首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
利用NCEP/DOE再分析资料,通过EOF分解、合成分析和线性回归等多种统计学方法,对年际时间尺度上冬季中东副热带西风急流(Middle East subtropical westerly Jet stream,MEJ)中心位置的变化进行研究,分析了MEJ中心位置的年际变化与大气环流的联系,找到了与MEJ中心位置相联系...  相似文献   

2.
In a weakly nonlinear model how an initial dipole mode develops to the North Atlantic Oscillation (NAO) in a localized shifting jet under the prescribed eddy forcing is examined. It is found that the zonal structure of the eddy-driven NAO anomaly is not only dominated by the longitudinal distribution of the preexisting Atlantic storm track, but also by the initial condition of the NAO anomaly itself associated with the interaction between a localized shifting jet and a topographic standing wave over the Atlantic basin. When both the initial NAO anomaly and the eddy vorticity forcing in the prior Atlantic storm track are more zonally localized, the subsequent eddy-driven NAO anomaly can be more zonally isolated and asymmetric. But, it seems that the shape of the initial NAO anomaly associated with the latitudinal shift of a prior Atlantic jet plays a more important role in producing the zonal asymmetry of subsequent NAO patterns. The zonal asymmetry of the NAO anomaly can be enhanced as the height of topography increases. In addition, it is further found that blocking events occur easily over the Europe continent through the decaying of positive-phase NAO events. However, prior to the positive-phase NAO life cycle the variability in each of three factors: the Atlantic jet, the eddy vorticity forcing in the Atlantic storm track and the initial NAO anomaly can result in a variation in the blocking activity over the Europe sector in strength, duration, position and pattern.  相似文献   

3.
In this study, the El Nino-Southern Oscillation (ENSO) phase-locking to the boreal winter in CMIP3 and CMIP5 models is examined. It is found that the models that are poor at simulating the winter ENSO peak tend to simulate colder seasonal-mean sea-surface temperature (SST) during the boreal summer and associated shallower thermocline depth over the eastern Pacific. These models tend to amplify zonal advection and thermocline depth feedback during boreal summer. In addition, the colder eastern Pacific SST in the model can reduce the summertime mean local convective activity, which tends to weaken the atmospheric response to the ENSO SST forcing. It is also revealed that these models have more serious climatological biases over the tropical Pacific, implying that a realistic simulation of the climatological fields may help to simulate winter ENSO peak better. The models that are poor at simulating ENSO peak in winter also show excessive anomalous SST warming over the western Pacific during boreal winter of the El Nino events, which leads to strong local convective anomalies. This prevents the southward shift of El Nino-related westerly during boreal winter season. Therefore, equatorial westerly is prevailed over the western Pacific to further development of ENSO-related SST during boreal winter. This bias in the SST anomaly is partly due to the climatological dry biases over the central Pacific, which confines ENSO-related precipitation and westerly responses over the western Pacific.  相似文献   

4.
北极涛动的纬向对称结构   总被引:4,自引:3,他引:1  
运用NCEP/NCAR再分析月资料,分季节研究了北极涛动的纬向结构,以及与之相对应的纬向平均纬向风和经圈环流异常的空间结构特征,并初步探讨了北极涛动的维持机制。结果表明,北极涛动在水平方向上主要呈纬向对称的环形模态,且这种结构在冬季北极涛动的活跃期表现更为显著;而夏季纬向对称型随季节风带的北移和极涡的减弱,其节点也相应向极地移动。与北极涛动纬向对称型相联系的纬向平均纬向风在冬季表现为明显的偶极型,向上延伸到平流层;而夏季这种形态明显减弱,并只限于对流层中。与冬、夏季北极涛动纬向对称型相对应的平均经圈环流异常均表现为增强的费雷尔环流和哈得来环流,这种形势有利于北极涛动形成正反馈机制,使之得以长期维持。  相似文献   

5.
东亚西风急流变化与热带对流加热关系的研究   总被引:38,自引:14,他引:24       下载免费PDF全文
应用OLR资料和高空格点资料,研究了东亚地区西风急流及其附近的纬向西风与热带地区对流加热场的关系。结果表明西风急流中心的季节变化是和热带加热场的季节变化紧密的联系在一起的。东亚地区的纬向西风强度的年变化与热带加热场的同期及前期状况也密切相关,这种关系可以作为预测我国江淮地区夏季梅雨的一个强信号。  相似文献   

6.
Observations show that there was change in interannual North Atlantic Oscillation (NAO) variability in the mid-1970s. This change was characterized by an eastward shift of the NAO action centres, a poleward shift of zonal wind anomalies and a downstream extension of climate anomalies associated with the NAO. The NAO interannual variability for the period after the mid-1970s has an annular mode structure that penetrates deeply into the stratosphere, indicating a strengthened relationship between the NAO and the Arctic Oscillation (AO) and strengthened stratosphere-troposphere coupling. In this study we have investigated possible causes of these changes in the NAO by carrying out experiments with an atmospheric GCM. The model is forced either by doubling CO2, or increasing sea surface temperatures (SST), or both. In the case of SST forcing the SST anomaly is derived from a coupled model simulation forced by increasing CO2. Results indicate that SST and CO2 change both force a poleward and eastward shift in the pattern of interannual NAO variability and the associated poleward shift of zonal wind anomalies, similar to the observations. The effect of SST change can be understood in terms of mean changes in the troposphere. The direct effect of CO2 change, in contrast, can not be understood in terms of mean changes in the troposphere. However, there is a significant response in the stratosphere, characterized by a strengthened climatological polar vortex with strongly enhanced interannual variability. In this case, the NAO interannual variability has a strong link with the variability over the North Pacific, as in the annular AO pattern, and is also strongly related to the stratospheric vortex, indicating strengthened stratosphere-troposphere coupling. The similarity of changes in many characteristics of NAO interannual variability between the model response to doubling CO2 and those in observations in the mid-1970s implies that the increase of greenhouse gas concentration in the atmosphere, and the resulting changes in the stratosphere, might have played an important role in the multidecadal change of interannual NAO variability and its associated climate anomalies during the late twentieth century. The weak change in mean westerlies in the troposphere in response to CO2 change implies that enhanced and eastward extended mid-latitude westerlies in the troposphere might not be a necessary condition for the poleward and eastward shift of the NAO action centres in the mid-1970s.  相似文献   

7.
The role of El Niño/Southern Oscillation (ENSO) and the mechanism through which ENSO influences the precipitation variability over northwest India and the adjoining (NWIA) region is well documented. In this study, the relative role of North Atlantic Oscillation (NAO)/Arctic Oscillation (AO) and ENSO in modulating the Asian jet stream in the Northern Hemisphere winter and their relative impact on the precipitation variability over the region have been estimated through analysis of observed data. It is seen that interannual variations of NWIA precipitation are largely influenced by ENSO. An empirical orthogonal function (EOF) analysis has been carried out to understand dominant modes of interannual variability of zonal wind at 200 hPa of the Northern Hemisphere. The EOF-1 pattern in the tropical region is similar to that of an ENSO pattern, and the principal component (PC) time series corresponds to the ENSO time series. The EOF-2 spatial pattern resembles that of NAO/AO with correlation of PC time series with AO and NAO being 0.74 and 0.62, respectively. The precipitation anomaly time series over the region of interest has marginally higher correlation with the PC-2 time series as compared to that of PC-1. Regression analysis of precipitation and circulation parameters indicates a larger contribution of the second mode to variability of winds and precipitation over the NWIA. Moisture transport from the Arabian Sea during the active phase of NAO/AO and the presence of a cyclonic anomaly lead to higher precipitation over the NWIA region.  相似文献   

8.
利用ECHAM5全球大气环流模式研究了印度洋海温异常年际变率模态从冬至夏的演变对我国东部地区夏季降水影响的机制。观测资料研究表明:对于正的印度洋海温异常年际变率模态,春、夏季热带印度洋和澳大利亚以西洋面(东极子)均为水汽的异常源区,向马达加斯加以东南洋面(西极子)及印度洋邻近大陆提供水汽。夏季,印度洋地区南极涛动、马斯克林高压加强;而印度季风低压和南亚高压均减弱,对应于印度夏季风减弱。夏季印度洋地区正压性的纬向风异常经向遥相关使热带印度洋地区出现西风异常,导致海洋性大陆地区对流活动减弱,而菲律宾海地区对流活动加强,进而导致西太平洋副热带高压偏弱、位置偏东北。对于负的印度洋海温异常年际变率模态,则反之。模式结果基本支持了已有的观测资料诊断结果。  相似文献   

9.
The El Nin o-Southern Oscillation (ENSO) is modulated by many factors; most previous studies have emphasized the roles of wind stress and heat flux in the tropical Pacific. Freshwater flux (FWF) is another environmental forcing to the ocean; its effect and the related ocean salinity variability in the ENSO region have been of increased interest recently. Currently, accurate quantifications of the FWF roles in the climate remain challenging; the related observations and coupled ocean-atmosphere modeling involve large elements of uncertainty. In this study, we utilized satellite-based data to represent FWF-induced feedback in the tropical Pacific climate system; we then incorporated these data into a hybrid coupled ocean-atmosphere model (HCM) to quantify its effects on ENSO. A new mechanism was revealed by which interannual FWF forcing modulates ENSO in a significant way. As a direct forcing, FWF exerts a significant influence on the ocean through sea surface salinity (SSS) and buoyancy flux (Q B ) in the western-central tropical Pacific. The SSS perturbations directly induced by ENSO-related interannual FWF variability affect the stability and mixing in the upper ocean. At the same time, the ENSO-induced FWF has a compensating effect on heat flux, acting to reduce interannual Q B variability during ENSO cycles. These FWF-induced processes in the ocean tend to modulate the vertical mixing and entrainment in the upper ocean, enhancing cooling during La Nin a and enhancing warming during El Nin o, respectively. The interannual FWF forcing-induced positive feedback acts to enhance ENSO amplitude and lengthen its time scales in the tropical Pacific coupled climate system.  相似文献   

10.
Using ERA-40 reanalysis daily data for the period 1958-2002,this study investigated the effect of transient eddy(TE) on the interannual meridional displacement of summer East Asian subtropical jet(EASJ) by conducting a detailed dynamical diagnosis.The summer EASJ axis features a significant interannual coherent meridional displacement.Associated with such a meridional displacement,the TE vorticity forcing anomalies are characterized by a meridional dipole pattern asymmetric about the climatological EASJ axis.The TE vorticity forcing anomalies yield barotropic zonal wind tendencies with a phase meridionally leading the zonal wind anomalies,suggesting that they act to reinforce further meridional displacement of the EASJ and favor a positive feedback in the TE and time-mean flow interaction.However,The TE thermal forcing anomalies induce baroclinic zonal wind tendencies that reduce the vertical shear of zonal wind and atmospheric baroclinicity and eventually suppress the TE activity,favoring a negative feedback in the TE and time-mean flow interaction.Although the two types of TE forcing tend to have opposite feedback roles,the TE vorticity forcing appears to be dominant in the TE effect on the time-mean flow.  相似文献   

11.
Huang  Ruping  Chen  Shangfeng  Chen  Wen  Yu  Bin  Hu  Peng  Ying  Jun  Wu  Qiaoyan 《Climate Dynamics》2021,56(11):3643-3664

Compared to the zonal-mean Hadley cell (HC), our knowledge of the characteristics, influence factors and associated climate anomalies of the regional HC remains quite limited. Here, we examine interannual variability of the northern poleward HC edge over western Pacific (WPHCE) during boreal winter. Results suggest that interannual variability of the WPHCE is impacted by the El Niño-Southern Oscillation (ENSO) Modoki, North Pacific Oscillation (NPO) and North Atlantic Oscillation (NAO). The WPHCE tends to shift poleward during negative phase of the ENSO Modoki, and positive phases of the NPO and NAO, which highlights not merely the tropical forcing but also the extratropical signals that modulate the WPHCE. ENSO modoki, NPO and NAO modulate the WPHCE via inducing atmospheric anomalies over the western North Pacific. We further investigate the climatic impacts of the WPHCE on East Asia. The poleward shift of the northern descending branch of the WPHC results in anomalous upward (downward) motions and upper-level divergence (convergence) anomalies over south-central China (northern East-Asia), leading to increased (decreased) rainfall there. Moreover, pronounced cold surface air temperature anomalies appear over south-central China when the sinking branch of the WPHC moves poleward. Based on the temperature diagnostic analysis, negative surface temperature tendency anomalies over central China are mostly attributable to the cold zonal temperature advection and ascent-induced adiabatic cooling, while the negative anomalies over South China are largely due to the cold meridional temperature advection. These findings could improve our knowledge of the WPHCE variability and enrich the knowledge of forcing factors for East Asian winter climate.

  相似文献   

12.
The potential role of tropical Pacific forcing in driving the seasonal variability of the Arctic Oscillation (AO) is explored using both observational data and a simple general circulation model (SGCM). A lead–lag regression technique is first applied to the monthly averaged sea surface temperature (SST) and the AO index. The AO maximum is found to be related to a negative SST anomaly over the tropical Pacific three months earlier. A singular value decomposition (SVD) analysis is then performed on the tropical Pacific SST and the sea level pressure (SLP) over the Northern Hemisphere. An AO-like atmospheric pattern and its associated SST appear as the second pair of SVD modes. Ensemble integrations are carried out with the SGCM to test the atmospheric response to different tropical Pacific forcings. The atmospheric response to the linear fit of the model’s empirical forcing associated with the SST variability in the second SVD modes strongly projects onto the AO. Idealized thermal forcings are then designed based on the regression of the seasonally averaged tropical Pacific precipitation against the AO index. Results indicate that forcing anomalies over the western tropical Pacific are more effective in generating an AO-like response while those over the eastern tropical Pacific tend to produce a Pacific-North American (PNA)-like response. The physical mechanisms responsible for the energy transport from the tropical Pacific to the extratropical North Atlantic are investigated using wave activity flux and vorticity forcing formalisms. The energy from the western tropical Pacific forcing tends to propagate zonally to the North Atlantic because of the jet stream waveguide effect while the transport of the energy from the eastern tropical Pacific forcing mostly concentrates over the PNA area. The linearized SGCM results show that nonlinear processes are involved in the generation of the forced AO-like pattern.  相似文献   

13.
This paper analyzes interannual variations of the blocking high over the Ural Mountains in the boreal winter and their association with the Arctic Oscillation/North Atlantic Oscillation (AO/NAO).In Jan...  相似文献   

14.
There is still considerable uncertainty concerning twentieth century trends in the Pacific Walker Circulation (PWC). In this paper, observational datasets, coupled (CMIP5) and uncoupled (AGCM) model simulations, and additional numerical sensitivity experiments are analyzed to investigate twentieth century changes in the PWC and their physical mechanisms. The PWC weakens over the century in the CMIP5 simulations, but strengthens in the AGCM simulations and also in the observational twentieth century reanalysis (20CR) dataset. It is argued that the weakening in the CMIP5 simulations is not a consequence of a reduced global convective mass flux expected from simple considerations of the global hydrological response to global warming, but is rather due to a weakening of the zonal equatorial Pacific sea surface temperature (SST) gradient. Further clarification is provided by additional uncoupled atmospheric general circulation model simulations in which the ENSO-unrelated and ENSO-related portions of the observed SST changes are prescribed as lower boundary conditions. Both sets of SST forcing fields have a global warming trend, and both sets of simulations produce a weakening of the global convective mass flux. However, consistent with the strong role of the zonal SST gradient, the PWC strengthens in the simulations with the ENSO-unrelated SST forcing, which has a strengthening zonal SST gradient, despite the weakening of the global convective mass flux. Overall, our results suggest that the PWC strengthened during twentieth century global warming, but also that this strengthening was partly masked by a weakening trend associated with ENSO-related PWC variability.  相似文献   

15.
In the study authors analyzed the interannual relationship between the Arctic Oscillation (AO)/North Atlantic Oscillation (NAO) and the tropical Indian Ocean (TIO) precipitation in boreal winter for the period 1979–2009. A significant simultaneous teleconnection between them is found. After removing the El Niño/Southern Oscillation and Indian Ocean dipole signals, the AO/NAO and the TIO precipitation (0°–10°S, 60°–80°E) yield a correlation of +0.56, which is also consistent with the AO/NAO-outgoing longwave radiation correlation of ?0.61. The atmospheric and oceanic features in association with the AO/NAO-precipitation links are investigated. During positive AO/NAO winter, the Rossby wave guided by westerlies tends to trigger persistent positive geopotential heights in upper troposphere over about 20°–30°N and 55°–70°E, which is accompanied by a stronger Middle East jet stream. Meanwhile, there are anomalous downward air motions, strengthening the air pressure in mid-lower troposphere. The enhanced Arabian High brings anomalous northern winds over the northern Indian Ocean. As a result the anomalous crossing-equator air-flow enhances the intertropical convergence zone (ITCZ). On the other hand, the anomalous Ekman transport convergence by the wind stress curl over the central TIO deepens the thermocline. Both the enhanced ITCZ and the anomalous upper ocean heat content favor in situ precipitation in the central TIO. The AO/NAO-TIO precipitation co-variations in the IPCC AR4 historical climate simulation (1850–1999) of Bergen Climate Model version 2 were investigated. The Indian Ocean precipitation anomalies (particularly the convective precipitation along the ITCZ), in conjunction with the corresponding surface winds and 200 hPa anticyclonic atmospheric circulation and upper ocean heat contents were well reproduced in simulation. The similarity between the observation and simulation support the physical robustness of the AO/NAO-TIO precipitation links.  相似文献   

16.
Although it is well known that the tropical easterly jet(TEJ)has a significant impact on summer weather and climate over India and Africa,whether the TEJ exerts an important impact on tropical cyclone(TC)activity over the western North Pacific(WNP)remains unknown.In this study,we examined the impact of the TEJ on the interannual variability of TC genesis frequency over the WNP in the TC season(June-September)during 1980-2020.The results show a significant positive correlation between TC genesis frequency over the WNP and the jet intensity in the entrance region of the TEJ over the tropical western Pacific(in brief WP_TEJ),with a correlation coefficient as high as 0.66.The intensified WP_TEJ results in strong ageostrophic northerly winds in the entrance region and thus upper-level divergence to the north of the jet axis over the main TC genesis region in the WNP.This would lead to an increase in upward motion in the troposphere with enhanced low-level convergence,which are the most important factors to the increases in low-level vorticity,mid-level humidity and low-level eddy kinetic energy,and the decreases in sea level pressure and vertical wind shear in the region.All these changes are favorable for TC genesis over the WNP and vice versa.Further analyses indicate that the interannual variability of the WP_TEJ intensity is likely to be linked to the local diabatic heating over the Indian Ocean-western Pacific and the central Pacific El Ni?o-Southern Oscillation.  相似文献   

17.
The interannual variability of the Madden– Julian Oscillation (MJO) is investigated in an ensemble of 15 experiments performed with the ECHAM4 T30 general circulation model (GCM). The model experiments have been performed with AMIP conditions from January 1979 to December 1993. The MJO signal has been identified applying a principal oscillation pattern (POP) analysis to the 200-mb tropical velocity potential. The results obtained from the model ensemble are compared with 15?y of ECMWF re-analysis and OLR observations. The results suggest that the warm and cold phases of El Niño have some influence on the spatial propagation of the oscillation. Both in the re-analysis and in the model ensemble, the results indicate that during La Niña conditions the MJO is mostly confined west of the date line, with the largest activity located over the Indian Ocean and the western Pacific. In warm El Niño conditions, the convective anomalies associated with the oscillation appear to penetrate farther into the central Pacific. These changes in the MJO convective forcing seem to affect the zonal mean of the rotational component of the flow anomaly, which tends to weaken during warm El Niño periods. Some weak reproducibility of the interannual variability of the MJO activity is found. The results obtained from four-member and eight-member subsamples of the ensemble indicate that the reproducibility of the interannual behaviour of the MJO can be detected by choosing an ensemble of a larger size. Corresponding to the emergence of reproducibility with the increasing size of the sample, the correlation between the MJO activity and the Niño-3 SST anomaly appears to in-tensify.  相似文献   

18.
The strength of the East Asian summer monsoon and associated rainfall has been linked to the western North Pacific subtropical high (WNPSH) and the lower-tropospheric low pressure system over continental East Asia (EA). In contrast to the large number of studies devoted to the WNPSH, little is known about the variability of the East Asian continental low. The present study delineates the East Asian continental low using 850-hPa geopotential height. Since the low is centered over northern EA (NEA), we refer to it as the NEA low (NEAL). We show that the intensity of the NEAL has large interannual variation, with a dominant period of 2–4 years. An enhanced NEAL exhibits a barotropic structure throughout the whole troposphere, which accelerates the summer-mean upper-tropospheric westerly jet and lower-tropospheric monsoon westerly to its south. We carefully identify the anomalous NEAL-induced rainfall anomalies by removal of the tropical heating effects. An enhanced NEAL not only increases rainfall locally in northern Northeast China, but also shifts the East Asian subtropical front northward, causing above-normal rainfall extending eastward from the Huai River valley across central-northern Japan and below-normal rainfall in South China. The northward shift of the East Asian subtropical front is attributed to the following processes without change in the WNPSH: an enhanced NEAL increases meridional pressure gradients and the monsoon westerly along the East Asian subtropical front, which in turn induces a cyclonic shear vorticity anomaly to its northern side. The associated Ekman pumping induces moisture flux convergence that shifts the East Asian subtropical front northward. In addition, the frequent occurrence of synoptic cut-off lows is found to be associated with an enhanced NEAL. Wave activity analysis indicates that the interannual intensity change of the NEAL is significantly associated with the extratropical Polar Eurasian teleconnection, in addition to the forcing of the tropical WNP heating.  相似文献   

19.
Inter-annual and -decadal scale variability in drought over the Abitibi Plains ecoregion (eastern Canada) was investigated using a 380-year dendroclimatic reconstruction of the Canadian Drought Code (CDC; July monthly average) i.e., a daily numerical rating of the average moisture content of deep organic layers. Spectral analyses conducted on the reconstructed CDC indicated a shift in spectral power after 1850 leading toward a reduction in interdecadal variability and an increase in interannual variability. Investigation on the causes for this shift suggested a decrease in North Pacific forcing after the mid-nineteenth century. Cross-continuous wavelet transformation analyses indicated coherency in the 8–16 and 17–32-year per cycle oscillation bands between the CDC reconstruction and the Pacific Decadal Oscillation (PDO) prior to 1850. Following 1850, the coherency shifted toward the North Atlantic Oscillation (NAO). Principal component analysis conducted over varying time windows reaffirmed that the Pacific forcing was restricted to the period about 1750–1850. Prior to and after this period, the CDC was correlated with the NAO. The shift around 1850 could reflect a northward displacement of the polar jet stream induced by a warming of the sea surface temperature along the North Pacific coast. A northward displacement of the jet stream, which inhibits the outflow of cold and dry Arctic air, could have allowed the incursion of air masses from the Atlantic subtropical regions.  相似文献   

20.
This work examines the relevance of a classical two-column modeling framework of the tropical climate in terms of observed natural variability. A method is developed to analyze the observed tropical climate in a simple framework that features a moist, ascending column and a dry, subsiding one. This method is used to analyze the natural variability of the tropical climate in the ERA40 reanalysis and in ISCCP satellite data. It appears that the seasonal cycle of the tropic-wide sea surface temperature (SST) is almost linearly linked to the seasonal cycle of the relative area of the moist regions, as predicted by the sensitivity of the two-column models. A more detailed analysis shows that this link is the product of a complex interaction and adjustments between the moist and dry regions. The seasonal cycle of low-cloud cover in the dry regions also appears to interact with the SST seasonal cycle: the low-cloud cover influences the tropic-wide SST via its direct radiative forcing on the local SST and it appears to be controlled by the SST difference between moist and dry regions. By contrast, the SST interannual variability appears to be driven by the El Ni?o Southern Oscillation (ENSO), with no significant impact from the changes in the relative area of the moist regions or in the low-cloud cover in the dry regions independently of the ENSO. ENSO-related changes in the area of moist regions and low-cloud cover constitute negative feedbacks on the ENSO-related SST variability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号