首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 135 毫秒
1.
利用2016~2017年科尔沁边界层风廓线雷达每6min的风场资料评估雷达探测性能,主要针对风廓线雷达数据获取率、风廓线雷达与常规探空探测风的相关性等进行了分析。结果表明:风廓线雷达平均数据获取率随高度的增加先增大后减小,3000米以下平均数据获取率都在60%以上。雷达探测数据存在日出后数据缺测率高,午后缺测率低的变化趋势。各层数据获取率与气温和比湿的相关系数分别在0.45和0.35左右。对比风廓线与常规高空探测数据发现:二者v分量的相关系数大于u分量;各高度层中400米到1900米的u分量的相关系数在0.4以上,500米到3400米的v分量的相关系数都在0.6以上;风廓线雷达与常规探空数据u分量相关系数随风速的增大时而减小,从春季到冬季u、v分量相关系数都呈减小趋势。各个季节中风廓线雷达与常规探空数据风速平均偏差春季最小、冬季最大。  相似文献   

2.
风廓线雷达与天气雷达风廓线数据的融合及应用   总被引:2,自引:1,他引:1  
阮征  高祝宇  李丰  葛润生 《气象》2017,43(10):1213-1223
风廓线雷达与多普勒天气雷达风廓线产品均可以获取高时间分辨率的高空风信息,但两种遥感测风的探测原理及时空代表性不同。在对风廓线雷达进行质量控制处理、剔除降水粒子空间不均匀分布对数据可信度影响之后,根据风廓线雷达与天气雷达风廓线数据探测原理差异,进行不同时间代表性的风廓线数据的空间匹配试验,确定与天气雷达风廓线数据进行融合的风廓线雷达数据最优时间分辨率,结果为1 h。利用2015年7月北京南郊观象台的探空、风廓线雷达、天气雷达测风数据进行三种高空风的一致性比对,结果表明三种测风数据具有较好的一致性,均方根误差分别为2.3和2.5 m·s~(-1);60、30以及6 min不同时间代表性风廓线雷达数据与天气雷达风廓线数据之间的均方根误差分别为2.6、2.8及3.1 m·s~(-1),60 min数据的融合效果最佳,低空尤其明显。利用广东省2014年5月的风廓线雷达观测网以及天气雷达网风廓线数据进行了高空风场的融合分析试验,融合分析场提供了更为丰富的高空中尺度水平风场信息,低空的涡旋更加明显。  相似文献   

3.
风廓线雷达基于均匀风场假定条件计算水平风,在不考虑雷达系统测量误差的情况下,探测波束内风的不均匀性是影响雷达数据质量的主要因素。通过5波束风廓线雷达计算出两组独立的水平风分量Ue、Uw和Vn、Vs,利用旋转坐标系方法将风的水平速度不均匀分布和垂直速度水平不均匀分布对雷达测风的影响进行分离,对北京延庆CFL-08风廓线雷达2012年全年数据进行时间一致性平均质控处理,针对一小时分辨率数据分析了两种不均匀对测风数据质量的影响程度。结果表明:(1) 雷达波束空间内的水平不均匀和垂直不均匀对水平风测风数据的质量均有影响,影响程度与风速大小有关;(2) 晴空条件下垂直速度较小,水平不均匀是影响测风质量的主要因子,水平不均匀与垂直不均匀对测风质量影响比约为2:1;(3) 降水期间水平不均匀和垂直不均匀程度均大于晴空,二者对测风质量影响比约为1:1。本文分别分析了晴空和降水情况下风的空间不均匀分布对测风质量影响的可能原因,是改进水平风数据质量算法的预研究。  相似文献   

4.
《气象》2021,(5)
面向中国第一代全球大气/陆面再分析产品(CRA)的应用需求,针对中国风廓线雷达小时产品资料特点,在美国NCEP风廓线综合质量控制方法的基础上,提出一套适用于中国风廓线雷达逐小时水平风产品的质量控制方法。通过对比质量控制前后风廓线雷达资料与探空资料的相关系数、平均偏差及均方根误差,证明了质量控制方案的有效性。以ERA-Interim资料作为间接参考场,通过比较探空资料与不同型号、不同探测高度范围、不同观测时段、不同垂直层次风廓线雷达资料相对ERA-Interim再分析资料的偏差,分析了质量控制前后中国风廓线雷达资料的整体质量。结果表明,经该算法质量控制后,风廓线雷达与探空风场表现出了更好的一致性。不同雷达型号、不同探测高度资料的相关系数从0.17~0.82上升至0.79~0.98。在相对ERA-Interim与探空资料的偏差方面,质量控制后,除边界层风廓线雷达的u风分量在300 hPa以上仍有5 m·s~(-1)左右的偏差外,其他型号雷达的u、v风分量在各垂直层的平均偏差均在3m·s~(-1)以内,证明质量控制算法具有识别高层粗大误差数据的能力,能够使最大探测高度以上的数据得到有效利用。  相似文献   

5.
风廓线雷达自身对比精度分析   总被引:1,自引:0,他引:1  
吴蕾  陈洪滨  康雪 《气象科技》2014,42(1):38-41
利用GLC-24型风廓线雷达的5波束观测数据,分析了在晴空和降水条件下风廓线雷达探测的准确性,得出结论如下:在晴空条件下大气均匀稳定、垂直速度很小,风廓线雷达测量水平风的准确性高;在均匀性降水条件下,虽然垂直速度很大,但大气在风廓线雷达5波束探测的水平范围内均匀,风廓线雷达测量水平风的准确性也较好;在非均匀性降水条件下,大气在风廓线雷达探测的水平范围内不均匀,不符合风廓线雷达计算水平风的假设条件,需要进一步改进算法,减少计算误差。  相似文献   

6.
风廓线雷达与L波段雷达探空测风对比分析   总被引:4,自引:0,他引:4  
吴蕾  陈洪滨  康雪 《气象科技》2014,42(2):225-230
为了解风廓线雷达探测的准确性,对北京南郊大气探测试验基地2006-2008年3年的观测资料与常规高空探测资料即L波段雷达探空测风数据进行了对比,计算并分析了不同高度、不同时次、不同风速条件下的对比结果,进行了相关性分析,计算了平均差和标准差。结果表明,二者测风结果有较好的一致性,半小时平均水平风u、v分量的标准差在2.3m/s左右,为风廓线雷达和L波段雷达探空共同的测量误差及不同采样空间和时间的水平风的差异。  相似文献   

7.
风廓线雷达测风精度评估   总被引:7,自引:3,他引:4       下载免费PDF全文
采用风廓线雷达5波束探测模式的数据对测风精度进行评估分析,用垂直波束和其中两个相邻倾斜波束的探测数据构成一对计算因子,通过对同一距离高度上的4对计算因子进行误差分析,评估风廓线雷达的测风精度,得到水平风在垂直指向连续高度上的精度。对北京延庆CFL-08风廓线雷达2010年3,6,9,12月4个典型代表月份逐日连续探测资料进行了处理分析,结果表明:该雷达满足风速误差不大于1.5 m·s-1、风向误差不大于10°探测精度要求的最大探测高度6月、9月为8 km,3月、12月为6 km,基本符合该雷达探测高度的设计要求。信噪比、大气风场的不均匀性是影响雷达测风精度的主要因素:信噪比影响了高空的测风精度,-15 dB可以作为判断雷达测风可信数据最大探测高度的阈值;晴空大气出现的风场不均匀性对风廓线雷达的测风精度影响不大,降水出现时环境风场不均匀性造成水平风向、风速的测量误差较大,不能满足测风精度要求,特别是对流性降水发生前的1~2 h,水平风向、风速的方差增长迅速,可以作为强降水出现的预警指标。  相似文献   

8.
风廓线雷达是当前获取大气三维风场信息的有效途径,但受其本身探测原理的约束,降水时的观测数据(尤其是边界层风廓线雷达的观测数据)将受到较大影响。为提高降水时边界层风廓线雷达数据的可信度,依据五波束探测和三波束探测原理,结合风廓线雷达功率谱再分析,建立了风廓线雷达数据筛选、填补的重处理方法,通过选取不同降水强度下的从化、潮州、阳江三个边界层风廓线雷达站的观测数据,开展了基于该方法的数据质量评估。研究结果指出:降水时虽能提高风廓线雷达的数据获取率,但风场数据质量并不一定较好(尤其是在特大暴雨时数据质量较差);经过数据重处理后,风廓线雷达的有效数据获取率得到提高,且内陆站点提升的幅度超过沿海站点;降水对2 km以下的观测数据影响较小,对于2 km以上的数据,若降水只是对部分高度造成数据缺失,则经过重处理后数据质量仍可以保持较好,但若连续多个高度数据缺失,则经过数据重处理后也不能较好地提高数据质量。  相似文献   

9.
夏季不同天气条件下风廓线雷达探测精度分析   总被引:1,自引:0,他引:1  
利用2016年6—8月沈阳地区TWP8-L型风廓线雷达观测资料,判断大气的均匀性,计算风廓线雷达的探测精度,并与探空气球的观测资料进行对比分析,得到晴空和不同降水条件下的风廓线雷达探测精度随高度的变化情况。研究结果表明,1000m高度以下风廓线雷达的探测精度较高。在无降水和均匀降水条件下,风廓线雷达的水平探测范围内大气均匀稳定,东西波束和南北波束测得的径向风对称性较好,(U_W-U_E)和(V_S-V_N)的平均差和标准差值较小;与GTS1型探空仪风速精度相差小于2.9m/s,两者相关性较好,风廓线雷达探测水平风的准确性较高。在探测范围不均匀的降水条件下,大气在风廓线雷达的水平探测范围内不均匀,东西波束和南北波束测得的径向风的对称性较差,垂直速度变化差异较大;U_W-U_E和V_S-V_N平均差和标准差值较大;与GTS1型探空仪风速精度相差大于2.0m/s,两者相关性较差,风廓线雷达探测水平风的准确性较低,需要进一步改进算法,改善数据质量,提高探测性能。  相似文献   

10.
本文讨论了风廓线雷达不同降水强度下的谱矩参数特征,并分析了不同降水强度下的风廓线雷达测风准确性,结果表明,风廓线雷达在毛毛雨(0~1mm/h)和小雨(1.1~2.5mm/h)时各波束测得的垂直速度一致性较好,对称波束分别测得的两组UV分量的差别较小,即风廓线雷达在毛毛雨和小雨这两个降水等级下测得的水平风可信度较高;而在中雨(2.6~8mm/h)和大到暴雨(>8.1mm/h)时各波束测得的垂直速度一致性较差,对称波束分别测得的两组UV分量差别偏大,即风廓线雷达在中雨和大到暴雨这两个降水等级下测得的水平风可信度较低,研究将为后续工作中对风廓线雷达降水数据的质量控制提供理论依据。   相似文献   

11.
同化风廓线雷达资料对浙江降水预报改进评估   总被引:1,自引:1,他引:0       下载免费PDF全文
采用中尺度模式WRF和美国俄克拉荷马大学风暴分析预测中心的资料同化系统开展中国东部地区35部风廓线雷达资料同化试验研究,在同化1 h平均采样产品前,对其进行气候极值检查、一致性检查、垂直稀疏化等质量控制,选取2014年5月16-17日暴雨过程评估同化风廓线雷达资料对降水预报的影响,探讨其对初始场改进作用,之后,通过批量试验再次确认同化风廓线雷达资料可有效提高降水预报能力。个例同化试验对比分析表明:同化风廓线雷达资料后,暴雨区及其上游地区850 hPa的风速增强20%~30%,水汽通量增加30%~50%,大气层结不稳定性增强,小雨和大雨TS评分分别提高0.06和0.07,暴雨漏报率和空报率分别降低0.04和0.05,降水预报得到改进。  相似文献   

12.
风廓线雷达探测降水过程的初步研究   总被引:11,自引:6,他引:5       下载免费PDF全文
为利用风廓线雷达 (WPR) 开展降水研究, 分析了2006年8月25-26日北京延庆WPR探测降水个例。降水前高空出现持续时间长达10h以上的水平风垂直切变; 在信噪比 (SNR) 时间序列资料中出现比较清晰的SNR极值层, SNR极值层所处高度与水平风垂直切变高度相吻合。降水期间及前后, 水平风探测高度明显增高2km以上。随地面降水的临近, 下降速度所处高度逐渐降低, 从高空一直延伸到低空, 持续时间长达10h。资料分析表明:国产WPR可以在降水天气工作, 其探测资料能及时反映大尺度流场的变化。通过WPR提供的功率谱密度、SNR、水平速度、垂直速度等多种资料, 可从多种角度了解降水过程; 特别是WPR可以同时探测垂直气流速度、粒子落速及其高度分布, 进而可以估计降水粒子尺度谱及其高度分布, 便于开展更深层次的降水物理过程研究。  相似文献   

13.
利用福建龙岩、漳州、泉州新一代多普勒天气雷达和厦门海沧双偏振雷达探测资料,采用动态地球坐标系下双雷达三维风场反演与拼图技术,基于天气研究和预报模式(Weather Research and Forecasting,WRF)及其资料同化系统,对登陆台风“莫兰蒂”(1614)引起的2016年9月14—15日福建强降水过程进行了双雷达风场反演拼图资料检验及其三维变分同化对强降水精细预报影响的数值试验,结果发现:(1)动态地球坐标系下双雷达反演风场能合理反映实际风场分布状况,其误差相对较小。相较厦门翔安风廓线雷达及厦门探空秒级测风数据,反演风风向(风速)平均绝对误差分别为7.8°(2.6 m/s)及3.4°(1.1 m/s);(2)反演风场水平方向稀疏化对同化及预报结果极为重要,过密的反演风场资料会给同化及预报结果带来负效果。文中采用18、6、2 km 3重嵌套,在3重嵌套区域均进行同化以及仅在2 km区域进行同化两种情况下,均表现为当反演风场资料水平分辨率提高到0.1°时,同化分析及预报的台风环流开始受到负影响;且当反演风场资料水平分辨率越高时,负效果越明显。敏感性试验结果显示,分辨率取0.2°时数值预报效果最好;(3)以美国国家环境预报中心全球预报系统(National Centers for Environmental Prediction/Global Forecast System,NCEP/GFS)0.5°×0.5°分析场为初值,基于3个不同起报时刻(2016年9月14日14时、20时及15日02时)(北京时,下同)模拟的福建省境内台风内核雨带和螺旋雨带逐时演变、台风路径与强度、逐时降水TS评分和空间相关差异显著,其中14日14时起报试验效果最好;而14日20时起报试验效果最差,这与该试验初始台风大风轴风速明显偏大有关;(4)在上述3个不同起报时刻试验基础上,分别增加双雷达反演风场资料的三维变分同化后,福建境内地面风场和台风内核雨带、螺旋雨带逐时分布、逐时降水TS评分和空间相关、台风环流结构以及U、V风垂直廓线分布均有明显改善,最大正影响时效可达24 h;但仅对1—6 h时效内台风路径有改善。   相似文献   

14.
王叶红  张伟  赵玉春 《大气科学》2021,45(1):123-147
以美国国家环境预报中心全球预报系统(National Centers for Environmental Prediction/Global Forecast System,NCEP/GFS)0.5°×0.5°分析场作为数值预报背景场,结合地面降水资料,面向资料同化分析了2017年1~12月逐日00时、06时、12时、18时(协调世界时)福建12部L波段风廓线雷达(其中CFL-03系列3部、CFL-06系列9部)水平风产品质量特征,并初步探讨了不同质量控制方案的影响差异。结果表明:(1)CFL-06系列雷达在水平风的最大探测高度、有效数据获取率和低层水平风质量等方面明显优于CFL-03系列;(2)相同系列的不同风廓线雷达探测水平风的数据获取率、有效探测高度、标准差、相关系数及偏差的垂直分布特征等存在极大差异,该差异与风廓线雷达所处的地理位置(沿海或内陆)、海拔高度等并无直接关系;(3)各雷达站探测u风速相对背景场存在明显系统性负偏差,小于背景场,不满足资料同化对背景场的无偏需求,资料同化时需进行偏差订正;v风则相对较好;(4)降水对风廓线雷达探测影响较大,有降水时数据获取率在中低层有所减小,但在中高层则大幅提高;u、v风标准差在中低层有所增加,而在中高层v风标准差有所增加,u风标准差则大幅降低;(5)针对不同风廓线雷达,提出了不同高可信度区间和不同有效探测高度两种质量控制方案,并与固定有效探测高度方案进行了对比,结果表明,这两种质量控制方案皆具有明显优势。不同高可信度区间方案的质量控制效果更为显著,不同雷达站水平测风数据得到更加充分和有效识别,既减少了雷达资料不必要损失,又可将质量差的数据进一步剔除;该方案在有降水情形下也有较好效果。  相似文献   

15.
以未来业务化应用为目标,本文进行了业务数值预报模式GRAPES_Meso(Global/Regional Assimilation and Prediction System)中的风廓线雷达资料同化应用研究。基于2015年7月的全国风廓线雷达观测数据,首先建立了面向同化应用的风廓线雷达资料两步质量控制方案。通过对比分析质量控制前后风廓线雷达观测资料集与欧洲中心再分析资料ERA-Interim的差值场特征,论证了质量控制方案的合理性,两步质控后风场误差显著减小,同时观测背景差更接近高斯分布,符合数值同化应用假设。将质量控制后的风廓线雷达资料应用于GRAPES-3DVAR系统,开展有、无风廓线雷达资料同化的对比试验,通过批量试验和台风“莲花”个例分析来探讨风廓线雷达资料同化对数值预报的影响。研究表明:在循环同化过程中加入风廓线雷达资料对数值模式初始场有一定改善,风场、温度场、湿度场的分析误差均有减小,从而使短期降水(0~12 h)的预报技巧得以提高。针对台风暴雨个例分析结果表明,风廓线雷达资料同化能有效地调整台风降水区的动力结构和水汽分布,在模式中形成更有利于对流发展的环境条件,从而更好地预报降水的位置与强度。  相似文献   

16.
新疆地区一次对流性降水的三维中尺度风场研究   总被引:2,自引:5,他引:2       下载免费PDF全文
利用2004年外场试验获得的乌鲁木齐和五家渠C波段双多普勒雷达资料, 分析了双多普勒雷达风场反演方法和资料的可靠性, 研究了2004年8月8日发生在乌鲁木齐和五家渠的一次强对流性降水的回波和风场中尺度结构及演变过程。结果表明:这两部雷达观测的回波强度相关很好, 雷达基线上的径向速度基本一致, 资料可靠, 适合进行双多普勒雷达观测; Cressman插值的影响半径的变化对风场的中尺度结构基本没有影响, 径向速度误差引起的风场反演误差与该点所处的位置有关, 1 m/s径向速度误差也不会改变风场的中尺度结构。该过程为对流单体发展为对流带状回波的过程, 在对流单体的左侧生成新的对流单体, 逐步发展为长度约90 km范围的带状对流系统, 该系统恰与较强的东北风和较弱的西风形成的辐合相对应, 上升气流与强对流回波相对应, 不同对流单体有各自相独立的风场结构。用双多普勒雷达观测得到对流系统的内部风场有利于了解对流系统的内部动力过程, 从而探讨降水的形成和演变机理。  相似文献   

17.
利用三维变分方法对2014年3月30—31日华南一次强飑线过程进行风场反演,经与风廓线雷达探测结果、双多普勒天气雷达反演结果、原始径向速度数据等对比分析,得到如下结论:三维变分方法反演的中低层水平风场与风廓线雷达探测到的结果较为一致,且能很好地表现飑线过境时的风向切变;通过与双多普勒雷达风场反演结果对比发现,两种方法得到的风场空间分布十分相似,均能很好地表现2 km高度上系统内部强带状回波前缘的辐合线以及5 km高度上较弱的辐散;三维变分方法反演的水平风场与径向速度场有较好的一致性,2 km高度强回波带前缘阵风锋处的辐合线位置以及5 km和8 km高度上辐散区的位置均与径向速度场十分吻合;三维变分方法反演的垂直速度能较好地反映该飑线过程中气流的上升和下沉运动,平行于飑线方向的气流变化较小,而系统气流变化主要沿垂直于飑线的方向。三维变分方法反演的飑线系统的三维风场结构合理,反演结果可靠。  相似文献   

18.
风廓线雷达主要是利用大气湍流对电磁波的散射作用,在晴空条件下对大气风场等进行探测。在降水天气下,风廓线雷达能同时接收到大气湍流回波和雨滴的散射回波信号,其探测到的回波功率谱中降水信号谱和大气湍流信号谱叠加在一起,使得大气的运动被雨滴的运动信息所掩盖,给后续的大气风场反演带来误差。而毫米波云雷达在降水天气下仅能探测到云雨粒子的回波而无法探测到大气湍流回波,基于这一差异结合毫米波云雷达资料对风廓线雷达功率谱数据进行订正,剔除其中的降水回波信息,进而获取正确的大气运动垂直速度。通过一次典型弱降水天气过程的雷达资料对该方法进行了可行性验证,并将计算得出的大气垂直速度与传统双峰法提取的大气运动垂直速度及原始风廓线雷达垂直速度进行了对比分析,显示在弱降水天气下该方法能有效消除降水对风廓线雷达垂直速度测量的影响,提高弱降水天气下测速准确率,并且在湍流谱极其微弱的情况下该方法也能准确地获取到大气运动垂直速度信息。但是云雷达回波在降水时会有衰减,虽然是弱降水也会导致在高层距离库上的订正效果变差,故目前只适用于弱降水时低距库处的降水订正。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号