首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
近30年青藏高原雪深时空变化特征分析   总被引:3,自引:2,他引:1  
除多  洛桑曲珍  林志强  杨勇 《气象》2018,44(2):233-243
利用1981—2010年地面雪深观测资料较系统地分析了近30年青藏高原(以下简称高原)积雪深度的时空变化特点。主要结论如下:(1)高原雪深大值区主要在喜马拉雅山脉南麓,小值区则在高原南部干暖河谷和北部柴达木盆地,30年间高原平均最大雪深出现了显著减少趋势,减幅达0.55cm·(10a)-1,1997年前后高原雪深出现了由大到小的气候突变。(2)春季是高原平均积雪深度最大的季节,30年里平均最大雪深下降趋势非常显著,下降幅度为0.47cm·(10a)-1,且在1998年出现了由大到小的气候突变。(3)秋、冬季,高原平均最大雪深减少趋势不明显,但在不同区域雪深增减趋势不尽相同。秋季56%的台站呈减少趋势,而31%的台站有不同程度的增加;冬季61%的台站出现了减少趋势,而且减幅较大的台站基本分布在高原西南,而31%的台站则出现了增加趋势,多数分布在高原东部。(4)夏季高原积雪分布极为有限,仅在海拔和纬度较高的高寒地区有积雪,近30年雪深减少趋势同样显著。  相似文献   

2.
汪方  丁一汇 《高原气象》2011,30(4):869-877
利用WCRP CMIP3气候模式对SRES A2、A1B和B1排放情景下东亚地区积雪面积的未来变化趋势进行了预测,结果表明,未来东亚地区积雪面积将呈现减少趋势,在同一种排放情景下,春季的减小趋势最大,冬季次之,秋季再次之,夏季最小。比较不同区域之间的积雪面积变化,冬、春季青藏高原积雪面积变化趋势要明显大于东亚大陆北部,...  相似文献   

3.
本文使用1961~1995年逐月青藏高原地区大气视热量源汇<Ql>资料、1961~1990年青藏高原地区积雪日数和积雪深度资料、美国NCEP/NCAR的再分析资料以及1975~1994年全球OLR资料,讨论了高原大气热状况年际变化及其与大气环流的关系,发现:高原地区大气热源年际变化明显,其中春季和秋季高原地区<Ql>的变率最大,并且水平分布很不均匀;当冬季高原冷源弱(或强)时,东亚大槽位置偏东(或西),对应着东亚强(或弱)的冬季风;夏季高原热源强(或弱)的年份,在高原及其邻近地区的对流层中、低层为偏差气旋环流(或反气旋环流),在中国长江流域低层为异常的西南风(或东北风),对应着东亚强(或弱)的夏季风,夏季高原热源强度还与南亚高压的强度和位置有关;春季4月的积雪状况与夏季高原大气热源强度有明显关系;夏季高原热源与同期青藏高原东南部、孟加拉湾、中南半岛、东南亚、中国西南部、长江流域和从黄海到到日本海一带对流有明显正相关  相似文献   

4.
张薇  宋燕  王式功  李智才 《气象科技》2019,47(6):941-951
本文利用国家气象中心提供的逐日地面积雪深度和积雪日数数据,以及NOAA的大气环流再分析资料,通过合成分析等方法,对1961—2013年青藏高原冬春季积雪高原整体、高原东部、高原西部进行了年际和年代际趋势分析,结果表明,青藏高原整体冬、春季积雪的变化趋势一致,雪深呈现"少雪—多雪—少雪—多雪"的变化趋势,积雪日数呈现"少雪—多雪—少雪"的变化趋势。高原东(西)部积雪在20世纪60—70年代均明显增加,20世纪80—90年代均减少,20世纪90年代末东部春季和冬季积雪减少更为显著,而西部地区除了春季积雪日数变化不大,春、冬季积雪雪深和冬季积雪日数均明显增加。其次,对青藏高原东、西部地区多(少)雪年的划分,发现高原东部和西部地区积雪异常年对应的大气环流形势也存在差异。最后,进一步分析了青藏高原不同区域积雪异常年环流形势变化特征及其对我国夏季降水的影响,发现高原东(西)部积雪异常年时我国夏季降水分布存在显著差异,因此,在将高原积雪作为气候预测因子的时候,应当考虑东部和西部积雪异常不同所产生影响的差异。  相似文献   

5.
利用青藏高原(下称高原)68个气象测站1961-2007年逐日积雪观测资料,分析了高原春季积雪日数变化及其异常偏多、偏少年的环流特征,还深入分析了春季积雪的多少对北半球夏季环流的影响。结果表明,在高原春季积雪日数偏多、少年,在500 hPa高度场上欧亚(东半球)地区中高纬度虽然均表现为两槽一脊的环流形势,但积雪日数偏多、少年槽脊的位置和强弱明显不同。同期春季,当高原春季积雪日数偏多(少)时,500 hPa环流场上冰岛低压偏强(弱)、蒙古高压偏强(弱)、印度低压偏弱(强)。高原春季积雪与夏季北半球的主要大气活动中心和影响中国夏季气候的主要大气环流系统之间存在紧密联系,当高原春季积雪日数偏多(少)时,夏季500 hPa环流场上东亚地区易(不易)形成阻塞高压,同时西太平洋副热带高压易(不易)偏南。这种关系说明高原春季积雪有一定前兆意义,对中国短期气候预测有重要的指示意义。  相似文献   

6.
基于国际耦合模式比较计划第五阶段(CMIP5)历史模拟试验(historical run)的模式输出结果以及遥感数据,采用相关分析、均方根误差、标准差等统计方法,评估了13个气候(或地球)系统模式对欧亚大陆积雪覆盖率的模拟能力,在此基础上,采用多模式集合平均的方法对未来不同温室气体排放情景下(rcp2.6、rcp4.5和rcp8.5)欧亚大陆积雪覆盖率的变化进行预估。结果显示:尽管各模式模拟的积雪覆盖率在高原地区与观测差异较大,但总体看来模式能够对欧亚大陆积雪覆盖率的空间形态、季节变化及年际变化特征做出较好地模拟。未来预估结果表明,多模式集合平均预估的欧亚大陆积雪覆盖率从2006年到2040年左右减少趋势非常明显,且不同排放情景下模式模拟的积雪减少速率非常接近;然而,大约从2040年之后,不同排放情景下的积雪覆盖率减小趋势的差异越来越大,rcp2.6和rcp4.5下积雪覆盖率的变化趋于平缓,而rcp8.5情景下,积雪覆盖率一直减少,冬季、春季和秋季都明显减少,减少最显著的区域位于西欧和青藏高原地区。由此可见,控制温室气体的排放对于未来欧亚大陆积雪的变化是至关重要的。  相似文献   

7.
中国东部夏季降水异常与青藏高原冬季积雪的关系   总被引:2,自引:1,他引:1  
杜银  谢志清  肖卉 《气象科学》2014,34(6):647-655
基于中国740站月降水、积雪、地温资料和NCEP/NCAR再分析月资料,采用相关分析、合成分析和最大协方差法,研究了1979—2008年青藏高原冬季积雪异常与长江中下游夏季降水的关系及其可能的影响机制。结果表明:(1)在年际时间尺度上,青藏高原中北部12月—翌年1月积雪指数与长江中下游夏季降水呈显著正相关。在年代际时间尺度上,1990s—2000s的高原积雪指数与长江中下游夏季降水具有较好的同位相变化特征。表明高原中北部12月—翌年1月积雪指数对长江中下游夏季降水异常具有较好的指示意义,可作为预测长江中下游夏季降水年际年代变化的依据。(2)高原12月—翌年1月积雪异常偏多,是长江中下游夏季洪涝的一个强信号,12月—翌年1月积雪指数正异常年与长江中下游夏季降水正异常年有很好的一致性。(3)高原冬季积雪异常影响长江中下游夏季降水的可能途径是:高原冬季积雪异常通过影响同期及其后春季地温,再由春季地温以某种方式把异常信号维持到夏季。之后,地温异常又改变了局地地气热量交换,导致周围大气环流异常,从而影响到其下游的降水过程。  相似文献   

8.
本文使用1961~1995年逐月青藏高原地区大气机热量源汇<Q1>资料、1961~1990年青藏高原地区积雪日数和积雪深度资料、美国NCEP/ NCAR的再分析资料以及1975~1994年全球OLR资料,讨论了高原大气热状况年际变化及其与大气环流的关系,发现:高原地区大气热源年际变化明显,其中春季和秋季高原地区<Q1>的变率最大,并且水平分布很不均匀;当冬季高原冷源弱(或强)时,东亚大槽位置偏东(或西),对应着东亚强(或弱)的冬季风;夏季高原热源强(或弱)的年份,在高原及其邻近地区的对流层中、低层为偏差气旋环流(或反气旋环流),在中国长江流域低层为异常的西南风(或东北风),对应着东亚强(或弱)的夏季风,夏季高原热源强度还与南亚高压的强度和位置有关;春季4月的积雪状况与夏季高原大气热源强度有明显关系;夏季高原热源与同期青藏高原东南部、孟加拉湾、中南半岛、东南亚、中国西南部、长江流域和从黄海到到日本海一带对流有明显正相关。  相似文献   

9.
利用青藏高原(下称高原)1961-2014年地面110个气象站积雪深度、积雪日数、气温和降水逐日资料,系统地分析了高原积雪深度和积雪日数时空特征,并进一步探究了高原积雪深度和积雪日数与气候因子和地理因子之间的关系。研究发现:1961-2014年高原年平均积雪深度和积雪日数分别为0.26 cm和23.78 d,空间和季节尺度上分布不均匀,且积雪深度和积雪日数大值并不完全重合;在整体变化趋势上,积雪深度和积雪日数均呈缓慢下降趋势,分别为-0.0080±0.0086 cm·(10a)^-1(p=0.36)和-0.64±0.47 d·(10a)^-1(p=0.17),但在数理统计上不显著,且各站点差异性大;积雪深度和积雪日数在春季、冬季和年表现为“减-增-减”的年代际变化特征,而在秋季为“增-减”的变化特征;气温与积雪深度和积雪日数均有较好的相关性,冬季的降水与积雪深度和积雪日数高度相关;积雪深度和积雪日数随海拔呈增加趋势,积雪日数与纬度也高度相关,但积雪深度与纬度的相关性不明显。  相似文献   

10.
选取青藏高原东部地区1967~2010年61个测站的积雪数据,分析比较了整年和不同季节高原积雪的年代际变化特征及其与降雪和气温的关系,结果表明:除了秋季以外,高原东部积雪表现出“少雪-多雪-少雪“的显著年代际变化特征,80年代末发生的由少到多突变仅在冬季积雪中表现显著,20世纪末发生的由多到少突变在冬春两季积雪中均表现显著;降雪和气温的变化是影响高原东部积雪的重要因素,降雪变化的影响更加显著,尤其是秋季降雪;在冬春季降雪偏多时段,降雪的变化主导着积雪的变化;在冬春季降雪偏少时段,气温变化的影响增大,某些时段会超过降雪,甚至达到主导积雪变化的程度。   相似文献   

11.
Various remote sensing products and observed data sets were used to determine spatial and temporal trends in climatic variables and their relationship with snow cover area in the higher Himalayas, Nepal. The remote sensing techniques can detect spatial as well as temporal patterns in temperature and snow cover across the inaccessible terrain. Non-parametric methods (i.e. the Mann–Kendall method and Sen's slope) were used to identify trends in climatic variables. Increasing trends in temperature, approximately by 0.03 to 0.08 °C year?1 based on the station data in different season, and mixed trends in seasonal precipitation were found for the studied basin. The accuracy of MOD10A1 snow cover and fractional snow cover in the Kaligandaki Basin was assessed with respect to the Advanced Spaceborne Thermal Emission and Reflection Radiometer-based snow cover area. With increasing trends in winter and spring temperature and decreasing trends in precipitation, a significant negative trend in snow cover area during these seasons was also identified. Results indicate the possible impact of global warming on precipitation and snow cover area in the higher mountainous area. Similar investigations in other regions of Himalayas are warranted to further strengthen the understanding of impact of climate change on hydrology and water resources and extreme hydrologic events.  相似文献   

12.
欧亚大陆季节增(融)雪盖面积变化特征分析   总被引:3,自引:0,他引:3  
利用美国冰雪资料中心(National Snow and Ice Data Center)提供的近40年逐周的卫星反演雪盖资料,定义了各季节新增(融化)雪盖而积指数(fresh snow extent),即增/融雪覆盖率P_(FSE)、增/融雪面积A_(FSE)、欧亚大陆北部增/融雪面积之和T_(FSE),针对欧亚大陆各季节平均的雪盖面积本身(snow extent,P_(SE)、A_(SE)、T_(SE)和其增(融)雪盖面积,分析比较二者的变化特征.结果表明,欧亚大陆各季节平均的雪盖面积和相应增(融)雪盖面积不论是气候态分布还是其年际、十年际变化均有明显不同,其中以冬、春季差别更为明显;夏、秋季二者虽有较好的一致性,但增(融)雪盖面积的变率明显强于雪盖而积本身;另外,冬季欧洲新增雪盖对欧业北部冬季雪盖面积以及其后的春季雪盖都有较显著的影响,而春季欧洲和中纬度亚洲地区的融雪则受到冬、春两季雪盖情况的影响.进一步分析欧亚大陆冬、春两季增(融)雪盖与ENSO关系显示,二者除在个别地区(两伯利业北部、欧洲中东部以及青藏高原)存在较明显关系外,整体上,欧亚大陆北部雪盖变化既不受控于ENSO,也不会显著影响ENSO.  相似文献   

13.
近30年西藏地区雷暴日数的气候分布特征   总被引:1,自引:0,他引:1       下载免费PDF全文
利用西藏地区1980~2009年逐月雷暴日数观测数据,分析了近30a来西藏地区雷暴的时空分布特征以及影响雷暴天气的气象因子。结果表明:(1)雷暴天气主要发生在西藏那曲地区,并由该区域向西南、东南部逐渐递减,且雷暴天气发生的中心位置随着季节有所差别。夏季雷暴日数最多,其次是秋季和春季,冬季雷暴日数最少。(2)近30年来年或各季节的雷暴日数基本呈现减少的趋势,尤其以2000年之后最为显著。雷暴日数以2003年为突变点,开始急剧减少。(3)雷暴日数和平均气温呈负相关,与风速、相对湿度、降水量呈正相关,气温升高可能是导致雷暴日数减少的主要气候影响因子。   相似文献   

14.
本文利用2000年3月-2011年2月西藏地区的MODIS雪盖产品数据、DEM数据以及地面气象观测数据,结合GIS空间分析方法,分析了西藏地区不同自然区划地带下雪线的时空变化特征及其与气象因素的关系。研究表明:西藏及各区域年平均雪线波动变化比较平稳,全区年平均雪线为4848.6m,呈微弱上升趋势,线性倾向率为6.54m/10a;各季节平均雪线中,秋季雪线的变化对年平均贡献最大,二者相关系数达0.796。冬季雪线呈下降趋势(相关系数为-0.625),其余三季则均表现为上升趋势,但均不显著;除东喜马拉雅南翼山地雪线逐月变化波动明显外(标准差为60.3m),其余均表现为平缓波动形势;西藏地区的雪线空间分布基本上表现为由东南向西北方向逐步升高的态势,其中东南部和西北部雪线分布密集且复杂。中部雪线则相对较稀疏,其高、低值区分别与山脉和河谷分布相对应;整体上,西藏雪线与气温正相关,与降水量负相关,但是各区域四季雪线与气温、降水量之间又存在差异。雪线是积雪各要素特征变化最为敏感的指示器,研究西藏高原雪线的时空分布特征及其与气象因素之间的关系,对了解西藏高原乃至整个青藏高原的气候变化具有重要的意义。  相似文献   

15.
Based on the snow cover fraction (SCF) data acquired from the Moderate Resolution Imaging Spectroradiometer (MODIS) on the NASA Terra spacecraft from 2000–2006, statistical analyses are performed to explore the spatial and temporal distribution and variation of the snow cover over the Tibetan Plateau (TP). It is found that the snow persistence over the TP varies in different elevation ranges generally becomes longer with increases in the terrain elevation. In addition, the spatial distribution of the snow cover not only depends on the elevation but also varies with terrain features, such as aspect, slope, and curvature in the local areas. With 7-year observational data, seasonal and interannual variability of snow cover has been detected. There are slight decreasing trends in SFCs from 2000–2006. With MODIS satellite snow-cover fraction data and the National Centers for Environmental Predictions and U.S. Department of Energy NCEP/DOE reanalysis II dataset, the relationship between snow cover anomalies over the TP and the East Asian Summer Monsoon (EASM) is examined. Results indicate that the onset of the EASM is closely associated with snow cover anomalies in the spring. Specifically, a positive (negative) snow cover anomaly is followed by a later (earlier) onset of the EASM.  相似文献   

16.
我国强降雪气候特征及其变化   总被引:7,自引:2,他引:5       下载免费PDF全文
基于全国气象台站逐日地面降雪观测数据,对我国25°N以北不同气候区强降雪事件的地理分布和年内旬、月变化等气候特征进行分析,并探讨1961—2008年其时间序列演变特征,及1961—2008年和1981—2008年 (气候变暖后) 气候变化趋势。结果表明:强降雪量和强降雪日数在青藏高原东部、新疆和东北北部最多;强降雪强度高值中心出现在云南。东北北部、华北、西北、青藏高原东部强降雪事件多发生于初冬和初春,年内分布呈双峰型;新疆和黄淮地区年内分布呈单峰型,前者多发生在隆冬时节,后者多发生于晚冬;1961—2008年东北北部、新疆、青藏高原东部平均强降雪量和强降雪日数呈明显增加趋势;气候变暖后我国大部年强降雪量增多,强降雪日数增加,强降雪强度增强。  相似文献   

17.
东北及邻近地区累积积雪深度的时空变化规律   总被引:6,自引:0,他引:6       下载免费PDF全文
陈光宇  李栋梁 《气象》2011,37(5):513-521
利用东北及邻近地区1960-2006年123个地面测站逐日积雪观测资料和同时期气象要素资料,采用面积权重、EOF、小波分析和功率谱方法分析了东北全年及各季节累积积雪深度的时空变化特征,结果表明:近50年来东北及邻近地区累积积雪呈缓慢增加趋势,具体到各个季节上,秋季积雪趋势基本稳定,冬季积雪显著增加,春季积雪显著减少,年...  相似文献   

18.
The paper deals with problems of temporal and spatial variability of snow cover duration, of correlation between snow cover and winter mean air temperature patterns and of the impact of climate change on the snow cover pattern in Estonia. Snow cover fields are presented in form of IDRISI raster images. Snow cover duration measured at ca 100 stations and observation points have been interpolated into raster cells. On the base of time series of raster images, a map of mean territorial distribution of snow cover duration is calculated. Estonia is characterized by a great spatial variability of snow cover mostly caused by the influence of the Baltic Sea. General regularities of snow cover pattern are determined. A 104-year time series of spatial mean values of snow cover duration is composed and analyzed. A decreasing trend and periodical fluctuations have detected. Standardized principal component analysis is used for the time series of IDRISI raster images. It enables to study the influence of different factors on the formation of snow cover fields and territorial extent of coherent fluctuations. Correlation between snow cover duration and winter mean air temperature fields is analyzed. A spatial regression model is created for estimation of the influence of climate change on snow cover pattern in Estonia. Using incremental climate change scenarios (2 °C, 4 °C and 6 °C of warming in winter) mean decrease of snow cover duration in different regions in Estonia is calculated. According to results of model calculation, the highest decrease of snow cover duration will be take place on islands and in the coastal region of West Estonia. A permanent snow cover may not form at all. In the areas with maximum snow cover duration in North-East and South-East Estonia, that decrease should be much lower.  相似文献   

19.
《大气与海洋》2013,51(3):193-211
Abstract

The fully distributed hydrology land‐surface scheme WATCLASS is used to simulate spring snowmelt runoff in a small Arctic basin, Trail Valley Creek, dominated by open tundra and shrub tundra vegetation. The model calculates snowmelt rates from a full surface energy balance, and a three‐layer soil model is used to simulate the infiltration into and the exchange of heat and moisture within the ground. The generated meltwater is delivered to the stream channel network by overland flow, interflow, and baseflow and subsequently routed out of the catchment. Subgrid spatial variability is handled by the model through the use of grouped response units (GRUs). The GRUs in WATCLASS are chosen according to vegetation land cover.

Five spring snowmelt periods with a variety of initial end‐of‐winter snow cover and melt conditions were simulated and compared with observed runoff data. In a second step, the model's ability to simulate spatially variable snow covered area (SCA) within the basin was tested by comparing model predictions to remotely sensed SCA. WATCLASS was able to predict runoff volumes (on average within 15% over five years of modelling) as well as timing of snowmelt and meltwater runoff for open tundra fairly accurately. However, the model underestimated melt in the energetically more complex shrub tundra areas of the basin. Furthermore, the observed high spatial variability of the SCA at a 1‐km resolution was not captured well by the model.

Several recommendations are made to improve model performance in Arctic basins, including a more realistic implementation of the gradual deepening of the thawed layer during the spring, and the use of topographic information in the definition of land cover classes for the GRU approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号