首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
结合台站元数据,对京津冀地区179个国家气象站1951—2015年的日平均风速序列进行了非均一性检验和均一化订正,结果表明:造成序列非均一性的原因,按贡献大小依次是仪器切换占40%、站址迁移占34%、观测时制变更占18%、台站周围环境变化占8%。对比分析均一化序列和原始序列的线性趋势发现:1951—2015年,京津冀地区日平均风速呈下降趋势,均一化序列的下降速率明显更快;二者有相似的空间分布特征, 即河北西北部、北京、天津、河北东南部的西北—东南走向的带状区域中,风速的下降速率最快,河北西部次快,河北东北部最缓慢;均一化序列的下降速率明显偏快的区域主要在39°N以北。均一化序列准确反映了气候变化的特点,数据可靠。  相似文献   

2.
中国东部地区城市化对气温影响的观测分析   总被引:7,自引:2,他引:5  
现有场地观测表明,城市化对于气温的影响在静风、无云条件下的晚上最明显,而在大风、多云条件下的晚上最小.本文采用一套经过均一化处理的中国地区逐日平均、最高以及最低气温序列资料集,分析了中国东部地区在不同风速、云量条件下地面气温变化的趋势.结果表明,从1960-2008年,中国东部地区(20~45° N,110~125° ...  相似文献   

3.
基于序列均一性多元分析(MASH)和Climatol均一化方法,对1960—2021年中国573个气象站逐月蒸发皿蒸发量(PE)观测数据进行非均一化检验与订正,通过对比两种方法检测到的非均一性台站数、断点数、订正幅度等,定量评估均一化结果的不确定性。基于等权重集合均一化逐月蒸发皿蒸发量序列数据集揭示了近60年中国年、季节蒸发皿蒸发量的时、空演变特征。结果表明:MASH和Climatol均能有效检测出逐月序列中的非均一性断点,前者检测到的非均一性台站数较少、断点数较多但订正幅度较小。集合均一化序列表明:1960—2021年中国平均的冬、秋季蒸发皿蒸发量增大速率分别为0.27和1.10 mm/(10 a),春、夏季和全年的下降速率分别为8.38、9.83和16.83 mm/(10 a)。订正后蒸发皿蒸发量在春、夏季和全年大部分观测站呈下降趋势,分别占81.7%、80.8%和80.3%,冬、秋季多呈上升趋势,分别占57.1%和60.4%。冬季在东北、青藏高原东部、华南、西南(云南除外)地区呈上升趋势;春季除华东沿海、陕西南部、川渝北部及湖北西部等地区外,其他大部分地区均呈下降趋势;夏季大部分...  相似文献   

4.
基于国家气象信息中心收集整理的保定气象站1919年以来逐日最高和最低气温观测数据,首先,通过数据质量控制剔除原始观测资料中因人工观测或记录、仪器故障及数字化人工录入等导致的错误数据;其次,基于天津百年均一化逐日气温数据,利用标准化序列法对质控后的原始观测数据进行延长插补;进而通过两种途径建立的年和月尺度参考序列,利用惩罚最大t检验(Penalized Maximal T,PMT)和分位数匹配法(Quantile-Matching,QM),修正了插补后保定气象站日最高和最低气温序列中因数据插补、迁站和仪器变更等造成的非均一性影响,由此建立了河北保定1912—2019年均一化最高和最低气温日值序列。分析表明,构建的年平均气温距平序列百年尺度的年代际和趋势变化特点与Berkeley Earth-monthly、CRUTS4.03和GHCNV3基本一致,并且与整个京津冀区域相比,很好地反映出保定地区城市快速发展所带来的增暖变化特点。另外,从百年极端温度变化来看,保定地区1912年以来年和季节极端温度也是呈明显的增暖变化,年和秋季极端最低气温(TNn)的增暖趋势分别为0.340 ℃/(10 a) 、0.404 ℃/(10 a),对应的气温日较差(DTR)分别为-0.118 ℃/(10 a)、-0.215 ℃/(10 a)(均通过置信度为95%显著性检验)。  相似文献   

5.
利用全国664站1961—2012年逐日霾观测资料、降水量、平均风速和最大风速资料,分析中国霾日数变化特征及其气候成因。结果表明:我国年霾日数分布呈明显东多西少特征,中东部大部地区年霾日数在5~30 d,部分地区超过30 d,西部地区基本在5 d以下。霾日数主要集中在冬半年,冬季最多,秋季和春季次之,夏季最少,12月是霾日数最多的月份,约占全年霾日数的2成。我国中东部地区冬半年平均霾日数呈显著的增加趋势(1.7 d/10a),霾日数显著增加时段主要在1960年代、1970年代和21世纪初,在1970年代初和21世纪初发生了明显均值突变。从区域分布来看,华南、长江中下游、华北等地霾日数呈增加趋势,而东北、西北东部、西南东部霾日数呈减少趋势。持续性霾过程增加,持续时间越长的霾过程比持续时间短的霾过程增加更为明显。不利的气候条件加剧了霾的出现。霾日数与降水日数在中东部地区基本以负相关为主,中东部冬半年降水日数呈减少趋势(-4 d/10a),表明降水日数的减少导致大气对污染物的沉降能力减弱。另一方面,霾日数与平均风速和大风日数以负相关为主,而与静风日数则以正相关为主,冬半年平均风速和大风日数减小,静风日数增加,表明风速减小导致空气中污染物不易扩散,从而更易形成霾天气。  相似文献   

6.
为了较好地开展风能资源的详查与综合评价工作,对新疆风区有自记风记录的4个参照站2min与10min时距的风速统计序列在参考测站“元数据”直接进行迁站前后一致性订正、时次一致性检验与订正、高度一致性订正以及观测、测量系统一致性订正基础上,采用SNTH、POTTER、CUSUM等手段进行了客观的非均一性检验与均一化订正。结果表明:(1)对于达坂城与阿拉山口站而言,EL型感应仪使用期,2min与10min时距年平均风速序列并未因风的观测与记录系统由EN型测风处理仪替代而间断。EN型测风处理仪使用期,10min时距平均风速序列也并未因感应仪的变更而间断。(2)达坂城、哈巴河、托克逊站2min时距统计序列均在1980s年代存在间断现象;(3)阿拉山口、达坂城、哈巴河站2min时距统计序列在2005年观测系统改变前后的间断具有一定不确定性;(4)EL-J电接式自记仪使用期,哈巴河气象站10min时距平均风速统计序列在1992年前后出现了有别于2min时距统计序列的间断现象;(5)阿拉山口、哈巴河、托克逊参照气象站的年平均风速序列经客观均一化订正后,仍然存在显著的减小趋势。  相似文献   

7.
李亚丽  任芝花  陈高峰  夏巧利  贺音  余鹏 《气象》2015,41(8):1007-1016
利用143个国家基准站2002—2010年自动与人工逐日平行观测资料进行对比分析,评估自动观测与人工观测气温的差异,着重分析两者存在的较大差异及其发生原因,并利用惩罚最大t检验(PMT)方法结合台站元数据中自动观测仪器变化信息,客观评价自动观测对气温序列均一性的影响。结果表明:(1) 51.29%、54.14%、67.18%的自动观测日平均、日最高、日最低气温大于人工观测值,差值在±0.2℃之间的百分率分别为78.8%、63.1%、60.9%,平均对比差值分别为0.05、0.09、0.15℃,标准差为0.14、0.22和0.15℃,各气温要素的差值、绝对差值和标准差随自动观测时间的增长并无明显的增大或减小的趋势,且空间分布各有不同;(2)通过对对比差值、绝对差值、标准差的分类比较、逐步筛选发现,少数台站自动与人工观测值差异较大,对于采集自同一传感器的不同气温要素,平均、最高、最低气温的差值表现也不尽一致。经PMT检验,在平均气温、最高气温和最低气温的绝对差值最大的20个站中分别有35%的台站的月平均气温序列、35%的台站的月平均最高气温序列和25%的台站的月平均最低气温序列由于自动观测仪器变化引起序列的非均一;(3) 分析认为:温度传感器检定更换而导致的仪器示值误差变化会造成自动与人工观测对比差值跳变,而温度传感器或数据采集器等电子元器件的零点漂移会导致自动观测气温严重偏离人工观测值,这两种因素会导致自动与人工观测气温差异偏大,也是自动观测仪器变化导致气温序列产生非均一断点的可能原因。建议加强自动观测数据的监测与质量控制,增加观测仪器检定示值误差订正,并采取硬件、软件补偿等方法,实现温度零点补偿,尽可能地减小或消除仪器误差,提高自动观测资料的准确性。  相似文献   

8.
选用河北省143个气象台站1975-2004年10 m高年平均风速资料,以及1990年和2000年人口普查资料,根据人口增长、台站迁移、仪器高度变化、台站微观环境变化等影响地面风速变化的台站历史信息,把所有气象台站分为4类,并分别对其进行比较分析.结果表明:河北省绝大多数台站风速变化呈减小趋势;城市化进程、台站观测环境等因素均在不同程度上对地面平均风速变化趋势产生了影响,其中台站所在城镇城市化程度是风速减小趋势不可忽略的原因,其影响程度约在1/4左右;台站观测环境因素中观测场附近微观环境变化对风速减小趋势具有重要影响,超过了区域背景风速减小趋势.台站观测环境因素对风速资料序列均一性的影响也不容忽视,至少有1/3的平均风速序列非均一性断点是由观测环境变化产生的.  相似文献   

9.
利用1960—2009年北京地区20个气象台站的观测资料,分析了北京城区和郊区蒸发皿蒸发量的季节和年际变化趋势和特点,并探讨了城市化对北京地区局地气候的影响。结果表明:近50 a北京地区蒸发量有明显减小趋势,城区和郊区变化趋势分别为-88.1 mm/10a和-76.0 mm/10a。受城市化影响,北京城区蒸发量的变化主要与降水、日照时数、最低气温、气温日较差和平均风速的变化有关;郊区蒸发量的变化主要受相对湿度、日照时数、平均风速和空气饱和差的变化影响。总体而言,相对湿度、日照时数、最低气温、气温日较差和平均风速的变化对北京地区蒸发量的变化有显著影响。  相似文献   

10.
采用最大惩罚T检验(Penalized Maximum T Test,PMT)方法,结合海洋台站元数据信息,选取临近气象站做为参考站,对中国南海9个海洋观测台站月平均SST资料序列进行均一性检验,在充分考虑区域性气候变化因素的影响下,对检验结果进行气候合理性分析并对不连续点进行订正。结果表明:(1)通过多种数据的相关性比较和分析发现,临近气象站的气温资料序列是南海台站SST资料订正最优的参考序列;(2)平均每个海洋台站SST资料序列存在1~2个不连续点,其中站址变迁、仪器变更和环境变化对均一性的影响较大;(3)订正后的南海SST序列质量有大幅提高,表明南海SST具有更明显的增暖趋势。   相似文献   

11.
城市化对石家庄站近地面风速趋势的影响   总被引:1,自引:0,他引:1  
利用1972—2012年石家庄城市站和4个乡村站地面风速资料,采用城乡对比方法,对石家庄城市站地面风速序列中的城市化影响进行分析,结果表明,石家庄站年和季节平均地面风速和平均10 min最大风速的长期下降趋势,主要是由城市化因素引起。具体结论如下:(1)石家庄站年和四季平均风速、平均10 min最大风速和大风日数均呈极显著的减少趋势,年平均减少速率分别为-0.15 (m/s)/10a、-1.05 (m/s)/10a和-2.90 d/10a;乡村站年平均风速呈微弱下降趋势,年平均10 min最大风速减少较为明显,年大风日数减少趋势非常显著,减少速率分别为-0.02 (m/s)/10a、-0.21 (m/s)/10a和-2.19 d/10a。(2)石家庄站年平均风速下降趋势中的城市化影响为-0.13 (m/s)/10a,城市化影响非常显著,城市化贡献率达到86.0%。该站春、夏、秋、冬季平均风速变化的城市化影响分别为-0.16 (m/s)/10a、-0.10 (m/s)/10a、-0.13 (m/s)/10a和-0.15 (m/s)/10a,城市化贡献率分别为82.8%、87.6%、88.6%和85.4%。(3)石家庄站年平均10 min最大风速变化趋势中的城市化影响为-0.84 (m/s)/10a,城市化贡献率为79.7%;春、夏、秋、冬季平均10 min最大风速变化趋势中的城市化影响分别为-0.94 (m/s)/10a、-0.80 (m/s)/10a、-0.60 (m/s)/10a和-1.01 (m/s)/10a,城市化贡献率分别达到90.4%、78.6%、64.9%和79.1%。(4)城市化对石家庄站年大风日数减少的影响不显著,但冬季大风日数减少仍明显与城市化过程有关。  相似文献   

12.
三江源地区近50年降水变化分析   总被引:26,自引:1,他引:26  
利用西北及三江源(黄河、金沙江及澜沧江)地区122个气象观测台站1956—2004年近50年的逐日降水量及月总降水量资料,分析了三江源地区降水变化特征。结果表明:近50年来三江源地区的年降水量呈减少趋势,减少幅度为6.73mm/10a;降水日数的趋势变化呈较为明显的减少趋势,递减率为2.7d/10a;平均降水强度总体呈弱的增强趋势,增强速率平均为0.20mm/d/10a,增强幅度比中国西北地区平均水平强;从4~9月最长无降水日数趋于增长反映出西北地区干旱化的趋势。  相似文献   

13.
1981—2010年西藏怒江流域潜在蒸发量的时空变化   总被引:1,自引:0,他引:1  
利用1981—2010年怒江流域9个站月平均最高气温、最低气温、降水量、风速、相对湿度、日照时数等资料,应用Penman-Monteith模型,采用气候倾向率、R/S等方法分析了潜在蒸发量变化的趋势性和持续性,并探讨了影响潜在蒸发量的气象因子。结果表明:近30年怒江流域四季潜在蒸发量趋于减少,年潜在蒸发量以18.4 mm?(10a)-1的速率显著减少。夏、秋、冬季和年潜在蒸发量具有持续性,未来将持续减少,尤其是冬季。在年代际尺度上,四季潜在蒸发量1980年代为正距平,1990和2000年代均为负距平。风速减小是四季潜在蒸发量减少的主要因素,不过春季潜在蒸发量的减少与降水量的显著增加也有关,且夏季气温日较差的显著变小对潜在蒸发量减少的作用不可忽视。  相似文献   

14.
为深入了解气象探测环境对气温观测数据的影响,利用2017年北京市观象台(54511)与南海子站(A1274)逐小时地面气象要素数据,分析两站气温差异以及因站点探测环境导致的日照、风速和降水对两站气温差异的影响。结果表明:2017年两站气温差异较明显,年平均气温54511站比A1274站高0.75℃;两站逐月平均气温54511站全年高于A1274站,两站差值7月最低为0.60℃,9月最高为1.09℃;两站平均日最高气温较接近,平均日最低气温差异较大,54511站较A1274站高1.24℃;两站气温的日变化特征相似,呈单峰分布,54511站气温日较差低于A1274站。两站小时气温差值随着日照时长和强度的增加而增加,短波辐射效应最强的10-14时和长波辐射效应最强的19-23时两站气温差值与当日白天直接辐射曝辐量的相关系数分别为0.459和0.601;水平风速对两站气温差值的影响较大。水平风速超过5 m·s-1时,两站气温差小于0.1℃;当水平风速不超过1 m·s-1时,两站观测气温差值达到1.28℃;降水天气下两站的气温差值小于非降水天气,出现降水时次54511站平均气温仅比A1274站高0.2℃。两站相距4.3 km,气候均一,测站周边2 km范围内建设用地占比54511站比A1274站高约30%,植被占比低28%,水体占比相差不大。另外,54511站附近的五环路具有低反射率和高热容的特征,白天能够吸收太阳辐射储存较多的热量,这些热量在夜间释放,可能是两站探测环境对太阳辐射吸收的差异决定了两站温差受太阳辐射和风速的影响较大,而受降水影响较小。  相似文献   

15.
Daily observations of wind speed at 12 stations in the Greater Beijing Area during 1960–2008 were homogenized using the Multiple Analysis of Series for Homogenization method. The linear trends in the regional mean annual and seasonal (winter, spring, summer and autumn) wind speed series were-0.26,-0.39,-0.30,-0.12 and-0.22 m s-1 (10 yr)-1 , respectively. Winter showed the greatest magnitude in declining wind speed, followed by spring, autumn and summer. The annual and seasonal frequencies of wind speed extremes (days) also decreased, more prominently for winter than for the other seasons. The declining trends in wind speed and extremes were formed mainly by some rapid declines during the 1970s and 1980s. The maximum declining trend in wind speed occurred at Chaoyang (CY), a station within the central business district (CBD) of Beijing with the highest level of urbanization. The declining trends were in general smaller in magnitude away from the city center, except for the winter case in which the maximum declining trend shifted northeastward to rural Miyun (MY). The influence of urbanization on the annual wind speed was estimated to be about-0.05 m s-1 (10 yr)-1 during 1960–2008, accounting for around one fifth of the regional mean declining trend. The annual and seasonal geostrophic wind speeds around Beijing, based on daily mean sea level pressure (MSLP) from the ERA-40 reanalysis dataset, also exhibited decreasing trends, coincident with the results from site observations. A comparative analysis of the MSLP fields between 1966–1975 and 1992–2001 suggested that the influences of both the winter and summer monsoons on Beijing were weaker in the more recent of the two decades. It is suggested that the bulk of wind in Beijing is influenced considerably by urbanization, while changes in strong winds or wind speed extremes are prone to large-scale climate change in the region.  相似文献   

16.
选取2016年1月至2018年12月ECMWF(简称EC)细网格10 m风资料,与大连地区8个国家气象观测站地面各类实况风速资料进行对比分析,得出EC 10 m风速预报与最大风速最为接近,与极大风速相关性最好,EC 10 m风速对大连地区8站整体预报平均偏大。通过对EC 10 m风速各预报时限资料与其对应的最大风速误差进行统计分析。结果表明:按实况分类,从风速平均误差来看,实况3级与预报最接近,小于3级时预报偏大,大于3级时预报偏小,各风向间的风速误差也比较明显,但比风级间的误差要小一些;平均绝对误差则是2—3级最小。各时限风速平均误差相差不大,基本在0.1—0.3 m·s-1间,平均绝对误差则随时限延长呈缓慢增大趋势。风速误差具有明显的日变化,表现出白天小、夜间大、午后最小、下半夜最大的特征。风速误差也因测站不同,在不同风级和风向的反应也各不相同。  相似文献   

17.
青藏高原是全球变化研究的热点区域,气候模式模拟是研究该区域气候变化的重要数据来源。本文使用基于中国地面台站的插值格点数据集(CN05.1),对国际气候耦合模式第5次比较计划(CMIP5)及其高分辨率统计降尺度数据集(NEX-GDDP)中15个模式1966-2005年间的逐日最高/最低气温、降水和平均风速在青藏高原区域的模拟能力进行了评估。使用多领域间影响模型比较计划(ISI-MIP)的偏差校正方法对上述数据进行了训练和验证,并对未来时期模式数据进行了校正。研究表明:(1)训练时期(1986-2005年),NEX-GDDP高估了日最高气温(1.04℃)和日最低气温(0.23℃),低估了日降水量(-0.11 mm),CMIP5低估了日平均风速(-0.11 m·s-1)。年/季平均值/总量和极端值存在较大偏差。(2)校正后,验证时期(1966-1985年)各变量逐日数据的相关系数提高(除气温外),均方根误差下降,平均偏差幅度减小。各变量的年/季平均值/总量和极端值的偏差大幅减小。(3)对于未来时期(2006-2095年),校正过程保留了原有数据年/季平均值/总量和极端值的变化趋势,调整了各要素平均值/总量和极端值的基准值和空间分布特征,以更准确地衔接历史时期的规律,可为该地区未来气候变化及其影响研究提供重要参考。  相似文献   

18.
1951~2010年云贵高原大理和丽江气温、降水的气候特征分析   总被引:2,自引:0,他引:2  
利用大理和丽江气象站1951~2010年的逐日气象资料,分析了横断山脉东部气温、降水的气候特征。结果表明,1991年以后,大理和丽江地区均存在显著增温的趋势(0.58和0.55℃/10 a),明显高于同时期中国平均气温的增加幅度;而在1991年之前,大理和丽江的年平均气温呈现下降或微弱上升的趋势(-0.14和0.07℃/10 a)。与夏季平均气温的增温幅度相比,冬季平均气温的增温更显著,且其变化趋势与年均气温的气候特征是一致的。大理和丽江年总降水及各季节降水量在1951~2010年并没有明显增加或减少的趋势。大理和丽江雨季开始的时间分别为第28候和第30候,持续时间分别约为5.5和4.5个月。20世纪80年代以后,丽江年平均风速的减小强度明显大于大理,这是因为丽江站地处城区,城市化剧烈,地表粗糙度增加显著。日照时数与云量呈反相的季节变化,降水量的多年平均的逐候变化与日照时数、总云量、尤其是低云云量相关,随风速增大而减小。  相似文献   

19.
新疆气象站年均风速均一化订正与基本风压估算初探   总被引:1,自引:1,他引:0  
为了较好地开展风能资源的详查与综合评价工作,根据新疆各风区挑选的参照站历史风况资料序列特点,在参考测站历史"元数据"直接进行非均一性检验与一致性订正基础上,对其中4个长期无自记风记录参照站采用标准正态均一性检验、Potter检验、平行累计和等客观方法对1970~2009年的年平均风速序列进行了非均一性检验与均一化订正,同时对测站无自记风时期年最大风速序列的时距换算进行了初步探索。结果表明:1)布尔津、淖毛湖、红柳河站的年平均风速存在因测站环境改变或其它不明原因而使序列间断的现象。从年平均风速序列SNHT非均一性订正结果以及测站四周建筑群体的发展规模看,布尔津测站受测站环境变化等不明原因的影响程度最大,三度间断,累积订正量平均达0.9m.s-1左右。淖毛湖站两度间断,其中1次与近距迁站而又未进行迁站订正有关,订正量约为0.1~0.2m.s-1。红柳河站的1次间断,也与未进行迁站订正有关,订正量约为0.1~0.2m.s-1。2)在构建测站无自记风时期历年最大风速序列的时距时次经验公式中,十三间房站适于西北统一经验公式,其余3站适于在一定阈值风速条件下,根据有自记风时期2min时距平均风速与10min时距最大风速的相关比值系数进行订正。  相似文献   

20.
自动观测与人工观测差异的初步分析   总被引:12,自引:3,他引:12       下载免费PDF全文
利用2001—2005年我国700个地面自动气象站与人工平行观测期间的数据, 对自动与人工观测的气温、气压、相对湿度、地表温度、风速风向、降水量进行了差异分析, 统计了两种观测之间的对比差值、百分误差和风向相符率。 对各要素观测差异在全国的分布特点进行了分析, 并检验了气温自动观测对气温资料连续性的可能影响。 结果表明:自动观测与人工观测各气象要素均存在一定的差异, 但大部分地区各要素的差异都在自动站误差允许范围之内; 造成差异的原因是多方面的, 包括仪器本身存在缺陷及观测方法不一致等。各要素自动观测与人工观测差异在全国的分布特点各不相同, 同一要素在不同的气候背景条件下差异大小不一致; 如果要将人工观测数据与自动观测数据连续使用, 还要检验自动观测与人工观测序列是否有显著性差异, 并进行均一性订正。 自动站的使用对年气温序列有一定影响, 总体差异不显著, 但当自动观测与人工观测气温合并使用时, 应进行均一性检验。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号