首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper compares data from linearized and nonlinear Zebiak–Cane model, as constrained by observed sea surface temperature anomaly(SSTA), in simulating central Pacific(CP) and eastern Pacific(EP) El Nio. The difference between the temperature advections(determined by subtracting those of the linearized model from those of the nonlinear model),referred to here as the nonlinearly induced temperature advection change(NTA), is analyzed. The results demonstrate that the NTA records warming in the central equatorial Pacific during CP El Nio and makes fewer contributions to the structural distinctions of the CP El Nio, whereas it records warming in the eastern equatorial Pacific during EP El Nio, and thus significantly promotes EP El Nio during El Nio–type selection. The NTA for CP and EP El Nio varies in its amplitude,and is smaller in CP El Nio than it is in EP El Nio. These results demonstrate that CP El Nio are weakly modulated by small intensities of NTA, and may be controlled by weak nonlinearity; whereas, EP El Nio are significantly enhanced by large amplitudes of NTA, and are therefore likely to be modulated by relatively strong nonlinearity. These data could explain why CP El Nio are weaker than EP El Nio. Because the NTA for CP and EP El Nio differs in spatial structures and intensities, as well as their roles within different El Nio modes, the diversity of El Nio may be closely related to changes in the nonlinear characteristics of the tropical Pacific.  相似文献   

2.
The relationships between the tropical Indian Ocean basin(IOB)/dipole(IOD) mode of SST anomalies(SSTAs) and ENSO phase transition during the following year are examined and compared in observations for the period 1958–2008.Both partial correlation analysis and composite analysis show that both the positive(negative) phase of the IOB and IOD(independent of each other) in the tropical Indian Ocean are possible contributors to the El Nio(La Nia) decay and phase transition to La Nia(El Nio) about one year later. However, the influence on ENSO transition induced by the IOB is stronger than that by the IOD. The SSTAs in the equatorial central-eastern Pacific in the coming year originate from subsurface temperature anomalies in the equatorial eastern Indian and western Pacific Ocean, induced by the IOB and IOD through eastward and upward propagation to meet the surface. During this process, however the contribution of the oceanic channel process between the tropical Indian and Pacific oceans is totally different for the IOB and IOD. For the IOD, the influence of the Indonesian Throughflow transport anomalies could propagate to the eastern Pacific to induce the ENSO transition. For the IOB, the impact of the oceanic channel stays and disappears in the western Pacific without propagation to the eastern Pacific.  相似文献   

3.
The atmospheric and oceanic conditions before the onset of EP El Ni?o and CP El Ni?o in nearly 30 years are compared and analyzed by using 850 hPa wind, 20℃ isotherm depth, sea surface temperature and the Wheeler and Hendon index. The results are as follows: In the western equatorial Pacific, the occurrence of the anomalously strong westerly winds of the EP El Ni?o is earlier than that of the CP El Ni?o. Its intensity is far stronger than that of the CP El Ni?o. Two months before the El Ni?o, the anomaly westerly winds of the EP El Ni?o have extended to the eastern Pacific region, while the westerly wind anomaly of the CP El Ni?o can only extend to the west of the dateline three months before the El Ni?o and later stay there. Unlike the EP El Ni?o, the CP El Ni?o is always associated with easterly wind anomaly in the eastern equatorial Pacific before its onset. The thermocline depth anomaly of the EP El Ni?o can significantly move eastward and deepen. In addition, we also find that the evolution of thermocline is ahead of the development of the sea surface temperature for the EP El Ni?o. The strong MJO activity of the EP El Ni?o in the western and central Pacific is earlier than that of the CP El Ni?o. Measured by the standard deviation of the zonal wind square, the intensity of MJO activity of the EP El Ni?o is significantly greater than that of the CP El Ni?o before the onset of El Ni?o.  相似文献   

4.
Fei ZHENG  Jin-Yi YU 《大气科学进展》2017,34(12):1395-1403
The tropical Pacific has begun to experience a new type of El Nio, which has occurred particularly frequently during the last decade, referred to as the central Pacific(CP) El Nio. Various coupled models with different degrees of complexity have been used to make real-time El Nio predictions, but high uncertainty still exists in their forecasts. It remains unknown as to how much of this uncertainty is specifically related to the new CP-type El Nio and how much is common to both this type and the conventional Eastern Pacific(EP)-type El Nio. In this study, the deterministic performance of an El Nio–Southern Oscillation(ENSO) ensemble prediction system is examined for the two types of El Nio. Ensemble hindcasts are run for the nine EP El Nio events and twelve CP El Nio events that have occurred since 1950. The results show that(1) the skill scores for the EP events are significantly better than those for the CP events, at all lead times;(2) the systematic forecast biases come mostly from the prediction of the CP events; and(3) the systematic error is characterized by an overly warm eastern Pacific during the spring season, indicating a stronger spring prediction barrier for the CP El Nio. Further improvements to coupled atmosphere–ocean models in terms of CP El Nio prediction should be recognized as a key and high-priority task for the climate prediction community.  相似文献   

5.
Based on observational and reanalysis data,the relationships between the eastern Pacific(EP)and central Pacific(CP)types of El Ni?o?Southern Oscillation(ENSO)during the developing summer and the South Asian summer monsoon(SASM)are examined.The roles of these two types of ENSO on the SASM experienced notable multidecadal modulation in the late 1970s.While the inverse relationship between the EP type of ENSO and the SASM has weakened dramatically,the CP type of ENSO plays a far more prominent role in producing anomalous Indian monsoon rainfall after the late 1970s.The drought-producing El Ni?o warming of both the EP and CP types can excite anomalous rising motion of the Walker circulation concentrated in the equatorial central Pacific around 160°W to the date line.Accordingly,compensatory subsidence anomalies are evident from the Maritime Continent to the Indian subcontinent,leading to suppressed convection and decreased precipitation over these regions.Moreover,anomalously less moisture flux into South Asia associated with developing EP El Ni?o and significant northwesterly anomalies dominating over southern India accompanied by developing CP El Ni?o,may also have been responsible for the Indian monsoon droughts during the pre-1979 and post-1979 sub-periods,respectively.El Ni?o events with the same“flavor”may not necessarily produce consistent Indian monsoon rainfall anomalies,while similar Indian monsoon droughts may be induced by different types of El Ni?o,implying high sensitivity of monsoonal precipitation to the detailed configuration of ENSO forcing imposed on the tropical Pacific.  相似文献   

6.
In recent decades, the typical El Nio events with the warmest SSTs in the tropical eastern Pacific have become less common, and a different of El Nio with the warmest SSTs in the central Pacific, which is flanked on the east and west by cooler SSTs, has become more fre-quent. The more recent type of El Nio was referred to as central Pacific El Nio, warm pool El Nio, or dateline El Nio, or the El Nio Modoki. Central Pacific El Nio links to a different tropical-to-extratropical teleconnection and exerts different impacts on climate, and several classification approaches have been proposed. In this study, a new classification approach is proposed, which is based on the linear combination (sum or difference) of the two leading Empirical Orthogonal Functions (EOFs) of tropical Pacific Ocean sea surface temperature anomaly (SSTA), and the typical El Ni o index (TENI) and the central El Nio index (CENI) are able to be derived by projecting the observed SSTA onto these combinations. This classification not only reflects the characteristics of non-orthogonality between the two types of events but also yields one period peaking at approximate two to seven years. In particular, this classification can distin-guish the different impacts of the two types of events on rainfall in the following summer in East China. The typical El Nio events tend to induce intensified rainfall in the Yangtze River valley, whereas the central Pacific El Nio tends to induce intensified rainfall in the Huaihe River valley. Thus, the present approach may be appropriate for studying the impact of different types of El Nio on the East Asian climate.  相似文献   

7.
正In recent decades, the typical El Nio events with the warmest SSTs in the tropical eastern Pacific have become less common, and a different of El Nio with the warmest SSTs in the central Pacific, which is flanked on the east and west by cooler SSTs, has become more fre-quent. The more recent type of El Nio was referred to as central Pacific El Nio, warm pool El Nio, or dateline El Nio, or the El Nio Modoki. Central Pacific El Nio links to a different tropical-to-extratropical teleconnection and exerts different impacts on climate, and several classification approaches have been proposed. In this study, a new classification approach is proposed, which is based on the linear combination (sum or difference) of the two leading Empirical Orthogonal Functions (EOFs) of tropical Pacific Ocean sea surface temperature anomaly (SSTA), and the typical El Ni o index (TENI) and the central El Nio index (CENI) are able to be derived by projecting the observed SSTA onto these combinations. This classification not only reflects the characteristics of non-orthogonality between the two types of events but also yields one period peaking at approximate two to seven years. In particular, this classification can distin-guish the different impacts of the two types of events on rainfall in the following summer in East China. The typical El Nio events tend to induce intensified rainfall in the Yangtze River valley, whereas the central Pacific El Nio tends to induce intensified rainfall in the Huaihe River valley. Thus, the present approach may be appropriate for studying the impact of different types of El Nio on the East Asian climate.  相似文献   

8.
The authors demonstrate that the El Ni o events in the pre-and post-1976 periods show two ampli-tude-duration relations. One is that the stronger El Ni o events have longer durations, which is robust for the moderate El Ni o events; the other is that the stronger El Ni o events have shorter durations but for strong El Nio events. By estimating the sign and amplitude of the nonlinear dynamical heating (NDH) anomalies, the authors illustrate that the NDH anomalies are negligible for moderate El Nio events but large for strong El Nio events. In particular, the large NDH anomalies for strong El Nio events are positive during the growth and mature phases, which favor warmer El Nio events. During the decay phase, however, the negative NDH anomalies start to arise and become increasingly significant with the evolution of the El Nio events, in which the negative NDH anomalies dampen the sea surface temperature anomalies (SSTA) and cause the El Nio events to reach the SST normal state earlier. This pattern suggests that the nonlinearity tends to increase the intensities of strong El Nio events and shorten their duration, which, together with the previous results showing a positive correlation between the strength of El Nio events and the significance of the effect of nonlinear advection on the events (especially the suppression of nonlinearity on the SSTA during the decay phase), shows that the strong El Nio events tend to have the amplitude-duration relation of the stronger El Nio events with shorter durations. This result also lends support to the assertion that moderate El Nio events possess the amplitude-duration relation of stronger El Nio events with longer durations.  相似文献   

9.
The authors demonstrate that the El Ni o events in the pre-and post-1976 periods show two ampli-tude-duration relations. One is that the stronger El Ni o events have longer durations, which is robust for the moderate El Ni o events; the other is that the stronger El Ni o events have shorter durations but for strong El Nio events. By estimating the sign and amplitude of the nonlinear dynamical heating (NDH) anomalies, the authors illustrate that the NDH anomalies are negligible for moderate El Nio events but large for strong El Nio events. In particular, the large NDH anomalies for strong El Nio events are positive during the growth and mature phases, which favor warmer El Nio events. During the decay phase, however, the negative NDH anomalies start to arise and become increasingly significant with the evolution of the El Nio events, in which the negative NDH anomalies dampen the sea surface temperature anomalies (SSTA) and cause the El Nio events to reach the SST normal state earlier. This pattern suggests that the nonlinearity tends to increase the intensities of strong El Nio events and shorten their duration, which, together with the previous results showing a positive correlation between the strength of El Nio events and the significance of the effect of nonlinear advection on the events (especially the suppression of nonlinearity on the SSTA during the decay phase), shows that the strong El Nio events tend to have the amplitude-duration relation of the stronger El Nio events with shorter durations. This result also lends support to the assertion that moderate El Nio events possess the amplitude-duration relation of stronger El Nio events with longer durations.  相似文献   

10.
The authors used an atmospheric general circulation model(AGCM) of European Centre Hamburg Model(ECHAM5.4) and investigated the possible impacts of eastern Pacific(EP) and central Pacific(CP) El Nio on the winter precipitation anomalies in South China.A composite analysis suggested much more rainfall during the mature phase of EP El Nio than in the case of CP El Nio,and their corresponding observed wet centers to be located in the southeast coast and the region to the south of the Yangtze River,respectively.Results obtained on the basis of model-sensitive run imply that the modelsimulated rainfall anomalies agree well with the observation,and the magnitude of simulated rainfall anomalies were found to be reduced when the amplitude of sea surface temperature anomaly(SSTA) forcing of EP and CP El Nio was cut down.These results imply that the rainfall anomaly in South China is very sensitive not only to the type of El Nio but also to its intensity.  相似文献   

11.
A comparison of sensitivity in extratropical circulation in the Northern Hemisphere(NH)and Southern Hemisphere(SH)is conducted through observational analyses and diagnostic linear model experiments for two types of El Nio events,the traditional El Nio with the strongest warmth in the eastern tropical Pacific(EP El Nio)and the El Nio Modoki with the strongest warmth in the central tropical Pacific(CP El Nio).It is shown that CP El Nio favors the occurrence of a negative-phase Northern Annular Mode(NAM),while EP El Nio favors that of the Pacific-North American(PNA)pattern.In SH,both EP and CP El Nio induce a negative phase Southern Annular Mode(SAM).However,the former has a greater amplitude,which is consistent with the stronger sea surface temperature(SST)warmth.The difference in the two types of El Nio events in NH may originate from the dependence of heating-induced extratropical response on the location of initial heating,which may be associated with activity of the stationary wave.In SH,the lack of sensitivity to the location of heating can be associated with weaker activity of the stationary wave therein.  相似文献   

12.
The role of the Indonesian Throughflow(ITF) in the influence of the Indian Ocean Dipole(IOD) on ENSO is investigated using version 2 of the Parallel Ocean Program(POP2) ocean general circulation model. We demonstrate the results through sensitivity experiments on both positive and negative IOD events from observations and coupled general circulation model simulations. By shutting down the atmospheric bridge while maintaining the tropical oceanic channel, the IOD forcing is shown to influence the ENSO event in the following year, and the role of the ITF is emphasized. During positive IOD events,negative sea surface height anomalies(SSHAs) occur in the eastern Indian Ocean, indicating the existence of upwelling.These upwelling anomalies pass through the Indonesian seas and enter the western tropical Pacific, resulting in cold anomalies there. These cold temperature anomalies further propagate to the eastern equatorial Pacific, and ultimately induce a La Nia-like mode in the following year. In contrast, during negative IOD events, positive SSHAs are established in the eastern Indian Ocean, leading to downwelling anomalies that can also propagate into the subsurface of the western Pacific Ocean and travel further eastward. These downwelling anomalies induce negative ITF transport anomalies, and an El Nio-like mode in the tropical eastern Pacific Ocean that persists into the following year. The effects of negative and positive IOD events on ENSO via the ITF are symmetric. Finally, we also estimate the contribution of IOD forcing in explaining the Pacific variability associated with ENSO via ITF.  相似文献   

13.
It has long been acknowledged that there are two types of El Nio events, i.e., the eastern Pacific El Nio (EE) and the central Pacific El Nio (CE), according to the initial position of the anomalous warm water and its propagation direction. In this paper, the oceanic and atmospheric evolutions and the possible mechanisms of the two types of El Nio events were examined. It is found that all the El Nio events, CE or EE, could be attributed to the joint impacts of the eastward advection of warm water from the western Pacific warm pool (WPWP) and the local warming in the equatorial eastern Pacific. Before the occurrence of CE events, WPWP had long been in a state of being anomalous warm, so the strength of eastward advection of warm water was much stronger than that of EE, which played a major role in the formation of CE. While for the EE events, most contribution came from the local warming of the equatorial eastern Pacific. It is further identified that the immediate cause leading to the difference of the two types of El Nio events was the asynchronous variations of the Southern Oscillation (SO) and the Northern Oscillation (NO) as defined by Chen in 1984. When the transition from the positive phase of the NO (NO+) to NO- was prior to that from SO+ to SO-, there would be eastward propagation of westerly anomalies from the tropical western Pacific induced by NO and hence the growth of warm sea surface temperature anomalies in WPWP and its eastward propagation. This was followed by lagged SO-induced weakening of southeast trade winds and local warming in the equatorial eastern Pacific. These were conducive to the occurrence of the CE. On the contrary, the transition from SO+ to SO- leading the transition of NO would favor the occurrence of EE type events.  相似文献   

14.
Decadal and interannual variability of the Indian Ocean Dipole   总被引:2,自引:1,他引:1  
This study investigates the decadal and interannual variability of the Indian Ocean Dipole (IOD). It is found that the long-term IOD index displays a decadal phase variation. Prior to 1920 negative phase dominates but after 1960 positive phase prevails. Under the warming background of the tropical ocean, a larger warming trend in the western Indian Ocean is responsible for the decadal phase variation of the IOD mode. Due to reduced latent heat loss from the local ocean, the western Indian Ocean warming may be caused by the weakened Indian Ocean westerly summer monsoon. The interannual air-sea coupled IOD mode varies on the background of its decadal variability. During the earlier period (1948-1969), IOD events are characterized by opposing SST anomaly (SSTA) in the western and eastern Indian Ocean, with a single vertical circulation above the equatorial Indian Ocean. But in the later period (1980-2003), with positive IOD dominating, most IOD events have a zonal gradient perturbation on a uniform positive SSTA. However, there are three exceptionally strong positive IOD events (1982, 1994, and 1997), with opposite SSTA in the western and eastern Indian Ocean, accompanied by an El Nifio event. Consequently, two anomalous reversed Walker cells are located separately over the Indian Ocean and western-eastern Pacific; the one over the Indian Ocean is much stronger than that during other positive IOD events.  相似文献   

15.
The relationship between summer rainfall anomalies in northeast China and two types of El Ni?o events is investigated by using observation data and an AGCM. It is shown that, for different types of El Ni?o events, there is different rainfall anomaly pattern in the following summer. In the following year of a typical El Ni?o event, there are remarkable positive rainfall anomalies in the central-western region of northeast China, whereas the pattern of more rainfall in the south end and less rainfall in the north end of northeast China easily appears in an El Ni?o Modoki event. The reason for the distinct differences is that, associated with the different sea surface temperature anomalies (SSTA) along the equatorial Pacific, the large-scale circulation anomalies along east coast of East Asia shift northward in the following summer of El Ni?o Modoki events. Influenced by the anomalous anticyclone in Philippine Sea, southwesterly anomalies over eastern China strengthens summer monsoon and bring more water vapor to Northeast China. Meanwhile, convergence and updraft is strengthened by the anomalous cyclone right in Northeast China in typical El Ni?o events. These moisture and atmospheric circulation conditions are favorable for enhanced precipitation. However, because of the northward shift, the anomalous anticyclone which is in Philippine Sea in typical El Ni?o cases shifts to the south of Japan in Modoki years, and the anomalous cyclone which is in the Northeast China in typical El Ni?o cases shifts to the north of Northeast China, leading to the “dipole pattern” of rainfall anomalies. According to the results of numerical experiments, we further conform that the tropical SSTA in different types of El Ni?o event can give rise to observed rainfall anomaly patterns in Northeast China.  相似文献   

16.
Based on multiple datasets, correlation and composite analyses, and case studies, this paper investigated possible influences of the Indian Ocean dipole (IOD) mode on the eastward propagation of intraseasonal oscillation in the tropical atmosphere. The results showed that (1) the 30-60 day outgoing longwave radiation anomalies in the southeastern Indian Ocean and the 30-60 day 850-hPa zonal wind anomalies over the equatorial central Indian Ocean were significantly correlated with the IOD index; (2) during positive IOD years, the anomalously cold water in the southeastern Indian Ocean and the 850-hPa anomalous easterlies over the equatorial central Indian Ocean might act as barriers to the continuously eastward propagation of the intraseasonal convection, which interrupts the Madden-Julian oscillation (MJO) propagation in the eastern equatorial Indian Ocean and western Pacific; and (3) during negative IOD years, the anomalously warm water in the southeastern Indian Ocean and the low-level westerly anomalies over the equatorial central Indian Ocean favor the eastward movement of MJO.  相似文献   

17.
Bin WANG  Juan LI  Qiong HE 《大气科学进展》2017,34(10):1235-1248
Severe flooding occurred in southern and northern China during the summer of 2016 when the 2015 super El Nio decayed to a normal condition. However, the mean precipitation during summer(June–July-August) 2016 does not show significant anomalies, suggesting that — over East Asia(EA) — seasonal mean anomalies have limited value in representing hydrological hazards. Scrutinizing season-evolving precipitation anomalies associated with 16 El Nio episodes during 1957–2016 reveals that, over EA, the spatiotemporal patterns among the four categories of El Nio events are quite variable, due to a large range of variability in the intensity and evolution of El Nio events and remarkable subseasonal migration of the rainfall anomalies. The only robust seasonal signal is the dry anomalies over central North China during the El Nio developing summer. Distinguishing strong and weak El Nio impacts is important. Only strong El Nio events can persistently enhance EA subtropical frontal precipitation from the peak season of El Nio to the ensuing summer, by stimulating intense interaction between the anomalous western Pacific anticyclone(WPAC) and underlying dipolar sea surface temperature anomalies in the Indo-Pacific warm pool, thereby maintaining the WPAC and leading to a prolonged El Nio impact on EA. A weak El Nio may also enhance the post-El Nio summer rainfall over EA, but through a different physical process: the WPAC re-emerges as a forced response to the rapid cooling in the eastern Pacific. The results suggest that the skillful prediction of rainfall over continental EA requires the accurate prediction of not only the strength and evolution of El Nio, but also the subseasonal migration of EA rainfall anomalies.  相似文献   

18.
El Nio events in the central equatorial Pacific (CP) are gaining increased attention,due to their increasing intensity within the global warming context.Various physical processes have been identified in the climate system that can be responsible for the modulation of El Nio,especially the effects of interannual salinity variability.In this work,a comprehensive data analysis is performed to illustrate the effects of interannual salinity variability using surface and subsurface salinity fields from the Met Office ENSEMBLES (EN3) quality controlled ocean dataset.It is demonstrated that during the developing phase of an El Nio event,a negative sea surface salinity (SSS) anomaly in the western-central basin acts to freshen the mixed layer (ML),decrease oceanic density in the upper ocean,and stabilize the upper layers.These related oceanic processes tend to reduce the vertical mixing and entrainment of subsurface water at the base of the ML,which further enhances the warm sea surface temperature (SST) anomalies associated with the El Nio event.However,the effects of interannually variable salinity are much more significant during the CP-El Nio than during the eastern Pacific (EP) El Nio,indicating that the salinity effect might be an important contributor to the development of CP-El Nio events.  相似文献   

19.
El Nio events in the central equatorial Pacific (CP) are gaining increased attention,due to their increasing intensity within the global warming context.Various physical processes have been identified in the climate system that can be responsible for the modulation of El Nio,especially the effects of interannual salinity variability.In this work,a comprehensive data analysis is performed to illustrate the effects of interannual salinity variability using surface and subsurface salinity fields from the Met Office ENSEMBLES (EN3) quality controlled ocean dataset.It is demonstrated that during the developing phase of an El Nio event,a negative sea surface salinity (SSS) anomaly in the western-central basin acts to freshen the mixed layer (ML),decrease oceanic density in the upper ocean,and stabilize the upper layers.These related oceanic processes tend to reduce the vertical mixing and entrainment of subsurface water at the base of the ML,which further enhances the warm sea surface temperature (SST) anomalies associated with the El Nio event.However,the effects of interannually variable salinity are much more significant during the CP-El Nio than during the eastern Pacific (EP) El Nio,indicating that the salinity effect might be an important contributor to the development of CP-El Nio events.  相似文献   

20.
The relationships between ENSO and the East Asian-western North Pacific monsoon simulated by the Flexible Global Ocean-Atmosphere-Land System model, Spectral Version 2 (FGOALS-s2), a state-of-the-art coupled general circulation model (CGCM), are evaluated. For El Nio developing summers, FGOALS-s2 reproduces the anomalous cyclone over the western North Pacific (WNP) and associated negative precipitation anomalies in situ. In the observation, the anomalous cyclone is transformed to an anomalous anticyclone over the WNP (WNPAC) during El Nio mature winters. The model reproduces the WNPAC and associated positive precipitation anomalies over southeastern China during winter. However, the model fails to simulate the asymmetry of the wintertime circulation anomalies over the WNP between El Nio and La Nia. The simulated anomalous cyclone over the WNP (WNPC) associated with La Nia is generally symmetric about the WNPAC associated with El Nio, rather than shifted westward as that in the observation. The discrepancy can partially explain why simulated La Nin a events decay much faster than observed. In the observation, the WNPAC maintains throughout the El Nio decaying summer under the combined effects of local forcing of the WNP cold sea surface temperature anomaly (SSTA) and remote forcing from basinwide warming in the tropical Indian Ocean. FGOALS-s2 captures the two mechanisms and reproduces the WNPAC throughout the summer. However, owing to biases in the mean state, the precipitation anomalies over East Asia, especially those of the Meiyu rain belt, are much weaker than that in the observation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号