首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
地形降水试验和背风回流降水机制   总被引:7,自引:2,他引:7  
李子良 《气象》2006,32(5):10-15
利用中尺度数值模式(ARPS模式)研究了湿气流过山脉地形和地形降水的产生机制。研究结果表明,地形降水是水汽、气流和地形相互作用而形成的。小山脉地形降水主要发生在山脉的迎风坡,表现出典型的迎风降水和背风雨影特征。而回流降水天气是湿气流过大的山脉地形的产物,大的山脉地形有利于风切变临界层的产生,地形降水并不只是简单的上坡降水,还有背风回流和背风波降水机制。  相似文献   

2.
The initiation of convective cells in the late morning of 24 June 2010 along the eastward extending ridge of the Dabie Mountains in the Anhui region,China,is studied through numerical simulations that include local data assimilation.A primary convergence line is found over the ridge of the Dabie Mountains,and along the ridge line several locally enhanced convergence centers preferentially initiate convection.Three processes responsible for creating the overall convergence pattern are identified.First,thermally-driven upslope winds induce convergence zones over the main mountain peaks along the ridge,which are shifted slightly downwind in location by the moderate low-level easterly flow found on the north side of a Mei-yu front.Second,flows around the main mountain peaks along the ridge create further convergence on the lee side of the peaks.Third,upslope winds develop along the roughly north–south oriented valleys on both sides of the ridge due to thermal and dynamic channeling effects,and create additional convergence between the peaks along the ridge.The superposition of the above convergence features creates the primary convergence line along the ridge line of the Dabie Mountains.Locally enhanced convergence centers on the primary line cause the initiation of the first convection cells along the ridge.These conclusions are supported by two sensitivity experiments in which the environmental wind(dynamic forcing) or radiative and land surface thermal forcing are removed,respectively.Overall,the thermal forcing effects are stronger than dynamic forcing given the relatively weak environmental flow.  相似文献   

3.
地形云和降水过程在区域水循环、水资源、生态环境及气候变化中具有十分重要的作用。本文利用中尺度数值模式WRF 数值模拟试验,以及通过引入表示大气层流速度、层结稳定度和地形特征的关系参数——湿Froude 数(Fw),研究了北京2009 年5 月1 日湿条件不稳定大气层结下,地形云和降水形成过程与地形动力抬升和地形重力波传播之间的关系及形成机理。研究表明,在地形最大高度2 km、半宽10 km 的条件下,层流速度从2.5 m/s 逐步增加到25 m/s 时,对应的湿Fw 数从0.19 增加到1.81。当Fw≤1 时,地形的阻挡起主要作用,由地形抬升形成的地形云主要产生在迎风坡一侧。地形重力波主要产生在迎风坡,并向上游传播,先形成层状云,最后演变为准稳定浅对流波状云。最大降水主要发生在紧靠山顶的迎风坡一侧,但当Fw 很小时,地形云不产生降水。当Fw>1 时,地形抬升形成的云主要发生在山顶附近,而地形重力波主要形成在背风坡,并向下游方向传播,形成准稳定波状云。最大降水主要产生在紧靠山顶的背风坡一侧。另外,在弱湿条件不稳定大气层流下,地形降水主要由地形动力抬升造成的暖云微物理过程产生,地形重力波形成的波状云几乎不产生降水。  相似文献   

4.
苏涛  董美莹  余贞寿  黎玥君 《气象》2020,46(2):158-168
针对夏季副热带高压背景下浙北天目山附近的强对流天气个例,利用中尺度实况资料,分析了天目山对触发对流的作用。结果表明:浙江省夏季位于副热带高压边缘时,低层处于西南背景风时,在低Froude数条件下,气流经过黄山、天目山后在背风侧形成一段辐合线,在有利的热力条件配合下,容易触发对流。山地的热力强迫作用使地形上空新生了很多积云,积云分布基本与地形一致。同时,天目山背风侧出现一条积云线,其形成的原因是天目山背风侧辐合线的辐合抬升作用。背风侧辐合线尺度有几十千米,方向随环境风向转变。对流触发的位置位于这条辐合线上靠近山地的一端。这可能是由于山地热力强迫作用产生的积云移到辐合线上继续发展产生对流云,即山地的动力和热力作用共同触发了对流。  相似文献   

5.
水汽空间分布对大气船舶重力波影响的数 值试验   总被引:4,自引:0,他引:4  
李子良 《气象学报》2006,64(3):308-314
利用中尺度数值模式ARPS模拟研究了水汽在山脉重力波和大气船波的产生和演变中的作用。研究发现水汽和非绝热效应对大气船波的影响与水汽的空间分布有关,大气船波的产生和演变对水汽的空间分布具有极端的敏感性,在一定条件下水汽的引入有可能减少大气船波的活动。对于3层模式结构的气流过山而言,如果初始的水汽分布在中层大气,则水汽和非绝热效应对大气船波的影响较小,而如果初始的水汽分布在中下层大气,则引入水汽后减少了大气船波的强度,但是如果初始的水汽分布在整个模式大气层,则水汽的引入减少了大气船波的活动。  相似文献   

6.
Summary The development of a cold front influenced by orography and large scale forcing is examined with a two-dimensional meso-scale model. The model is based on the primitive equations and uses the hydrostatic and anelastic approximations. Gradients of the basic flow and temperature field in the third dimension are taken into account during the simulations. Low diffusive numerical schemes and radiation boundary conditions reduce the numerical errors to an acceptable minimum for a two day simulation and avoid reflections at the upper and lateral boundaries. Frontogenetical forcing is included in the simulations by specifying either a vertically sheared or horizontally convergent basic zonal flow field. Model runs with an idealized cold front were carried out over flat terrain and in the presence of a bell shaped mountain ridge.The simulations show a weakening of the cold front on the windward side of the mountain ridge and a strong reintensification on the leeward side relative to the control runs without topography. Analysis of frontogenesis terms demonstrates the importance of convergence in the ageostrophic circulation and of along-front temperature advection for the development of the cold front. The strong intensification of the cold front on the leeward side of the mountain ridge can only partly be explained by superposition with the mountain induced wave. It is mainly caused by ageostrophic deformation forcing in the strong downward flow of this wave.The results also show that the cold front passage over the mountain ridge is not a continuous process. The formation of a new frontal structure on the leeward side of the mountain ridge, well separated from the primary one, is observed while the initial cold front still exists in the upslope region. Generally nonlinear interactions between the mountain wave and the cold front are the important mechanisms to explain these phenomena.With 18 Figures  相似文献   

7.
This paper presents the dry version of a new large-eddy simulation (LES) model, which is designed to simulate air flow and clouds above highly complex terrain. The model is three-dimensional and nonhydrostatic, and the governing equations are sound filtered by use of the anelastic approximation. A fractional step method is applied to solve the equations on a staggered Cartesian grid. Arbitrarily steep and complex orography can be accounted for through the method of viscous topography. The dynamical model core is validated by comparing the results for a spreading density current against a benchmark solution. The model accuracy is further assessed through the simulation of turbulent flow across a quasi two-dimensional ridge. The results are compared with wind-tunnel data. The method of viscous topography is not restricted to moderately sloped terrain. Compared to models using curvilinear grids, it allows this model to be applied to a much wider range of flows. This is illustrated through the simulation of an atmospheric boundary-layer flow over a surface mounted cube. The results show that the dry model version is able to accurately represent the complex flow in the vicinity of three-dimensional obstacles. It is concluded that the method of viscous topography was successfully implemented into a micrometeorological LES model. As will be shown in Part II, this allows the detailed study of clouds in highly complex terrain.  相似文献   

8.
In numerical weather prediction and climate models, planetary boundary-layer (PBL) clouds are linked to subgrid-scale processes such as shallow convection. A comprehensive statistical analysis of large-eddy simulations (LES), obtained for warm PBL cloud cases, is carried out in order to characterize the distributions of the horizontal subgrid cloud variability. The production of subgrid clouds is mainly associated with the variability of the total water content. Nevertheless, in the case of PBL clouds, the temperature variability cannot be completely discarded and the saturation deficit, which summarizes both temperature and total water fluctuations, provides a better representation of the cloud variability than the total water content. The probability density functions (PDFs) of LES saturation deficit generally have the shape of a main asymmetric bell-shaped curve with a more or less distinct secondary maximum specific to each type of PBL clouds. Unimodal theoretical PDFs, even those with a flexible skewness, are not sufficient to correctly fit the LES distributions, especially the long tail that appears for cumulus clouds. They do not provide a unified approach for all cloud types. The cloud fraction and the mean cloud water content, diagnosed from these unimodal PDFs, are largely underestimated. The use of a double Gaussian distribution allows correction of these errors on cloud fields and provides a better estimation of the cloud-base and cloud-top heights. Eventually, insights for the design of a subgrid statistical cloud scheme are provided, in particular a new formulation for the weight of the two Gaussian distributions and for the standard deviation of the convective distribution.  相似文献   

9.
Summary Idealized numerical simulations using the Weather and Research Forecast (WRF) model indicate that three flow regimes, based on the moist Froude number, can be identified for a conditionally unstable, rotational, horizontally homogeneous, uniformly stratified flow over an idealized, three-dimensional, mesoscale mountain stretched spanwise to the impinging flow: (I) a quasi-stationary upslope convective system and an upstream-propagating convective system, (II) a quasi-stationary upslope convective system, and (III) a stationary upslope convective system and a quasi-stationary downstream convective system. Several major differences from a similar type of flow with no rotation over a two-dimensional mountain range are found. One important finding is that relatively strong mean flow produces a quasi-stationary mesoscale convective system (MCS) and maximum rainfall on the windward slope (upslope rain), instead of on the mountain peak or over the lee side.We found that the Coriolis force helps produce heavy upslope rainfall by making transition from flow-around the eastern part of the upslope to flow-over the western part of the upslope (transits to a higher flow regime) by deflecting the incident southerly flow to become east–southeasterly barrier winds. We found that the addition of the western flank of the arc-shaped mountain helps slow down the barrier wind from east and causes the maximum rainfall to move east of the windward slope. A lower-Froude number flow tends to produce a rainfall maximum near the concave region.Several other important facts can also be found in this study. The ratio of the maximum grid scale rainfall to the sub-grid scale rainfall increases when the moist Froude number increases. When the CAPE decreases, it is found that the upstream moist flow tends to shift to a higher Froude-number regime. Therefore, the Froude number cannot solely be used to define a moist flow regime when different CAPEs are considered. In another word, other parameters, such as CAPE, might play an important role in determining moist flow regimes.  相似文献   

10.
Arctic outbreaks over the Canadian Western Plains during the late spring period frequently take the form of a cold east-northeasterly flow over a warmer, sloping surface. A mesoscale numerical model is developed in an attempt to simulate such circulations. Following Lavoie (1972) the atmospheric structure of the cold air mass is represented by three layers: a constant flux layer in contact with the earth's surface, a well-mixed planetary boundary layer capped by an inversion, and a deep stratum of overlying stable air. Averaging the set of governing primitive equations through the depth of the mixed layer yields predictive equations for the horizontal wind components, potential temperature, specific humidity, and the height of the inversion. Time-dependent calculations are limited to this layer by parameterizing the interactions between the mixed layer and both the underlying and overlying layers. Precipitation from limited convective clouds, and latent heat within the layer are included in terms of mesoscale variables.A 47.6-km by 47.6-km grid mesh of 1369 points covering the Canadian Prairie Provinces is used to represent the variables. The governing equations are solved numerically with terrain influences, surface roughness, temperature variations, and moisture fluxes allowed to perturb the mixed layer from its initial conditions until resultant mesoscale boundary-layer weather patterns evolve.The mean spring topographic precipitation pattern is successfully reproduced by the simulated late spring upslope flow with limited convective precipitation. Mesoscale planetary boundary-layer weather patterns appear to exert a dominant control over the location and intensity of perturbations in the spring precipitation pattern. The elimination of surface heating significantly reduces the area and intensity of precipitation. A case study based on observed initial conditions showed that the model could reproduce a persistent limited convective precipitation pattern maintained by upslope flow and that a low-level trough exerts a marked influence on the location and the intensity of the precipitation.  相似文献   

11.
Summary Numerical experiments are performed for inviscid flow past an idealized topography to investigate the formation and development of lee mesolows, mesovortices and mesocyclones. For a nonrotating, low-Froude number flow over a bell-shaped moutain, a pair of mesovortices form on the lee slope move downstream and weaken at later times. The advection speed of the lee vortices is found to be about two-thirds of the basic wind velocity, which is due to the existence of a reversed pressure gradient just upstream of the vortices. The lee vortices do not concur with the upstream stagnation point in time, but rather form at a later time. It is found that a pair of lee vortices form for a flow withFr=0.66, but take a longer time to form than in lower-Froude number flows. Since the lee vortices are formed rather progressively, their formation may be explained by the baroclinically-induced vorticity tilting as the mountain waves become more and more nonlinear.A stationary mesohigh and mesolow pressure couplet forms across the mountain and is produced in both high and low-Froude number flows. The results of the high Froude number simulations agree well with the classical results predicted by linear, hydrostatic mountain wave theory. It is found that the lee mesolow is not necessarily colocated with the lee vortices. The mesolow is formed by the downslope wind associated with the orographically forced gravity waves through adiabatic warming. The earth's rotation acts to strengthen (weaken) the cyclonic (anticyclonic) vortex and shifts the lee mesolow to the right for an observer facing downstream. The cyclonic vortex then develops into a mesocyclone with the addition of planetary vorticity at later times. For a flow over a steeper mountain, the disturbance is stronger even though the Froude number is kept the same.For a southwesterly flow past the real topography of Taiwan, there is no stagnation point or lee vortices formed because the impinging angle of the flow is small. A major mesoscale low forms to the southeast of the Central Mountain Range (CMR), while a mesohigh forms upstream. For a westerly flow past Taiwan, a stagnation point forms upstream of the mountain and a pair of vortices form on the lee and move downstream at later times. The cyclonic vortex then develops into a mesocyclone. A mesolow also forms to the southeast of Taiwan. For a northeasterly flow past Taiwan, the mesolow forms to the northwest of the mountain. Similar to flows over idealized topographies, the Taiwan mesolow is formed by the downslope wind associated with mountain waves through adiabatic warming. A conceptual model of the Taiwan southeast mesolow and mesocyclone is proposed.With 16 Figures  相似文献   

12.
This paper investigates the impact of soil moisture-temperature feedback during heatwaves occurring over France between 1989 and 2008. Two simulations of the weather research and forecasting regional model have been analysed, with two different land-surface models. One resolves the hydrology and is able to simulate summer dryness, while the other prescribes constant and high soil moisture and hence no soil moisture deficit. The sensitivity analysis conducted for all heatwave episodes highlights different soil moisture-temperature responses (1) over low-elevation plains, (2) over mountains and (3) over coastal regions. In the plains, soil moisture deficit induces less evapotranspiration and higher sensible heat flux. This has the effect of heating the planetary boundary layer and at the same time of creating a general condition of higher convective instability and a slight increase of shallow cloud cover. A positive feedback is created which increases the temperature anomaly during the heatwaves. In mountainous regions, enhanced heat fluxes over dry soil reinforce upslope winds producing strong vertical motion over the mountain slope, first triggered by thermal convection. This, jointly to the instability conditions, favors convection triggering and produces clouds and precipitation over the mountains, reducing the temperature anomaly. In coastal regions, dry soil enhances land/sea thermal contrast, strengthening sea-breeze circulation and moist cold marine air advection. This damps the magnitude of the heatwave temperature anomaly in coastal areas, expecially near the Mediterranean coast. Hence, along with heating in the plains, soil dryness can also have a significant cooling effect over mountains and coastal regions due to meso-scale circulations.  相似文献   

13.
Summary. ?The airflow over an idealized orography with two mountain peaks and a valley between is investigated using a non-linear numerical model. The flow is assumed to be two-dimensional and nonrotational. Surface friction is neglected. This setup is a first step in studying the modifications a finely structured “real” topography introduces to the well-studied flow over one isolated obstacle. The sensitivity of the flow behavior to the valley width is examined for the case of specified mountain volume as well as constant non-dimensional mountain height. Flow patterns for linear, weakly nonlinear, wave breaking and upstream blocking cases are examined. Whereas the nondimensional mountain height is still the main measure of the nonlinearity of the flow, the differing steepness of upslope and downslope caused by the separating valley, strengthens nonlinear effects. It also modifies wave breaking and upstream blocking. For wide enough valleys wave breaking regions can form above both peaks. Received January 20, 1999/Revised June 28, 1999  相似文献   

14.
对称和非对称地形对冷锋锋生过程的影响   总被引:1,自引:0,他引:1  
农尚尧  吕克利 《大气科学》1994,18(Z1):879-888
本文利用半地转模式研究了对称和非对称地形以及双地形对冷锋锋生过程的影响。计算结果显示,地形坡度愈大,越容易产生背风气旋,并且其强度也愈大;背风气旋的强度主要由背风坡坡度决定。山对锋面垂直速度的增幅作用随地形坡度增大而增大,地形坡度越大.出现多次极大上升速度的可能性也越大。冷锋过双地形时,其锋面强度有两次减弱和加强的过程,上升速度得到明显加强,并有可能在锋前产生多条中尺度上升运动带,在合适的水汽条件下,冷锋过双地形有可能产生多重中尺度雨带,其间隔与锋面本身的尺度相当。  相似文献   

15.
Summary Surface wind patterns and air flows within the planetary boundary layer over a large three-dimensional hill of moderate slope are grouped according to Froude number classes. An evolution of flow patterns is shown to occur as the Froude number increases.Separation of the surface flow begins at the base of the lee side of the mountain near the centerline, moving upward on the lee slope as the Froude number increases. Recirculating eddies follow the separation of the lee flow. Eventually the separation line moves forward to the windward side as the Froude number becomes very large. The recirculating eddy becomes unsteady, with indication of an intermittent counterrolating eddy near the lee surface in neutral flow. The lee-side turbulence is enhanced with respect to the windward side due to the large eddies in high Froude number regimes.The concept of a critical height for the approach flow is generally supported. The integral form of the Froude number does not appear to be superior to a bulk Froude calculation in representing a particular airflow pattern.With 6 FiguresDeceased.  相似文献   

16.
新疆克拉玛依强下坡风暴的机理研究   总被引:1,自引:0,他引:1  
卢冰  史永强  王光辉  岳斌 《气象学报》2014,72(6):1218-1230
利用美国中尺度数值模式 WRF 对2013年3月7—8日克拉玛依强风进行了模拟,对下坡风发生、发展和结束3个阶段的三维结构特征进行了分析,并由此提出克拉玛依强下坡风的形成机制模型:上游地区出现中高层西南风、低层西北风并伴有强冷平流的配置,当风速不断增大时,气流能够翻越加依尔山在背风坡侧形成重力波,重力波相位向气流上游方向倾斜产生非线性效应,促进了波不稳定区域的形成并导致波破碎,形成湍流活跃层,不断把上层的能量向下传播;克拉玛依中低层形成三层夹心的大气层结稳定度分布,出现明显的过渡气流带从而导致强下坡风的形成;南北风分量在低层和中层符号相反,形成了临界层,不断吸收上层波能量并向地面传送,强下坡风暴不断维持发展。最后利用2006—2012年克拉玛依33个强下坡风过程中的探空观测资料对提出的形成机制进行了验证。  相似文献   

17.
The 2018 Winter Olympic and Paralympic Games will be held in Pyeongchang, Korea, during February and March. We examined the near surface winds and wind gusts along the sloping surface at two outdoor venues in Pyeongchang during February and March using surface wind data. The outdoor venues are located in a complex, mountainous terrain, and hence the near-surface winds form intricate patterns due to the interplay between large-scale and locally forced winds. During February and March, the dominant wind at the ridge level is westerly; however, a significant wind direction change is observed along the sloping surface at the venues. The winds on the sloping surface are also influenced by thermal forcing,showing increased upslope flow during daytime. When neutral air flows over the hill, the windward and leeward flows show a significantly different behavior. A higher correlation of the wind speed between upper-and lower-level stations is shown in the windward region compared with the leeward region. The strong synoptic wind, small width of the ridge, and steep leeward ridge slope angle provide favorable conditions for flow separation at the leeward foot of the ridge. The gust factor increases with decreasing surface elevation and is larger during daytime than nighttime. A significantly large gust factor is also observed in the leeward region.  相似文献   

18.
Summary A two-dimensional nonhydrostatic numerical model was used to investigate the behaviour of a cold air gravity current, moving along complex terrain. It is found, that the model with a high horizontal and vertical resolution and with a closure scheme, using the turbulent kinetic energy, is suitable to simulate currents, which have the main features of those found in laboratory experiments.Simulations are presented for different orographic structures (mountain and valley), for varying thermal stratification of the environmental atmosphere (neutral, stable and stable with an elevated inversion) and for different heights of the cold air reservoir.The major effect of a hill on the advance of a gravity current is a reduction of the front speed upstream as well as (even stronger) downstream of the obstacle, where the amount of this decrease depends on thermal stratification. Near surface blocking of the air flow on the windward side occurs for all simulations. However, for small depths of the oncoming cold air, the current cannot surmount the hill and remains on the lee side.With 11 Figures  相似文献   

19.
气流的垂直分布对地形雨落区的影响   总被引:49,自引:6,他引:43  
孙继松 《高原气象》2005,24(1):62-69
从大气运动的基本方程出发,讨论了华北地区太行山东侧低空东风气流背景下不同垂直分布气流对降水落区的影响。认为:当垂直于山体的气流随高度减小时,地形的作用表现为迎风坡上水平辐合,造成气旋式涡度增加,产生风场切变,因此对迎风坡降水产生明显的增幅作用。当气流的垂直分布随高度增加时,迎风坡方向表现为反气旋涡度增强,而在背风坡方向产生辐合作用,造成气旋式涡度增加,发生风场切变。  相似文献   

20.
李唐棣  谈哲敏 《气象学报》2012,70(3):536-548
在条件不稳定大气条件下,二维小尺度双脊钟形地形上空对流触发、传播和降水分布特征主要决定于地形上游基流强度、双脊地形配置形式、地形高度及其山谷宽度。双脊地形在沿基流方向上有两种配置:高脊地形位于上游和低脊地形位于上游。对于高脊地形位于上游的双脊地形,上游高地形将起主导作用,山地上空对流及降水特征与单脊地形类似。对于低脊地形位于上游的双脊地形,上游低地形可明显地改变下游高地形的前方来流,同时,下游高地形也能够对上游低地形背风侧流动产生影响,从而导致出现地形上空复杂的对流传播、降水分布特征。对于低脊地形位于上游的双脊地形,其山谷宽度主要决定了双脊地形与单脊地形之间在对流、降水分布等的差异;当山谷宽度较小时,双脊地形可以近似为一个包络地形,此时地形上空的对流、降水特征与单脊地形类似;当山谷宽度较大时,双脊上空流动相互影响较小,此时双脊地形可以分成两个单脊地形;当山谷宽度在一定范围内,其上空的对流及其降水分布与单脊地形有明显差异。对于低脊地形位于上游、中等山谷宽度的双脊地形上空降水主要呈现4种类型:(1)山谷与低脊迎风坡降水;(2)高脊迎风坡降水;(3)低脊山峰与高脊迎风坡降水;(4)低脊背风侧、双脊山峰准静止降水。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号