首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The seasonal prediction skill for the Northern Hemisphere winter is assessed using retrospective predictions (1982–2010) from the ECMWF System 4 (Sys4) and National Center for Environmental Prediction (NCEP) CFS version 2 (CFSv2) coupled atmosphere–ocean seasonal climate prediction systems. Sys4 shows a cold bias in the equatorial Pacific but a warm bias is found in the North Pacific and part of the North Atlantic. The CFSv2 has strong warm bias from the cold tongue region of the eastern Pacific to the equatorial central Pacific and cold bias in broad areas over the North Pacific and the North Atlantic. A cold bias in the Southern Hemisphere is common in both reforecasts. In addition, excessive precipitation is found in the equatorial Pacific, the equatorial Indian Ocean and the western Pacific in Sys4, and in the South Pacific, the southern Indian Ocean and the western Pacific in CFSv2. A dry bias is found for both modeling systems over South America and northern Australia. The mean prediction skill of 2 meter temperature (2mT) and precipitation anomalies are greater over the tropics than the extra-tropics and also greater over ocean than land. The prediction skill of tropical 2mT and precipitation is greater in strong El Nino Southern Oscillation (ENSO) winters than in weak ENSO winters. Both models predict the year-to-year ENSO variation quite accurately, although sea surface temperature trend bias in CFSv2 over the tropical Pacific results in lower prediction skill for the CFSv2 relative to the Sys4. Both models capture the main ENSO teleconnection pattern of strong anomalies over the tropics, the North Pacific and the North America. However, both models have difficulty in forecasting the year-to-year winter temperature variability over the US and northern Europe.  相似文献   

2.
We have evaluated the simulation of Indian summer monsoon and its intraseasonal oscillations in the National Centers for Environmental Prediction climate forecast system model version 2 (CFSv2). The dry bias over the Indian landmass in the mean monsoon rainfall is one of the major concerns. In spite of this dry bias, CFSv2 shows a reasonable northward propagation of convection at intraseasonal (30–60 day) time scale. In order to document and understand this dry bias over the Indian landmass in CFSv2 simulations, a two pronged investigation is carried out on the two major facets of Indian summer monsoon: one, the air–sea interactions and two, the large scale vertical heating structure in the model. Our analysis shows a possible bias in the co-evolution of convection and sea surface temperature in CFSv2 over the equatorial Indian Ocean. It is also found that the simulated large scale vertical heat source (Q1) and moisture sink (Q2) over the Indian region are biased relative to observational estimates. Finally, this study provides a possible explanation for the dry precipitation bias over the Indian landmass in the simulated mean monsoon on the basis of the biases associated with the simulated ocean–atmospheric processes and the vertical heating structure. This study also throws some light on the puzzle of CFSv2 exhibiting a reasonable northward propagation at the intraseasonal time scale (30–60 day) despite a drier monsoon over the Indian land mass.  相似文献   

3.
从梅雨预测的业务需求出发,系统开展了CFSv2模式对2018年浙江梅雨期降水预报能力的多时间尺度评估。结果发现3月1日—5月31日的起报结果整体上未能较准确地预测6月浙江大部降水偏少的趋势、仅5月31日的预测结果与实况相符;在延伸期尺度上,CFSv2预测的梅雨期总降水量较实况偏少30%左右;基于相关系数、均方根误差和新定义的综合预报技巧指数等指标分析模式的延伸期预报性能,发现对梅雨期总降水量、逐日区域平均降水量和逐日全省各站降水量的预报技巧有限,对浙江梅雨区的预报水平总体高于浙江全省。评估结果表明CFSv2预报产品表现出显著的系统性干偏差;在延伸期尺度上,随着预报时效的缩短,预报效果并非逐步提升、而是客观存在一个最佳预报时效,各起报日也分别对应着不同的最优预报时段,整体而言梅雨降水的延伸期预测可能对初值并不敏感。  相似文献   

4.
四川西部夏季降水从1950s起的衰减趋势   总被引:1,自引:0,他引:1       下载免费PDF全文
Changing precipitation in the densely populated Sichuan basin may have a great impact on human life. This study analyzes the change in summer precipitation since 1951 over the western Sichuan basin, one of the regions of the heaviest rainfall in China, by using two datasets provided by the Chinese Meteorological Data Center. The results indicate that summer (from June to September) precipitation over the western Sichuan basin shows a significantly decreasing trend. The summer precipitation over this region has decreased by about 20% since the 1950s, with a rate of decrease of about 40 mm per decade.  相似文献   

5.
通过对15组CMIP3和CMIP5两代模式集合平均对中国西北干旱区气温和降水的模拟能力比较,发现CMIP5模式对气温和降水的模拟更接近观测值。CMIP5模式模拟年、春季、夏季、秋季平均气温的相关系数比CMIP3模式分别提升了0.15、0.13、0.24和0.02,冬季下降了0.07。CMIP5模式对西北干旱区的平均气温变化趋势的模拟效果比CMIP3有所提高,对年、春季、夏季、秋季、冬季趋势的模拟偏差比CMIP3分别减少了0.03℃/10a、0.10℃/10a、0.01℃/10a、0.06℃/10a、0.14℃/10a。对西北干旱区平均气温年、季的模拟偏差分布上,CMIP5模式的偏差均比CMIP3低1~2℃。但是天山区年、季节平均气温的模拟与整体模拟偏低情况相反,CMIP3和CMIP5分别偏高3~6℃和1~4℃,对夏季的模拟偏高最严重,分别达到6℃和4℃。CMIP5模式整体对西北干旱区降水量的模拟结果与观测值的平均相关系数与CMIP3相差不大,均不超过0.1,而且偏差仍然较大。CMIP5模式对西北干旱区的降水量的变化趋势模拟效果比CMIP3有所降低,对年、春季、夏季、秋季、冬季趋势的模拟偏差比CMIP3增加了0.67 mm/10a、0.23 mm/10a、0.51 mm/10a、0.11 mm/10a、0.14 mm/10a。CMIP5模式对年、春季、夏季、秋季和冬季的降水量模拟的均方根误差相比CMIP3分别减少77.6 mm、25.5 mm、25.0 mm、18.8 mm和13.9 mm。在空间上,CMIP5模式对年、季节降水模拟仍然偏高,但是比CMIP3有明显缓解;CMIP3和CMIP5模式对夏季天山区年降水量和夏季降水量的模拟也与大部分区域偏高的趋势明显相反,两代模式对夏季天山区的降水模拟均偏低50 mm左右。  相似文献   

6.
Daily and monthly total precipitation of 155 synoptic stations with relatively regular distribution over Iran, covering the 1990–2014 period, were used to investigate the spatial pattern of precipitation seasonality and regimes over Iran, using a set of precipitation seasonality indices. The results suggest a strong agreement between the indices computed at monthly time scale. The result also shows a latitudinal decreasing gradient from the lower index values in the north to the highest values in the south of Iran, suggesting a strong negative relationship between the latitude and the indices. A weak but statistically significant association was also found between the indices and the longitude, showing a gradual west-east contrast between the mountainous western Iran and the central-eastern lowlands and deserts of the country. The spatial patterns of the indices well agree in revealing different precipitation regimes in Iran, in spite of the observed discrepancies in their areal extent of the regions identified. All the indices characterized northern Iran by a precipitation regime having a moderate seasonality, while the mountainous areas of the western and northern Iran are featured by a marked precipitation regime possessing a longer dry season. However, the most seasonal precipitation regime with the longest dry period describes the southern country and some spot areas of the central-eastern Iran. The spatial distribution of the seasonal precipitation regimes and the month and season of maximum precipitation amounts across Iran was also identified, suggesting that from the 24 possible precipitation regimes over the globe, eight were found in Iran, from which a precipitation regime with the highest precipitation amount in winter, followed by autumn, spring, and summer characterized most parts of the country. January and JFM were also found as the month and season of maximum precipitation in a majority of stations distributed over Iran, respectively. The precipitation concentration index (DPCI) computed using daily precipitation data ranges between 0.56 and 0.76 across the country; nonetheless, the values between 0.64 and 0.70 characterized a majority of stations distributed over most parts of Iran. Contrarily to the indices computed at monthly time scale, the DPCI does not show a clear latitudinal pattern over the country. The Mann–Kendal trend test and the Sen slope estimator were applied to the computed indices relative to 16 stations with the longest and complete precipitation records during 1951–2014 time period. The indices time series showed no significant trend in the majority of the stations, indicating that the precipitation regimes of the studied stations did not change over 1951–2014 period.  相似文献   

7.
This study depicts the sub-seasonal prediction of the South China Sea summer monsoon onset (SCSSMO) and investigates the associated oceanic and atmospheric processes, utilizing the hindcasts of the National Centers for Environmental Prediction (NCEP) Climate Forecast System version 2 (CFSv2). Typically, the SCSSMO is accompanied by an eastward retreat of the western North Pacific subtropical high (WNPSH), development of the cross-equatorial flow, and an increase in the east-west sea surface temperature (SST) gradient. These features are favorable for the onset of westerlies and strengthening of convection and precipitation over the South China Sea (SCS). A more vigorous SCSSMO process shows a higher predictability, and vice versa. The NCEP CFSv2 can successfully predict the onset date and evolution of the monsoon about 4 pentads (20 days) in advance (within 1–2 pentads) for more forceful (less vigorous) SCSSMO processes. On the other hand, the climatological SCSSMO that occurs around the 27th pentad can be accurately predicted in one pentad, and the predicted SCSSMO occurs 1–2 pentads earlier than the observed with a weaker intensity at longer leadtimes. Warm SST biases appear over the western equatorial Pacific preceding the SCSSMO. These biases induce a weaker-than-observed WNPSH as a Gill-type response, leading to weakened low-level easterlies over the SCS and hence an earlier and less vigorous SCSSMO. In addition, after the SCSSMO, remarkable warm biases over the eastern Indian Ocean and the SCS and cold biases over the WNP induce weaker-than-observed westerlies over the SCS, thus also contributing to the less vigorous SCSSMO.  相似文献   

8.
Spatial patterns of daily precipitation indices and their temporal trends over Iran are investigated using the APHRODITE gridded daily precipitation dataset for the period 1961–2004. The performance and limitations of the gridded dataset are checked against observations at ten rain-gauge stations that are representative of different climates in Iran. Results suggest that the spatial patterns of the indices reflect the role of orography and sea neighborhoods in differentiating central-southern arid and semi-arid regions from northern and western mountainous humid areas. It is also found that western Iran is impacted by the most extreme daily precipitation events occurring in the country, though the number of rainy days has its maximum in the Caspian Sea region. The time series of precipitation indices is checked for long-term trends using the least squares method and Mann-Kendall test. The maximum daily precipitation per year shows upward trends in most of Iran, though being statistically significant only in western regions. In the same regions, upward trends are also observed in the number of wet days and in the accumulated precipitation and intensity during wet days. Conversely, the contribution of precipitation events below the 75th percentile to the annual total precipitation is decreasing with time, suggesting that extreme events are responsible for the upward trend observed in the total annual precipitation and in the other indices. This tendency towards more severe/extreme precipitation events, if confirmed by other datasets and further analyses with longer records, would require the implementation of adequate water resources management plans in western Iran aimed at mitigating the increasing risk of intense precipitation and associated flash floods and soil erosion.  相似文献   

9.
【目的】为探究贵州省汛期降水的时空分布特征及演变规律。【方法】利用贵州省81个气象观测站1981—2020年汛期降水资料,采用EOF、REOF及交叉小波分析等方法对贵州省汛期降水时空特征进行分析及强降水过程分型研究。【结果】贵州省1981—2020年汛期平均降水量为924.9mm,降水量在682.7~1194.1mm,呈显著上升趋势,上升速率为16.94mm/10a。贵州汛期降水大体上呈现西南向东北递减的趋势,强降水过程次数及持续天数分布及波动变化与汛期降水基本一致。【结论】贵州省汛期降水分布不均,具有显著的年代际变化。贵州省汛期强降水空间场主要有全省一致型、东西反向型和南北反向型3种典型模态。经REOF方法可将贵州省细分为3个强降水区域,根据环流场分析,又可进一步划分为东部型强降水(I型和III型)与西部型强降水(II型),各类型强降水落区受500hPa环流分布情况以及850hPa水汽来源与强度的影响。  相似文献   

10.
Spatial patterns and temporal trends of precipitation in Iran   总被引:3,自引:0,他引:3  
Spatial patterns of monthly, seasonal and annual precipitation over Iran and the corresponding long-term trends for the period 1951–2009 are investigated using the Global Precipitation Climatology Centre gridded dataset. Results suggest that the spatial patterns of annual, winter and spring precipitation and the associated coefficients of variation reflect the role of orography and latitudinal extent between central-southern arid and semi-arid regions and northern and western mountainous areas. It is also shown that precipitation occurrence is almost regularly distributed within the year in northern areas while it is more concentrated in a few months in southern Iran. The spatial distribution of Mann–Kendal trend test (Z statistics) for annual precipitation showed downward trend in north-western and south-eastern Iran, whereas western, central and north-eastern exhibited upward trend, though not statistically significant in most regions. Results for winter and autumn revealed upward trend in most parts of the country, with the exception of north-western and south-eastern where a downward trend is observed; in spring and summer, a downward trend seems to prevail in most of Iran. However, for all seasons the areas where the detected trend is statistically significant are limited to a few spot regions. The overall results suggest that the precipitation is decreasing in spring and summer and increasing in autumn and winter in most of Iran, i.e. less precipitation during the warm season with a consequent intensification of seasonality and dryness of the country. However, since the detected trends are often not statistically significant, any stringent conclusion cannot be done on the future tendencies.  相似文献   

11.
National Centers for Environmental Prediction recently upgraded its operational seasonal forecast system to the fully coupled climate modeling system referred to as CFSv2. CFSv2 has been used to make seasonal climate forecast retrospectively between 1982 and 2009 before it became operational. In this study, we evaluate the model’s ability to predict the summer temperature and precipitation over China using the 120 9-month reforecast runs initialized between January 1 and May 26 during each year of the reforecast period. These 120 reforecast runs are evaluated as an ensemble forecast using both deterministic and probabilistic metrics. The overall forecast skill for summer temperature is high while that for summer precipitation is much lower. The ensemble mean reforecasts have reduced spatial variability of the climatology. For temperature, the reforecast bias is lead time-dependent, i.e., reforecast JJA temperature become warmer when lead time is shorter. The lead time dependent bias suggests that the initial condition of temperature is somehow biased towards a warmer condition. CFSv2 is able to predict the summer temperature anomaly in China, although there is an obvious upward trend in both the observation and the reforecast. Forecasts of summer precipitation with dynamical models like CFSv2 at the seasonal time scale and a catchment scale still remain challenge, so it is necessary to improve the model physics and parameterizations for better prediction of Asian monsoon rainfall. The probabilistic skills of temperature and precipitation are quite limited. Only the spatially averaged quantities such as averaged summer temperature over the Northeast China of CFSv2 show higher forecast skill, of which is able to discriminate between event and non-event for three categorical forecasts. The potential forecast skill shows that the above and below normal events can be better forecasted than normal events. Although the shorter the forecast lead time is, the higher deterministic prediction skill appears, the probabilistic prediction skill does not increase with decreased lead time. The ensemble size does not play a significant role in affecting the overall probabilistic forecast skill although adding more members improves the probabilistic forecast skill slightly.  相似文献   

12.
Diagnostic evaluations of the relative performances of CFSv1 and CFSv2 in prediction of monthly anomalies of the ENSO-related Nino3.4 SST index are conducted using the common hindcast period of 1982–2009 for lead times of up to 9 months. CFSv2 outperforms CFSv1 in temporal correlation skill for predictions at moderate to long lead times that traverse the northern spring ENSO predictability barrier (e.g., a forecast for July made in February). However, for predictions during less challenging times of the year (e.g., a forecast for January made in August), CFSv1 has higher correlations than CFSv2. This seeming retrogression is caused by a cold bias in CFSv2 predictions for Nino3.4 SST during 1982–1998, and a warm bias during 1999–2009. Work by others has related this time-conditional bias to changes in the observing system in late 1998 that affected the ocean reanalysis serving as initial conditions for CFSv2. A posteriori correction of these differing biases, and of a similar (but lesser) situation affecting CFSv1, allows for a more realistic evaluation of the relative performances of the two CFS versions. After the dual bias corrections, CFSv2 has slightly better correlation skill than CFSv1 for most months and lead times, with approximately equal skills for forecasts not traversing the ENSO predictability barrier and better skills for most (particularly long-lead) predictions traversing the barrier. The overall difference in correlation skill is not statistically field significant. However, CFSv2 has statistically significantly improved amplitude bias, and visibly better probabilistic reliability, and lacks target month slippage as compared with CFSv1. Together, all of the above improvements result in a highly significantly reduced overall RMSE—the metric most indicative of final accuracy.  相似文献   

13.
利用1961-2017年辽宁省61个气象站逐月降水数据,以5-8月为研究时段建立旱涝急转指数(drought-flood abrupt alternation index,DFAI)序列,采用线性倾向法、趋势分析、阶段性分析、T检验、ArcGIS空间插值等方法对辽宁省降水集中期的旱涝急转现象进行时空特征分析。结果表明:1961-2017年辽宁省降水集中期DFAI总体以-0.7/(10 a)的速率下降,有13 a出现旱转涝,有19 a出现涝转旱;DFAI强度以0.1/(10 a)的速率略呈上升趋势。近57 a,辽宁省旱转涝多发生在20世纪60年代,涝转旱多发生在20世纪70年代和20世纪初之后,1989年出现了涝转旱的突变,发生频率呈增多趋势,1994年又出现旱转涝的突变,发生频率呈减少趋势。典型旱转涝年(2013年),DFAI的高值区分布在中、西部地区;典型涝转旱年(2014年),DFAI绝对值的高值区分布在东北部和中西部地区。DFAI变化率在空间分布上具有明显的中、北部增多,东、西部减少的趋势差异。  相似文献   

14.
In this study, satellite-based daily precipitation estimation data from precipitation estimation from remotely sensed information using artificial neural networks (PERSIANN)-climate data record (CDR) are being evaluated in Iran. This dataset (0.25°, daily), which covers over three decades of continuous observation beginning in 1983, is evaluated using rain-gauge data for the period of 1998–2007. In addition to categorical statistics and mean annual amount and number of rainy days, ten standard extreme indices were calculated to observe the behavior of daily extremes. The results show that PERSIANN-CDR exhibits reasonable performance associated with the probability of detection and false-alarm ratio, but it overestimates precipitation in the area. Although PERSIANN-CDR mostly underestimates extreme indices, it shows relatively high correlations (between 0.6316–0.7797) for intensity indices. PERSIANN-CDR data are also used to calculate the trend in annual amounts of precipitation, the number of rainy days, and precipitation extremes over Iran covering the period of 1983–2012. Our analysis shows that, although annual precipitation decreased in the western and eastern regions of Iran, the annual number of rainy days increased in the northern and northwestern areas. Statistically significant negative trends are identified in the 90th percentile daily precipitation, as well as the mean daily precipitation from wet days in the northern part of the study area. The positive trends of the maximum annual number of consecutive dry days in the eastern regions indicate that the dry periods became longer in these arid areas.  相似文献   

15.
The predictable patterns and predictive skills of monsoon precipitation in the Northern Hemisphere summer (June–July–August) are examined using reforecasts (1983–2010) from the National Center for Environmental Prediction Climate Forecast System version 2 (CFSv2). The possible connections of these predictable patterns with global sea surface temperature (SST) are investigated. The empirical orthogonal function analysis with maximized signal-to-noise ratio is used to isolate the predictable patterns of the precipitation for three regional monsoons: the Asian and Indo-Pacific monsoon (AIPM), the Africa monsoon (AFM), and the North America monsoon (NAM). Overall, the CFSv2 well predicts the monsoon precipitation patterns associated with El Niño-South Oscillation (ENSO) due to its good prediction skill for ENSO. For AIPM, two identified predictable patterns are an equatorial dipole pattern characterized by opposite variations between the equatorial western Pacific and eastern Indian Ocean, and a tropical western Pacific pattern characterized by opposite variations over the tropical northwestern Pacific and the Philippines and over the regions to its west, north, and southeast. For NAM, the predictable patterns are a tropical eastern Pacific pattern with opposite variations in the tropical eastern Pacific and in Mexico, the Guyana Plateau and the equatorial Atlantic, and a Central American pattern with opposite variations in the eastern Pacific and the North Atlantic and in the Amazon Plains. The CFSv2 can predict these patterns at least 5 months in advance. However, compared with the good skill in predicting AIPM and NAM precipitation patterns, the CFSv2 exhibits little predictive skill for AFM precipitation, probably because the variability of the tropical Atlantic SST plays a more important than ENSO in the AFM precipitation variation and the prediction skill is lower for the tropical Atlantic SST than the tropical Pacific SST.  相似文献   

16.
由于极端天气事件导致灾害频发,为延长洪水预见期,以望谟河流域为例,利用DEM数字高程资料、土地利用数据、土壤数据、气象数据等驱动SWAT水文模型,对流域水文循环过程进行了模拟,并采用2016~2018年逐日和2010~2018年逐月望谟水文监测站实测径流数据进行了率定和验证。同时基于CFSv2模式,采用双线性插值法得到延伸期时段望谟站2019年6月1日起报的未来45d的降水预报产品,与实况数据作对比分析,并与SWAT模型耦合进行了延伸期时段的径流量耦合预报。结果表明:(1)望谟河流域日尺度模拟中,率定期确定系数R2和Nash-Sutcliffe系数NSE均为0.75,验证期R2=0.61,NSE=0.55,月尺度模拟中,率定期R2=0.85,NSE=0.81,验证期R2=0.80,NSE=0.74,无论日尺度或月尺度,百分比偏差PBIAS的绝对值均在5%以内,模拟效果较好,可满足应用要求;(2)以2019年6月1日为起报日得到的CFSv2未来10~45d降水数据,CFSv2降水预报过程与实况趋势总体一致,强降水过程时段偏差在1~3d左右,但日降水量级的预报值偏小,说明需对CFSv2模式产品进行系统误差订正。基于SWAT模型与CFSv2降水预报产品的径流量耦合预报在未来10~15d内的变化趋势与实测值一致,尤其在未来10d左右模拟趋势效果最好;(3)对比6月10~13日不同起报日的降水数据,4个起报时刻对于未来10d强降雨过程均有稳定的预报信号,以6月10日作为起报日的径流量耦合预报于提前10~20d效果较为稳定,但由于降水预报量级偏小,致使径流量的模拟量级也偏小。研究成果为延伸期时段水文气象耦合模式的洪水预报试验研究提供了参考。   相似文献   

17.
利用常规观测、NCEP FNL、葵花8号卫星、GNSS反演大气可降水量、智能网格实况产品等资料,分析2017年“海棠”台风造成辽宁西部朝阳地区和东南部岫岩县的极端暴雨成因。结果表明:辽宁西部和东南半岛均出现区域性的极端特大暴雨,岫岩县小时雨强更大,最大雨强达到113 mm·h-1,对流性降水特征明显。两个区域暴雨过程均受到热带、副热带、西风带系统共同作用,狭长型“海棠”台风沿着副热带高压西侧逐渐北上,并且与西风带短波槽相互作用,导致辽宁西部出现强降水,随后加强的涡旋系统后侧干冷空气与低空暖湿水汽输送带相互作用,导致岫岩县出现极端暴雨过程。热带台风“奥鹿”对副热带高压南落东退起到阻挡作用。两个区域均具有来自于南海的水汽通道,另外东南半岛也受到了“奥鹿”台风北侧水汽输送的影响。朝阳市和岫岩县大气可降水量值长时间接近65 mm和70 mm,异常指数最高达到3.0和2.5,表明此次暴雨水汽条件的极端性。辽宁西部降水期间动力不稳定更强,辐合层由地面伸展到500 hPa,而东南半岛降水期间上干下湿的水汽分布以及更强的冷暖空气交汇,有利于产生对流性降水。两个区域均受到多个中尺度云团的共同影响,朝阳地区初期降水由中γ尺度辐合线触发,后期台风在北上过程中与高空槽后部的干冷空气相互作用,形成的暖锋云系以及冷锋云系导致朝阳地区出现持续性强降水;加强的涡旋后部干空气侵入到暖湿水汽输送带中,配合岫岩县山区地面辐合线稳定不动,不断有积云触发并且直接影响岫岩县,导致岫岩县产生极端对流性暴雨。  相似文献   

18.
In this research the dynamic downscaling method by Regional Climate Model (RegCM4.5) was used to assess the performance and sensitivity of seasonal simulated North and West of Iran (NI&WI) climate factors to different convection schemes, and transforms the large-scale simulated climate variables into land surface states over the North of Iran (NI) and West of Iran (WI). A 30-year (1986–2015) numerical integration simulation of climate over NI&WI was conducted using the regional climate model RegCM4.5 nested in one-way ERA-Interim reanalysis data. The Grell, Kuo and MIT-Emanuel cumulus convection with Holtslag and University of Washington (UW) planetary boundary layer (PBL) parameterization schemes were applied in the running of RegCM4.5 to test their capability in simulating precipitation and temperature in winter-spring (January–April) over NI and WI. The results demonstrated that the RegCM4.5 model has a good potential for simulating the variables and trend of surface temperature over the NI and WI region. Magnitude of the model bias for land surface temperature over different regions of Iran varies by convection parameterization schemes. In most cases, the root mean square error between post-processed simulated seasonal average temperature and observation value was less than 1 °C, but there is a systematic “cold bias”. In general, with respect to land surface temperature simulations, a better performance is obtained when using post-processing model’s data with Holtslag PBL-Grell and Holtslag PBL-Kuo configuration schemes, compared to the other simulations, over the NI&WI region. Also, the UW PBL convection schemes show a relatively excellent spatial correlations and normalized standard deviations closer to 1 for thirty-year seasonal land surface temperature anomalies over the entire NI&WI region. However, the simulation accuracy of model for precipitation is not as optimal as for temperature. The dominant feature in model simulations is a dry bias with the largest average value (∼1.04 mm/day) over NI region, while the lowest mean bias precipitation (∼−0.47 mm/day), mainly located in WI region. In the comparison of six configuration convection schemes, the Emanuel scheme has been proven to be the most accurate for simulating winter-spring seasonal mean precipitation over NI&WI region. The accuracy of the scheme also showed great difference in simulated station interpolation of precipitation, which urges the improvement for the simulation capability of spatial distribution of precipitation. In general, for seasonal variation of precipitation, the Emanuel convection with two (Holtslag, UW) PBL configuration schemes outperforms with a good correlation score between 0.7−0.8 and normalized standard deviations closer to 1.  相似文献   

19.
Long-term observational data indicated a decreasing trend for the amount of autumn precipitation (i.e. 54.3 mm per decade) over Mid-Eastern China, especially after the 1980s (~ 5.6% per decade). To examine the cause of the decreasing trend, the mechanisms associated with the change of autumn precipitation were investigated from the perspective of water vapor transportation, atmospheric stability and cloud microphysics. Results show that the decrease of convective available potential energy (i.e. 12.81 J kg-1/ decade) and change of cloud microphysics, which were closely related to the increase of aerosol loading during the past twenty years, were the two primary factors responsible for the decrease of autumn precipitation. Our results showed that increased aerosol could enhance the atmospheric stability thus weaken the convection. Meanwhile, more aerosols also led to a significant decline of raindrop concentration and to a delay of raindrop formation because of smaller size of cloud droplets. Thus, increased aerosols produced by air pollution could be one of the major reasons for the decrease of autumn precipitation. Furthermore, we found that the aerosol effects on precipitation in autumn was more significant than in other seasons, partly due to relatively more stable synoptic systems in autumn. The impact of large-scale circulation dominant in autumn and the dynamic influence on precipitation was more important than the thermodynamic activity.  相似文献   

20.
Indian monsoon is the most prominent of the world’s monsoon systems which primarily affects synoptic patterns of India and adjacent countries such as Iran in interaction with large-scale weather systems. In this article, the relationship between the withdrawal date of the Indian monsoon and the onset of fall precipitation in Iran has been studied. Data included annual time series of withdrawal dates of the Indian monsoon prepared by the Indian Institute for Tropical Meteorology, and time series of the first date of 25 mm accumulated precipitation over Iran’s synoptic weather stations in a 10-day period which is the basis for the cultivation date. Both time series were considered in Julian calendar with the starting date on August 1. The studied period is 1960–2014 which covers 55 years of data from 36 meteorological stations in Iran. By classifying the withdrawal dates of the Indian monsoon in three stages of late, normal, and early withdrawals, its relation with the onset of fall precipitation in western, southwestern, southern, eastern, central, and northern regions of Iran was studied. Results demonstrated that in four out of the six mentioned regions, the late withdrawal of the Indian monsoon postpones the onset of fall precipitation over Iran. No significant relation was found between the onset of fall precipitation in central region of Iran and the monsoon’s withdrawal date. In the western, southwestern, southern, and eastern regions of Iran, the late monsoon delays the onset of fall’s precipitation; while in the south Caspian Sea coastal area, it causes the early onset of autumnal precipitation. The lag in onset of fall precipitation in Iran which is coordinated with the late withdrawal of monsoon is accompanied with prolonged subtropical high settling over Iran’s plateau that prevents the southward movement of polar jet frontal systems. Such conditions enhance northerly wind currents over the Caspian Sea which, in turn, increase the precipitation in Caspian coastal provinces, which has a different behavior from the overall response of Iran’s climate to the late withdrawal of monsoon. In the phase of early monsoon withdrawal, the subtropical jet is located at the 200 hPa level in 32.5° north latitude; compared with the late withdrawal date, it shows a 2° southward movement. Additionally, the 500 hPa trough is also located in the Eastern Mediterranean, and the MSL pressure anomaly is between ? 4 to ? 7 hPa. The Mediterranean trough in the late withdrawal phase is located in its central zones. It seems that the lack of significant correlation between late withdrawal date of Indian monsoon and late fall’s precipitation onset in the central region of Iran depends on three reasons:1. Lack of adequate weather stations in central region of Iran.2. Precipitation standard deviations over arid and warm regions are high.3. Central flat region of Iran without any source of humidity is located to the lee side of Zagros mountain range. So intensification or development of frontal systems is almost prohibited over there.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号