程,引起土壤湿度变化。在太阳辐射加热下,土壤表层水分蒸发,进而影响土壤温度。不同观测站间土壤湿度差异较大,夏秋季离散性大于冬春季。不同季节土壤湿度的日变化存在差异。春季10 cm以上土壤湿度日变化明显,08-10时(北京时)达到最低,19-20时达到最高。夏季土壤湿度日变化较为平缓。秋季2 cm深度土壤湿度日变化明显。线性拟合结果表明,1、4、10月土壤湿度和土壤温度为正相关关系。但是在夏季,土壤湿度与土壤温度为负相关。站点间土壤湿度变化的离散性表明,多测站才能全面体现青藏高原某区域的陆面状态。文中结果为青藏高原地区土壤湿度卫星参数验证和数值模式参数化提供了多角度的观测依据。   相似文献   

14.
活动层水热状况与地-气系统间能水交换直接影响着寒区生态环境、水文过程以及多年冻土的稳定性。利用唐古拉站2007年实测资料和SHAW模型,对研究点活动层土壤剖面温湿度进行了模拟。土壤温度方面,模型的纳什效率系数NSE≥0.93;水分方面,纳什效率系数的平均值为0.69,说明SHAW模型可用于多年冻土区活动层内水热动态变化的模拟研究。基于模型的输出结果,对唐古拉站活动层土壤冻融过程中的水分动态、地表能量收支的变化特征进行了分析讨论。结果表明:(1)活动层冻融过程中,土壤水分的冻结和融化响应时间随土壤深度的增加而逐渐滞后,水分迁移通量随土壤深度的增加逐渐减小;(2)地表能量平衡收支在季风活动引起的降水与活动层的冻融循环共同影响下,表现出明显的季节性变化特征。同时,通过改变SHAW模型植被输入参数中的叶面积指数,分析了植被覆盖变化对多年冻土区土壤蒸散发的影响。结果表明:植被蒸腾量、土壤蒸发量与总的蒸散发量与植被的叶面积指数呈正相关关系,而浅层土壤含水率(20 cm)则表现为负相关,当叶面积指数在-100%(裸土)~100%变化时,总蒸散发量的变化幅度为-5%~13%。  相似文献   

15.
CoLM模式对青藏高原中部BJ站陆面过程的数值模拟   总被引:8,自引:2,他引:6  
利用公共陆面模式Common Land Model(CoLM)及"全球协调加强观测计划之亚澳季风青藏高原试验"(CAMP/Tibet)中那曲地区Bujiao(BJ)站2002—2004年的观测资料对该地区进行了单点数值模拟试验。通过比较模拟与观测的地表能量通量,表明CoLM较成功地模拟了该地区的能量分配。模式对向上的短波辐射、向上的长波辐射、净辐射及土壤热通量模拟得较好,但冬季存在偏差。进一步比较了模拟和观测的土壤温度及土壤湿度,发现浅层60 cm土壤温度模拟较好,深层存在偏差,表现为土壤温度变化滞后于实际变化。土壤湿度总体偏小,尤其是冬季冻结期,土壤冻融过程中忽略了土壤液态水在温度0℃以下仍能存在,含冰量模拟偏高。  相似文献   

16.
黄河源区降雪对不同冻融阶段土壤温湿变化的影响   总被引:1,自引:0,他引:1  
利用2013年10月1日至2014年5月31日黄河源区鄂陵湖流域的土壤温度资料首先划分土壤不同冻融阶段,然后在每个阶段各选取一次降雪过程,分析了降雪对土壤温湿变化的影响。结果表明:在土壤冻结阶段,雪后晴天(有雪覆盖)土壤净输出的热量减少,5 cm和10 cm土壤日最低温度明显升高,20 cm土壤日最低温度升至0℃以上,导致20 cm土壤达到完全冻结的时间延长;在土壤消融阶段,降雪当天土壤净输入的热量减少,5 cm和10 cm土壤日最高温度突降至0℃以下,导致5 cm和10cm土壤达到完全消融的时间增加。在以上两个阶段的降雪过程中,积雪不仅可通过自身的消融增加浅层土壤湿度,还可通过改变浅层土壤温度间接影响浅层土壤湿度,而在土壤完全冻结阶段,积雪对土壤温度虽有影响,但对土壤湿度的直接和间接影响都较小。在整个土壤冻融阶段,与由土壤冻结和消融引起的土壤湿度变化相比,降雪引起的土壤湿度变化较小。  相似文献   

17.
利用2013年10月1日至2014年5月31日黄河源区鄂陵湖流域的土壤温度资料首先划分土壤不同冻融阶段,然后在每个阶段各选取一次降雪过程,分析了降雪对土壤温湿变化的影响。结果表明:在土壤冻结阶段,雪后晴天(有雪覆盖)土壤净输出的热量减少,5 cm和10 cm土壤日最低温度明显升高,20 cm土壤日最低温度升至0℃以上,导致20 cm土壤达到完全冻结的时间延长;在土壤消融阶段,降雪当天土壤净输入的热量减少,5 cm和10 cm土壤日最高温度突降至0℃以下,导致5 cm和10cm土壤达到完全消融的时间增加。在以上两个阶段的降雪过程中,积雪不仅可通过自身的消融增加浅层土壤湿度,还可通过改变浅层土壤温度间接影响浅层土壤湿度,而在土壤完全冻结阶段,积雪对土壤温度虽有影响,但对土壤湿度的直接和间接影响都较小。在整个土壤冻融阶段,与由土壤冻结和消融引起的土壤湿度变化相比,降雪引起的土壤湿度变化较小。  相似文献   

18.
高寒草原水热交换的季节性特征显著,土壤冻融过程对地-气水热交换有着重要的影响.本文利用黄河源区汤岔玛小流域2014年5月至2015年5月陆面过程观测数据,将土壤冻融过程划分为完全融化(TT)和完全冻结(FF)两种状态与融冻(T-F)和冻融(F-T)两个过程,并分析了期间高寒草原下垫面净辐射、感热通量、潜热通量和地表热通...  相似文献   

19.
青藏高原近地表土壤冻融状况的时空变化特征   总被引:1,自引:0,他引:1  
利用青藏高原(下称高原)87个气象台站的日最低地表温度和气温资料,通过线性回归和相关分析法,分析高原1980-2015年近地表土壤冻融状况变化趋势及其与气温、海拔和纬度的相关性。利用M ann-Kendall检验对其进行突变分析,并探讨其空间变化特征。结果表明:近36年,高原近地表土壤冻融状况发生显著变化。冻结起始时间推迟约26天,其变化速率为0.72 d·a~(-1),冻结结束时间提前约14天,速率为0.40 d·a~(-1);冻结持续时间和冻结天数分别缩短约41天和33天,其变化速率分别为1.13 d·a~(-1)和0.93 d·a~(-1)。高原冻融状况变化整体表现一致,局部地区略有差异。高原中东部地区冻结起始时间较早,结束时间较晚;而在东南部地区则存在相反的变化特征,这是由于该地区海拔较低,且全年土壤温度较高导致。就冻融状况变化速率而言,东部地区变化最快,西部适中,变化较慢的站点零星分布在中部和南部地区。气温对近地表土壤冻融状况有重要影响,但气温对土壤冻融循环存在一定的滞后作用。此外,高原近地表土壤冻融状况与海拔呈极显著相关,随海拔的降低,冻结起始推迟,冻结结束时间提前,冻结持续时间和冻结天数显著减少。  相似文献   

20.
东亚中高纬土壤温度资料评估与分析   总被引:1,自引:0,他引:1  
本文以一套俄罗斯土壤温度历史观测资料RHSTD为基础,分析了四套土壤温度产品[ERA-Interim再分析资料、两套陆面模式离线运行产品ERA-Interim/Land(简称ERA-Land)和MERRA-Land、以及一套二十世纪再分析资料NOAA-CIRES 20CR]在东亚中高纬的可靠性,并重点关注春夏季,主要结论如下:观测地温在0~2 m波动较大,随季节在0℃上下摆动,而2 m以下地温稳定少变,并且在60°N以北地区出现永久冻结。四套地温产品较好地反映了这些特征。无论春夏,还是年平均,四套地温产品气候态都呈“南暖北冷”的特征,但ERA-Land的空间分布与观测最接近。就季节循环而言,ERA-Land最能反映该地区土壤的冻融过程和土壤温度的季节演变。四套地温产品年际变率(标准差)与观测的差异随季节和土壤层变化大,情况比较复杂。就年际变化趋势而言,四套地温产品与观测的相关性,夏季好于春季,表层好于深层,并且ERA-Land土壤温度拥有四套地温产品最多的共性,最能反映观测地温的年际变化。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号