首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
基于风廓线雷达的广东登陆台风边界层高度特征研究   总被引:3,自引:1,他引:2  
廖菲  邓华  李旭 《大气科学》2017,41(5):949-959
针对8个登陆广东省的热带气旋,利用经过数据质量控制的风廓线雷达连续、高时空分辨率的风场观测数据,对热带气旋边界层特征进行了分析。研究结果表明:热带气旋边界层中切向风速大值区垂直范围越大、风速越强、持续时间越久,则热带气旋强度越大、登陆后强度维持时间越久。眼区外入流层厚度越大,入流层气流越强,热带气旋登陆后强度维持时间则越久。风廓线雷达信噪比垂直梯度对大气湍流信息有一定的指示作用,对于入流层高度在2000 m以下的热带气旋,其入流层顶所在高度与信噪比梯度最大值所在高度相近,对于入流层较为深厚的热带气旋,用信噪比垂直梯度确定的边界层高度虽接近入流层顶高,但仍有一定差距。不同特点的热带气旋其边界层高度并不相同,对于登陆后强度迅速减弱的热带气旋边界层高度在500~1000 m;登陆后强度持续时间短的热带气旋,其边界层高度约1000~2000 m;登陆后强度持续时间长的热带气旋,其边界层高度在2000 m之上,最高可达5000~7000 m。这些结果加深了对登陆台风边界层高度演变特征的认识。  相似文献   

2.
热带气旋眼墙非对称结构的研究综述   总被引:2,自引:0,他引:2  
热带气旋的眼墙非对称结构与其发展过程密切相关。在热带气旋移动过程中,非对称风场伴随着边界层内非对称摩擦而引起的辐合,影响着热带气旋眼墙内的对流分布。此外,风垂直切变作为影响热带气旋强度的重要因子,将上层暖心吹离表层环流,引起眼墙垂直运动的非对称,导致云、降水在方位角方向的非均匀分布。当存在平均涡度的径向梯度时,罗斯贝类型的波动可以存在于涡旋内核区域,影响眼墙非对称结构。海洋为热带气旋提供潜热和感热形式的能量,是热带气旋发展的重要能量来源,关于海洋如何影响热带气旋眼墙非对称结构的相关研究较少。文中着重回顾了热带气旋与海洋相互作用的研究成果,并提出海洋影响热带气旋眼墙非对称结构的机制。海洋对热带气旋最显著的响应特征是冷尾效应,该效应通过降低海表温度,减少海洋向大气输送的潜热和感热,从而影响热带气旋眼墙非对称结构。此外,海浪改变海表粗糙度,通过边界层影响移动热带气旋的眼墙结构。  相似文献   

3.
登陆台风边界层风廓线特征的地基雷达观测   总被引:2,自引:0,他引:2  
为了分析登陆台风边界层风廓线特征,利用2004—2013年中国东南沿海新一代多普勒天气雷达收集的17个登陆台风资料,采用飓风速度体积分析方法,反演登陆台风的边界层风场结构特征。与探空观测对比表明,利用雷达径向风场可以准确地反演登陆台风的边界层风场结构,其风速误差小于2 m/s,风向误差小于5°。所有登陆台风合成的边界层风廓线显示,在近地层(100 m)以上,边界层风廓线存在类似急流的最大切向风,其高度均在1 km以上,显著高于大西洋观测到的飓风边界层急流高度(低于1 km)。陆地边界层内低层入流强度也明显大于过去海上观测,这主要是由陆地上摩擦增大引起。越靠近台风中心,边界层风廓线离散度越大,其中,径向风廓线比全风速以及切向风廓线离散度更大。将风廓线相对台风移动方向分为4个象限,分析边界层风廓线非对称特征显示,台风移动前侧入流层明显高于移动后侧。最大切向风位于台风移动左后侧,而台风右后侧没有显著的急流特征,与过去理想模拟的海陆差异导致的台风非对称分布特征一致。  相似文献   

4.
The wake characteristics of a wind turbine for different regimes occurring throughout the diurnal cycle are investigated systematically by means of large-eddy simulation. Idealized diurnal cycle simulations of the atmospheric boundary layer are performed with the geophysical flow solver EULAG over both homogeneous and heterogeneous terrain. Under homogeneous conditions, the diurnal cycle significantly affects the low-level wind shear and atmospheric turbulence. A strong vertical wind shear and veering with height occur in the nocturnal stable boundary layer and in the morning boundary layer, whereas atmospheric turbulence is much larger in the convective boundary layer and in the evening boundary layer. The increased shear under heterogeneous conditions changes these wind characteristics, counteracting the formation of the night-time Ekman spiral. The convective, stable, evening, and morning regimes of the atmospheric boundary layer over a homogeneous surface as well as the convective and stable regimes over a heterogeneous surface are used to study the flow in a wind-turbine wake. Synchronized turbulent inflow data from the idealized atmospheric boundary-layer simulations with periodic horizontal boundary conditions are applied to the wind-turbine simulations with open streamwise boundary conditions. The resulting wake is strongly influenced by the stability of the atmosphere. In both cases, the flow in the wake recovers more rapidly under convective conditions during the day than under stable conditions at night. The simulated wakes produced for the night-time situation completely differ between heterogeneous and homogeneous surface conditions. The wake characteristics of the transitional periods are influenced by the flow regime prior to the transition. Furthermore, there are different wake deflections over the height of the rotor, which reflect the incoming wind direction.  相似文献   

5.
The impacts of dry air on tropical cyclone (TC) development at different latitudes with no mean flows are investigated with idealized simulations. It is found that the effective radius of the dry air is sensitive to its vertical distribution and the background earth rotation. The effect of low-level dry-air layer in inhibiting TC development decreases with increasing latitude. At lower latitudes, the greater boundary layer gradient wind imbalance results in a strong low-level inflow, and the dry air can easily penetrate into the TC inner-core region. The intruding dry air inhibits the inner-core deep convection and leads to marked asymmetric convective structure, which significantly suppresses TC development. In contrast, at higher latitudes, the dry air gets moistened before reaching the TC inner-core region due to a weaker radial inflow but can suppress the development of the outer spiral rainbands. The suppressed outer spiral rainbands lead to a weaker barrier effect to the boundary layer inflow and help TC development. Furthermore, the lower the altitude of dry-air layer resides, the greater the impact on TC intensification. The low-level pathway associated with the boundary layer inflow plays an important role on how dry-air layer acts on a TC without considering the mean flow effects. Through examining the climatological distribution of the moisture field, we expect that the intrusion of dry air can be more frequent in the North Atlantic area and therefore has more effects on TC development than in the western North Pacific.  相似文献   

6.
使用1998—2016年大西洋40个飓风2 032个GPS下投式探空仪观测数据,以距离海岸线300 km为界分为近海和远洋两组,利用合成分析方法探讨了飓风边界层特征高度的差异。边界层特征高度的定义方法包括最大切向风高度、入流层高度、混合层高度和理查森数法高度。对比分析不同定义方法下近海和远洋边界层高度,结果表明:根据最大切向风和入流层强度定义的边界层高度,近海边界层高度低于远洋边界层高度,且近海边界层高度随径向增加至2倍最大风速半径后趋于稳定;基于混合层定义的边界层高度明显低于动力边界层高度,且近海与远洋混合边界层特征高度无明显差异;近海理查森数边界层高度在最大风速半径内与远洋的无明显差异,而在最大风速半径外略高于远洋的。  相似文献   

7.
Variable thicknesses in the lowest half-ηmodel level (LML) are often used in atmospheric models to compute surface diagnostic fields such as surface latent and sensible heat fluxes.The effects of the LML on simulated tropical cyclone (TC)evolution were investigated in this study using the Weather Research and Forecasting (WRF) model.The results demonstrated notable influences of the LML on TC evolution when the LML was placed below 12 m.The TC intensification rate decreased progressively with a lowering of the LML,but its ultimate intensity change was relatively small.The maximum 10-m winds showed different behavior to minimum sea level pressure and azimuthally-averaged tangential winds,and thus the windpressure relationship was changed accordingly by varying the LML.The TC circulation was more contracted in association with a higher LML.Surface latent heat fluxes were enhanced greatly by elevating the LML,wherein the wind speed at the LML played a dominant role.The changes in the wind speed at the LML were dependent not only on their profile differences,but also the different heights they were taken from.Due to the enhanced surface heat fluxes,more intense latent heat release occurred in the eyewall,which boosted the storm's intensification.A higher LML tended to produce a stronger storm,and therefore the surface friction was reinforced,which in turn induced stronger boundary layer inflow together with increased diabatic heating.  相似文献   

8.
In this study, Typhoon Rammasun(2014) was simulated using the Weather Research and Forecasting model to examine the kinetic energy during rapid intensification(RI). Budget analyses revealed that in the inner area of the typhoon,the conversion from symmetric divergent kinetic energy associated with the collocation of strong cyclonic circulation and inward flow led to an increase in the symmetric rotational kinetic energy in the lower troposphere. The increase in the symmetric rotational kinetic e...  相似文献   

9.
We used simultaneous measurements of surface PM2.5 concentration and vertical profiles of aerosol concentration, temperature, and humidity, together with regional air quality model simulations, to study an episode of aerosol pollution in Beijing from 15 to 19 November 2016. The potential effects of easterly and southerly winds on the surface concentrations and vertical profiles of the PM2.5 pollution were investigated. Favorable easterly winds produced strong upward motion and were able to transport the PM2.5 pollution at the surface to the upper levels of the atmosphere. The amount of surface PM2.5 pollution transported by the easterly winds was determined by the strength and height of the upward motion produced by the easterly winds and the initial height of the upward wind. A greater amount of PM2.5 pollution was transported to upper levels of the atmosphere by upward winds with a lower initial height. The pollutants were diluted by easterly winds from clean ocean air masses. The inversion layer was destroyed by the easterly winds and the surface pollutants and warm air masses were then lifted to the upper levels of the atmosphere, where they re-established a multi-layer inversion. This region of inversion was strengthened by the southerly winds, increasing the severity of pollution. A vortex was produced by southerly winds that led to the convergence of air along the Taihang Mountains. Pollutants were transported from southern–central Hebei Province to Beijing in the boundary layer. Warm advection associated with the southerly winds intensified the inversion produced by the easterly winds and a more stable boundary layer was formed. The layer with high PM2.5 concentration became dee-per with persistent southerly winds of a certain depth. The polluted air masses then rose over the northern Taihang Mountains to the northern mountainous regions of Hebei Province.  相似文献   

10.
In this paper,the effects of sea spray on tropical cyclone(TC)structure and intensity variation are evaluated through numerical simulations using an advanced sea-spray parameterization from the National Oceanic and Atmospheric Administration/Earth System Research Laboratory(NOAA/ESRL),which is incorporated in the idealized Advanced Research version of the Weather Research and Forecast (WRF-ARW)model.The effect of sea spray on TC boundary-layer structure is also analyzed.The results show that there is a significant increase in TC intensity when its boundary-layer wind includes the radial and tangential winds,their structure change,and the total surface wind speed change.Diagnosis of the vorticity budget shows that an increase of convergence in TC boundary layer enhances TC vorticity due to the dynamic effect of sea spay.The main kinematic effect of the friction velocity reduction by sea spray produces an increment of large-scale convergence in the TC boundary layer,while the radial and tangential winds significantly increase with an increment of the horizontal gradient maximum of the radial wind, resulting in a final increase in the simulated TC intensity.The surface enthalpy flux enlarges TC intensity and reduces storm structure change to some degree,which results in a secondary thermodynamic impact on TC intensification.Implications of the new interpretation of sea-spray effects on TC intensification are also discussed.  相似文献   

11.
2009年6月一次飑线过程灾害性大风的形成机制   总被引:19,自引:8,他引:11  
梁建宇  孙建华 《大气科学》2012,36(2):316-336
对2009年6月3~4日一次产生地面大风的人字形强飑线过程进行了观测资料分析和数值模拟研究。观测资料的分析表明: 人字形回波系统的右半支的结构与一般的飑线系统类似, 在系统成熟阶段地面存在明显的雷暴高压、 冷池、 出流边界、 尾流低压等特征; 人字形回波的左半支对应的地面风速比右半分支弱, 且强对流区后部没有对应层状云、 地面雷暴高压、 冷池等; 灾害性大风的产生主要由这个人字形系统的右半支造成的。高分辨率模拟结果的分析表明: 系统由线状转变为人字形系统的原因是由于气旋扰动的冷暖切变的作用, 冷、 暖切变上分别形成了有层状云和无层状云的飑线分支。系统的右半分支在发展阶段和成熟阶段对流区有比较强烈的下沉气流, 系统的后部的中层入流可能会加强这个下沉气流。中层入流是地面大风形成的重要原因之一; 成熟阶段垂直于飑线系统主要有三股气流, 包括从飑线前部向后的入流和中层从后部到前部的入流, 以及前部的低层入流到高层的出流。  相似文献   

12.
To investigate the impacts of the diurnal cycle on tropical cyclones (TCs),a set of idealized simulations were conducted by specifying different radiation (i.e.,nighttime-only,daytime-only,full diurnal cycle).It was found that,for an initially weak storm,it developed faster during nighttime than daytime.The impacts of radiation were not only on TC intensification,but also on TC structure and size.The nighttime storm tended to have a larger size than its daytime counterparts.During nighttime,the radiative cooling steepened the lapse rate and thus reduced the static stability in cloudy regions,enhancing convection.Diabatic heating associated with outer convection induced boundary layer inflows,which led to outward expansion of tangential winds and thus increased the storm size.  相似文献   

13.
In this paper the impacts of vertical resolution on the simulations of Typhoon Talim (2005) are examined using the Weather Research and Forecasting (WRF) model, with cumulus parameterization scheme representing the cumulus convection implicitly. It is shown that the tropical cyclone (TC) track has little sensitivity to vertical resolution, whereas the TC intensity and structure are highly sensitive to vertical resolution. It is partly determined by the sensitivity of the planetary boundary layer (and the surface layer) and the cumulus convection processes to vertical resolution. Increasing vertical resolution in the lower layer could strengthen the TC effectively. Increasing vertical resolution in the upper layer is also beneficial for the storm intensification, but to a lesser degree. In contrast, improving the midlevel resolution may cause the convergence of environmental air, which inhibits the TC intensification. The results also show that the impacts of vertical resolution on features of the TC structure, such as the tangential winds, secondary circulations and the evolution of the warm-core structure, are consistent with the impacts on the TC intensity. It is suggested that in the simulations of TCs, the vertical levels should be distributed properly rather than the more the better, with higher vertical resolution being expected both in the lower and upper layer, while the middle layer should not hold too many levels.  相似文献   

14.
The boundary layer structure and related heavy rainfall of Typhoon Fitow(2013), which made landfall in Zhejiang Province, China, are studied using the Advanced Research version of the Weather Research and Forecasting model, with a focus on the sensitivity of the simulation to the planetary boundary layer parameterization. Two groups of experiments—one with the same surface layer scheme and including the Yonsei University(YSU), Mellor–Yamada–Nakanishi–Niino Level 2.5,and Bougeault and Lacarrere schemes; and the other with different surface layer schemes and including the Mellor–Yamada–Janjic′ and Quasi-Normal Scale Elimination schemes—are investigated. For the convenience of comparative analysis, the simulation with the YSU scheme is chosen as the control run because this scheme successfully reproduces the track, intensity and rainfall as a whole. The maximum deviations in the peak tangential and peak radial winds may account for 11% and 33%of those produced in the control run, respectively. Further diagnosis indicates that the vertical diffusivity is much larger in the first group, resulting in weaker vertical shear of the tangential and radial winds in the boundary layer and a deeper inflow layer therein. The precipitation discrepancies are related to the simulated track deflection and the differences in the simulated low-level convergent flow among all tests. Furthermore, the first group more efficiently transfers moisture and energy and produces a stronger ascending motion than the second, contributing to a deeper moist layer, stronger convection and greater precipitation.  相似文献   

15.
裴昌春  赵宇  程思 《气象科技》2019,47(5):841-850
利用常规观测资料、NCEP/NCAR(1°×1°)的逐6h再分析资料结合ARW-WRF中尺度数值模式模拟结果对2018年6月20日发生在福建沿岸的一次飑线过程的发生发展机理进行了分析,结果表明:①本次飑线过程属于槽前型,对流层低层存在发展的低涡切变,切变南侧有冷空气南下,低空西南急流不明显,但有持续的暖湿气流输送至福建中北部地区,飑线生成于低涡南侧的沿岸附近。②飑线发展期间系统南侧低层风速不断增大且维持高的水汽输送和不稳定能量;前期对流的触发因子包括锋面对流系统的冷出流、地形的抬升以及海风锋造成的冷堆强迫抬升;后期冷出流边界与海风锋边界碰撞合并,加强了低层辐合促进了对流的发展,是飑线形成的主要原因。③飑线成熟时期地面存在中高压和尾流低压,高压后部为强烈的辐散区,风速较大;成熟时期内部存在两支气流,前向入流为低层暖湿气流在飑线前方流入并在对流云区被抬升,后向入流为中层干冷空气在飑线后方流入,在低层形成下沉运动,是地面大风形成的重要原因之一。  相似文献   

16.
Boundary-Layer Wind Structure in a Landfalling Tropical Cyclone   总被引:1,自引:0,他引:1  
In this study, a slab boundary layer model with a constant depth is used to analyze the boundary-layer wind structure in a landfalling tropical cyclone. Asymmetry is found in both the tangential and radial components of horizontal wind in the tropical cyclone boundary layer at landfall. For a steady tropical cyclone on a straight coastline at landfall, the magnitude of the radial component is greater in the offshoreflow side and the tangential component is greater over the sea, slightly offshore, therefore the greater total wind speed occurs in the offshore-flow side over the sea. The budget analysis suggests that: (1) a greater surface friction over land produces a greater inflow and the nonlinear effect advects the maximum inflow downstream, and (2) a smaller surface friction over the sea makes the decrease of the tangential wind component less than that over land. Moreover, the boundary layer wind structures in a tropical cyclone are related to the locations of the tropical cyclone relative to the coastline due to the different surface frictions. During tropical cyclone landfall, the impact of rough terrain on the cyclone increases, so the magnitude of the radial component of wind speed increases in the offshore-flow side and the tangential component outside the radius of maximum wind speed decreases gradually.  相似文献   

17.
A coupled, one-dimensional atmospheric-oceanic boundary layer model based on a single station assessment has been formulated from independent oceanic and atmospheric bulk boundary layer models. Sensitivity analyses are conducted to determine major differences in the responses of the coupled model compared to those of the separate oceanic and atmospheric models. The general behavior of the coupled model atmosphere is not significantly different from that of the atmospheric model over short term simulations (12–24 h). However, large differences may occur under certain limited conditions when winds are light and the lifting condensation level is close to the height of the inversion. Major differences between the predicted evolution of the ocean boundary layer by the ocean model and coupled model are more common, and the short term predictive ability of the ocean model in coupled form is enhanced.  相似文献   

18.
We present a case study of the generation of a cold filament rooted off the southwestern edge of the Strait of Gibraltar (Atlantic side) during the summer of 2000. The event is successfully simulated using high-resolution atmospheric and oceanic numerical models. It is shown that a sharp filament may develop oceanwards with little modification of the Atlantic inflow into the Mediterranean, contrary to usual expectations. The filament is essentially driven by the surface layer response to Gap winds occurring during Levanter conditions. The easterly wind funnelling in the Strait generates a strong wind jet and intense wind curl which impacts the oceanic surface layer through Ekman pumping and mixing processes. The generation and fate of the filament is very similar to the Gulf of Tehuantepec case, where strong Gap wind events produce asymmetric deformation and erosion of the thermocline that tends to favour anticyclonic mesoscale circulations. Our observations and model results from both realistic and idealized experiments suggest that similar phenomena are present in the Gulf of Cadiz, but they are altered by the persisting Atlantic inflow, so that the response to Gap winds is not as dramatic.  相似文献   

19.
Vertical wind shear fundamentally influences changes in tropical cyclone (TC) intensity. The effects of vertical wind shear on tropical cyclogenesis and evolution in the western North Pacific basin are not well understood. We present a new statistical study of all named TCs in this region during the period 2000-2006 using a second-generation partial least squares (PLS) regression technique. The results show that the lower-layer (between 850 hPa and 10 m above the sea surface) wind shear is more important than the commonly analyzed deep-layer shear (between 200 and 850 hPa) for changes in TC intensity during the TC intensification period. This relationship is particularly strong for westerly low-level shear. Downdrafts induced by the lower-layer shear bring low θ e air into the boundary layer from above, significantly reducing values of θ e in the TC inflow layer and weakening the TC. Large values of deep-layer shear over the ocean to the east of the Philippine Islands inhibit TC formation, while large values of lower-layer shear over the central and western North Pacific inhibit TC intensification. The critical value of deep-layer shear for TC formation is approximately 10 ms-1 , and the critical value of lower-layer shear for TC intensification is approximately ±1.5 ms-1 .  相似文献   

20.
The accurate forecasting of tropical cyclones(TCs) is a challenging task. The purpose of this study was to investigate the effects of a dry-mass conserving(DMC) hydrostatic global spectral dynamical core on TC simulation. Experiments were conducted with DMC and total(moist) mass conserving(TMC) dynamical cores. The TC forecast performance was first evaluated considering 20 TCs in the West Pacific region observed during the 2020 typhoon season. The impacts of the DMC dynamical core on forecasts o...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号