首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
MJO在夏季会出现在太平洋持续异常活跃和在印度洋持续异常活跃两种形式,用指数定义了这种异常的强度,并发现这种异常表现与秋冬季节ENSO的出现之间有很高的相关性。当夏季MJO在太平洋持续异常活跃时,经常激发当年秋冬季节发生El Nino事件;当夏季MJO在印度洋持续异常活跃时,经常激发当年秋冬季节发生La Nina事件。对大气环流的分析表明,MJO的持续异常活跃会对整个赤道太平洋上空的环流造成影响,引起风应力的异常。异常风应力激发次表层冷/暖海水向东输送。冬季冷/暖海水在东太平洋次表层堆积,最终导致ENSO的形成。  相似文献   

2.
利用1979~2013年实时多要素MJO(Madden-Julian Oscillation)监测(RMM)指数,美国NOAA逐日长波辐射资料和NCEP/NCAR再分析资料等,分析了全球变化背景下北半球冬季MJO传播的年代际变化特征。从全球平均气温快速增暖期(1985~1997)到变暖趋缓期(2000~2012),MJO 2~4位相频次减少,5~7位相频次增多,即MJO对流活跃区在热带印度洋地区停留时间缩短、传播速度加快,而在热带西太平洋停留时间加长、传播明显减缓。进一步分析发现,以上MJO的年代际变化特征与全球变化年代际波动有关。当太平洋年代际涛动(PDO)处于负位相时,全球变暖趋缓,热带东印度洋—西太平洋海温异常偏暖,使其上空对流加强,垂直上升运动加强,对流层低层辐合,大气中的水汽含量增多,该区域的湿静力能(MSE)为正异常。当MJO对流活跃区位于热带印度洋地区时,MJO异常环流对季节平均MSE的输送在强对流中心东侧为正、西侧为负,有利于东侧MSE扰动增加,使得MJO对流扰动东移加快;而当MJO对流活跃区在热带西太平洋地区,MJO异常环流对平均MSE的输送形成东负西正的形势,东侧MSE扰动减小,不利于MJO快速东传。因此,全球变化背景下PDO引起的大气中水汽含量及MSE的变化可能是MJO传播年代际变化的重要原因。  相似文献   

3.
冬季热带西太平洋MJO活动强弱年的环境场特征   总被引:1,自引:0,他引:1  
利用1948—2011年NCEP等再分析资料,采用合成分析等方法对比分析了冬季(冬半年)热带西太平洋MJO(Madden-Julian Oscillation)活动强、弱年的环境场特征。结果表明,冬季热带西太平洋MJO的活动具有显著的年际和年代际变化。MJO活动强年,对流层低层在菲律宾以东洋面上空有异常气旋式环流,赤道东太平洋上空为较强的东风距平,赤道印度洋到赤道西太平洋上空是异常西风,西太平洋地区有较强辐合,从而导致热带西太平洋地区积云对流活动显著加强;而MJO活动弱年的环流特征相反。热带MJO以东传为主,有少量西传波动。在MJO活动强年,无论东传还是西传其时空谱值都显著大于MJO活动弱年,其中心频率较MJO活动弱年偏高。MJO活动的异常和海温及东亚冬季风紧密相连,在MJO活动强年,海平面气压和500 hPa位势高度异常场表现为中高纬度的正异常和低纬地区的负异常,东亚冬季风活动偏强,中国大陆中部气温普遍偏低,同时,黄河以南长江以北地区降水偏多,而长江以南地区降水偏少;台湾附近海域受强东亚冬季风影响,海表温度偏低,东太平洋上海温距平呈现La Ni?a型的异常分布,而在MJO活动弱年上述特征基本相反。   相似文献   

4.
利用站点降水资料、美国气候预测中心(CPC)的MJO指数和NCEP/DOE AMIP-II再分析资料,研究了热带印度洋MJO对4—6月长江中下游地区降水的影响及可能机制。(1) 热带印度洋MJO对长江中下游地区降水有显著影响:热带印度洋MJO偏强(偏弱)时,同期以及滞后1~2候时该地区降水偏多(偏少)。(2) 热带印度洋MJO处在不同位相时,大尺度背景场有明显的差别:热带印度洋MJO偏强(偏弱)时,同期以及滞后1~2候时MJO活跃对流中心位于热带印度洋(西太平洋),西太平洋副热带地区表现为反气旋性(气旋性)环流异常,孟加拉湾为气旋性(反气旋性)环流异常,长江中下游地区出现了异常上升(下沉)运动,水汽辐合增强(减弱);伴随MJO的东传,水汽输送异常来源有所变化。(3) 热带印度洋MJO通过激发Gill型响应和Rossby波列,对长江中下游地区降水产生影响。   相似文献   

5.
李文毅  张洋 《气象科学》2023,43(4):427-437
本文通过对观测和再分析数据采用最大协方差分析以及回归、合成等分析方法,研究了青藏高原夏季地表气温与南半球大气环流之间的遥相关关系。结果表明,前期(4月)南半球极地—中高纬度大气环流呈现负位势高度异常、较低纬度印度洋—西太平洋区域呈现正位势高度异常时,高原中部和东部大部分区域夏季出现暖异常。在上述遥相关中,印度洋—西太平洋海温异常可能起到了重要的中间桥梁作用。在高原夏季温度偏高的年份,前期跨赤道的印度洋—西太平洋海温也持续偏暖,带来的海陆热力对比减小、经向跨赤道气流减弱有利于削弱夏季的季风环流,使得高原夏季降水偏少,有利于形成高原夏季的暖异常。在这一高原气温—南半球大气环流的遥相关关系中,4月南半球的大气位势高度场异常和与印度洋—西太平洋海温异常相关的异常高度场分布也十分相似。这一前期的跨赤道区域海温异常与南半球中高纬度位势高度场异常的因果关系仍有待进一步揭示。  相似文献   

6.
基于1979—2008年NCEP/CFSR再分析耦合数据集,研究了冬季MJO对ENSO事件的影响。结果表明,在年际时间尺度以及长期的年代际时间尺度上,热带印度洋MJO活动的强弱性都可以影响热带中东太平洋ENSO事件的发生和发展。在年际时间尺度上,ENSO发生前期征兆的赤道中东太平洋的西风爆发事件(Westerly Wind Burst,WWB),作为MJO影响ENSO的主要途径,存在着显著的次季节时间尺度的变化。相对于气候平均的赤道太平洋西部暖池区上升而东部下沉的Walker环流,MJO正位相东传后的西风异常,减弱了低层东风和赤道东太平洋海水上翻。这一上升海流的减弱导致了中东赤道太平洋的海温升高,从而有利于ENSO暖海温事件的发生。而在年代际时间尺度上,MJO范围和强度在1998年前后出现了明显的转变,1998年之前MJO的东移范围更东,强度更强,从而导致了西太平洋西风爆发区的次季节西风异常事件更加显著,在Bjeknes正反馈机制下对应了年代际时间尺度下的强尼诺事件出现,1998年之后则与之相反。冬季MJO对ENSO影响的这一年代际特征主要体现在晚冬季节,而在早冬伴随着印度洋的增暖,MJO强度一直在逐年增加。  相似文献   

7.
雷徐奔  张文君  刘超 《气象学报》2022,80(4):503-514
利用1980—2020年中国753站逐日降水资料、NCEP/NCAR大气再分析资料以及哈得来中心的海表温度资料和实时多变量Madden-Julian振荡( MJO)指数,研究了MJO在印度洋地区(1—3位相)活跃日数对长江流域夏季降水日数的影响。结果表明两者存在显著的统计联系,在MJO活跃日数偏多的年份,MJO相关的西北太平洋反气旋环流异常有利于向长江中下游地区输送水汽,进而导致长江流域中下游范围内降水日数的增加,且这种影响主要体现在降水等级为大雨(25 mm/d)及以上强度的日数上。进一步研究发现,MJO在印度洋活跃日数与长江中下游夏季降水日数的关系存在年代际变化,两者显著的联系仅出现在2000年之后,之前的时段两者联系则较弱。这种关系的转变可能与印度洋海表温度变率减弱的背景有关,印度洋海洋年际变率变弱导致其对于长江中下游地区的影响减弱,进而使得MJO的调控作用凸显出来。夏季季节平均的印度洋MJO活跃日数可以对长江中下游的大雨以上的降水日数产生影响,且两者的关系在大约2000年之后变得尤为显著。   相似文献   

8.
中国夏季热浪持续天数的年际变化及环流异常分析   总被引:1,自引:0,他引:1  
聂羽  韩振宇  韩荣青  丁婷 《气象》2018,44(2):294-303
利用NCEP/NCAR再分析大气资料和中国台站观测温度资料,本文分析了1960—2015年中国夏季6—8月热浪持续天数的年际变率及其环流异常。研究发现,中国的热浪主要集中发生于东南地区和新疆地区。通过对不同区域热浪持续天数进行经验正交分解,分析了东南地区和新疆地区热浪的年际变化的空间模态,并进一步研究了不同模态对应的同期大气环流异常的空间特征。为了揭示热浪不同模态的可能预报源,本文进一步分析了热浪发生前期春季海温的异常特征。诊断分析表明,春季赤道印度洋的一致偏暖,有利于夏季西太平洋副热带高压偏强偏西,引起我国东南地区夏季容易出现高温异常。春季北太平洋中部、里海、黑海的海温偏暖有利于夏季对流层高层大陆高压的增强,使得新疆地区夏季易出现热浪。  相似文献   

9.
夏季南亚高压东西振荡特征研究   总被引:22,自引:0,他引:22  
用合成分析方法讨论夏季南亚高压东西位置异常时东亚地区高低层环流特征和垂直环流特征,结合大气环流的这些特征讨论了南亚高压东西位置异常对我国东部降水的影响,最后对南亚高压位置异常与海温异常的关系进行了研究.结果表明,南亚高压与500hPa西太平洋副高存在“相向而行”和“相背而去”的关系;南亚高压偏东年850hPa距平风合成表明西太平洋副高增强西伸,长江流域存在距平风的辐合,导致长江流域降水偏多;偏西年西太平洋副高减弱东撤,长江流域为距平北风控制,使得长江流域降水较少。南亚高压偏东(西)年高原西部和我国长江流域上升运动较强(弱)。前期冬季赤道中东太平洋海温偏高(低),则夏季南亚高压的位置易偏东(西)。前期冬季到同期夏季印度洋海温偏高(低),夏季南亚高压偏东(西)。  相似文献   

10.
利用NCEP/NCAR逐日风场及英国气象局逐月海表温度资料,研究了对流层高低层风场季内振荡强度季节变化特征,探讨了其年际及年代际异常特征与海表温度异常的关系。热带印度洋、热带西太平洋是高低层风场季内振荡终年均活跃的区域。对流层高低层风场季内振荡强度异常与海表温度异常均不存在确定的局地关系。风场季内振荡能量异常与海表温度异常在年代际尺度上具有良好对应关系,20世纪70年代中后期以来,赤道东太平洋海温异常升高,Walker环流减弱,导致亚洲区域季风季内振荡强度减弱,赤道太平洋区域200hPa(850hPa)风场季内振荡在赤道东太平洋增强(减弱),在印度洋东南部—印尼—中西太平洋的暖池区域减弱(增强),促进了ElNino事件的增强。对流层高低层风场季内振荡强度年际异常与ElNino事件关系密切,这一特征在低层(850hPa)风场表现更显著。在事件发展初期,热带中西太平洋区域850hPa风场季内振荡异常增强并东移,事件发生之后这些区域能量减弱。大气季内振荡可能是ElNino事件的激发因素。  相似文献   

11.
In this study, two possible persistent anomalies of the Madden-Julian Oscillation mode (MJO) are found in the summer season (persistently Pacific active and Indian Ocean active), and an index is set to define the intensity of the two modes. They are proved to have high statistical correlations to the later ENSO events in the autumn and winter seasons: When persistent anomaly of MJO happens in the Pacific Ocean in summer, El Ni?o events are often induced during the autumn and winter seasons of that year. However, during the other MJO mode when the summer persistent anomaly of MJO occurs in the Indian Ocean, La Ni?a events often follow instead. The analysis of the atmospheric circulation field indicates that persistent anomaly of MJO can probably affect the entire Equatorial Pacific circulation, and results in wind stress anomalies. The wind stress anomalies could excite warm or cold water masses which propagate eastwards at the subsurface ocean. The accumulation of warm or cold subsurface water in the Equatorial Eastern Pacific Ocean may eventually lead to the formation of an ENSO.  相似文献   

12.
利用观测分析资料和SINTEX-F海气耦合长时间(70年)数值模拟结果,分析了印度洋海温年际异常与热带夏季季节内振荡(BSISO)各种传播模态之间关系及其物理过程。结果表明,印度洋海温年际异常与热带BSISO关系密切,当印度洋为正(负)偶极子情况,中东印度洋北传BSISO减弱(加强);当印度洋为正(负)海盆异常(BWA)情况,印度洋西太平洋赤道地区(40°E -180°)东传BSISO加强(减弱)。印度洋海温年际变化通过大气环流背景场和BSISO结构影响热带BSISO不同传播模态强度的年际变化。在负(正)偶极子年夏季,由于对流层大气垂直东风切变加强(减弱),对流扰动北侧的正压涡度、边界层水汽辐合加强更明显(不明显),导致形成BSISO较强(弱)的经向不对称结构,因此北传BSISO偏强(减弱)。印度洋BWA模态通过影响赤道西风背景以及海气界面热力交换,导致赤道东传BSISO强度产生变化。在正BWA年夏季,赤道地区西风较明显,当季节内振荡叠加在这种西风背景下,扰动中心的东侧(西侧)风速减弱(加强)更明显,海面蒸发及蒸发潜热减弱(加强)更明显,导致扰动中心的东侧(西侧)海温升高(降低)幅度更大,从而使边界层产生辐合(辐散)更强、水汽更多(少),因此赤道东传BSISO偏强;而在负BWA年,赤道地区西风背景减弱,以上物理过程受削弱使赤道东传BSISO偏弱。  相似文献   

13.
Increased evidence has shown the important role of Atlantic sea surface temperature (SST) in modulating the El Niño–Southern Oscillation (ENSO). Persistent anomalies of summer Madden–Julian Oscillation (MJO) act to link the Atlantic SST anomalies (SSTAs) to ENSO. The Atlantic SSTAs are strongly correlated with the persistent anomalies of summer MJO, and possibly affect MJO in two major ways. One is that an anomalous cyclonic (anticyclonic) circulation appears over the tropical Atlantic Ocean associated with positive (negative) SSTA in spring, and it intensifies (weakens) the Walker circulation. Equatorial updraft anomaly then appears over the Indian Ocean and the eastern Pacific Ocean, intensifying MJO activity over these regions. The other involves a high pressure (low pressure) anomaly associated with the North Atlantic SSTA tripole pattern that is transmitted to the mid- and low-latitudes by a circumglobal teleconnection pattern, leading to strong (weak) convective activity of MJO over the Indian Ocean. The above results offer new viewpoints about the process from springtime Atlantic SSTA signals to summertime atmospheric oscillation, and then to the MJO of tropical atmosphere affecting wintertime Pacific ENSO events, which connects different oceans.  相似文献   

14.
Based on multiple datasets, correlation and composite analyses, and case studies, this paper investigated possible influences of the Indian Ocean dipole (IOD) mode on the eastward propagation of intraseasonal oscillation in the tropical atmosphere. The results showed that (1) the 30-60 day outgoing longwave radiation anomalies in the southeastern Indian Ocean and the 30-60 day 850-hPa zonal wind anomalies over the equatorial central Indian Ocean were significantly correlated with the IOD index; (2) during positive IOD years, the anomalously cold water in the southeastern Indian Ocean and the 850-hPa anomalous easterlies over the equatorial central Indian Ocean might act as barriers to the continuously eastward propagation of the intraseasonal convection, which interrupts the Madden-Julian oscillation (MJO) propagation in the eastern equatorial Indian Ocean and western Pacific; and (3) during negative IOD years, the anomalously warm water in the southeastern Indian Ocean and the low-level westerly anomalies over the equatorial central Indian Ocean favor the eastward movement of MJO.  相似文献   

15.
利用1979~2013年6~8月的西南地区东部20个台站日降水量资料、逐日MJO(Madden-Julian Oscillation)指数、全球OLR(Outgoing Longwave Radiation)逐日格点资料以及NCEP/NCAR再分析日资料,采用合成分析和线性回归等方法,对夏季MJO不同位相活动影响西南地区东部夏季降水的原因及其可能机制进行了初步分析。研究表明,MJO与西南地区东部夏季降水之间存在着显著的关系,当MJO处于第4(第6)位相时,由于西太平洋副高位置偏南(偏北)、向西南地区东部的水汽输送偏多(偏少),在异常上升(下沉)气流影响下,西南地区东部夏季降水偏多(偏少)。MJO影响西南地区东部夏季降水的可能原因是:当MJO处于第4位相时,赤道东印度洋地区上空大气释放凝结潜热,其激发东北向传播的异常波动,进而影响东亚环流,使得西南地区东部出现夏季降水偏多的环流形势,西南地区东部夏季降水增多;但在第6位相时,西太平洋地区上空对流释放的凝结潜热,其激发PJ(太平洋-日本)型Rossby波列,出现不利于西南地区东部夏季降水的环流形势,西南地区东部夏季降水偏少。  相似文献   

16.
Summary Pentad mean anomaly maps were used to study the climatology of tropical intraseasonal convection anomaly (TICA) as a dynamic system. One hundred and twenty-two events were identified and classified into three categories: eastward (77), independent northward (27), and westward (18) propagation. The eastward propagation is more active in boreal winter than in summer, while the independent northward propagation, which is not associated with equatorial eastward propagation, occurs in boreal summer from May to October.The eastward moving TICA exhibits three major paths: 1) eastward along the equator from Africa to the mid-Pacific, 2) first eastward along the equator, then either turning north-east to the northwest Pacific or turning southeast to the southwest Pacific at the maritime continent, and 3) the main anomaly moves eastward along the equator with split center(s) moving northward over the Indian and/or western Pacific Oceans. The equatorial Indian Ocean and the western Pacific intertropical convergence zone are preferred geographic locations for their development, while the maritime continent and central Pacific are regions of dissipation.Independent northward propagation is confined to the Indian and western Pacific monsoon regions. Its existence suggests that the mechanism responsible for meridional propagation may differ from that for eastward propagation.The dynamic effect of the equator and the thermodynamic effect of the underlying warm ocean water are basic factors in trapping TICA in the deep tropics, while the annual march of maximum SST (thermal equator) and the monsoon circulation have profound influences on the annual variation and meridional movement of TICA.With 12 FiguresContribution No. 89-11, Department of Meteorology, University of Hawaii.  相似文献   

17.
The Madden-Julian oscillation (MJO) is a dominant atmospheric low-frequency mode in the tropics. In this review article, recent progress in understanding the MJO dynamics is described. Firstly, the fundamental physical processes responsible for MJO eastward phase propagation are discussed. Next, a recent modeling result to address why MJO prefers a planetary zonal scale is presented. The effect of the seasonal mean state on distinctive propagation characteristics between northern winter and summer is discussed in a theoretical framework. Then, the observed precursor signals and the physical mechanism of MJO initiation in the western equatorial Indian Ocean are further discussed. Finally, scale interactions between MJO and higher- frequency eddies are delineated.  相似文献   

18.
In this study, the impacts of the tropical Pacific–Indian Ocean associated mode (PIOAM) on Madden–Julian Oscillation (MJO) activity were investigated using reanalysis data. In the positive (negative) phase of the PIOAM, the amplitudes of MJO zonal wind and outgoing longwave radiation are significantly weakened (enhanced) over the Indian Ocean, while they are enhanced (weakened) over the central and eastern Pacific. The eastward propagation of the MJO can extend to the central Pacific in the positive phase of the PIOAM, whereas it is mainly confined to west of 160°E in the negative phase. The PIOAM impacts MJO activity by modifying the atmospheric circulation and moisture budget. Anomalous ascending (descending) motion and positive (negative) moisture anomalies occur over the western Indian Ocean and central-eastern Pacific (Maritime Continent and western Pacific) during the positive phase of the PIOAM. The anomalous circulation is almost the opposite in the negative phases of the PIOAM. This anomalous circulation and moisture can modulate the activity of the MJO. The stronger moistening over the Indian Ocean induced by zonal and vertical moisture advection leads to the stronger MJO activity over the Indian Ocean in the negative phase of the PIOAM. During the positive phase of the PIOAM, the MJO propagates farther east over the central Pacific owing to the stronger moistening there, which is mainly attributable to the meridional and vertical moisture advection, especially low-frequency background state moisture advection by the MJO’s meridional and vertical velocities.  相似文献   

19.
本文利用30~60天带通滤波资料, 考察了不同季节印度洋—西太平洋区域对流活动季节内尺度变率的主要模态, 发现在不同季节赤道东印度洋(5°S~10°N, 70°E~100°E)和西北太平洋(5°N~20°N, 110°E~160°E)对流活动均存在反相变化的关系, 将之称为季节内尺度的印度洋—西太平洋对流涛动(Indo-West Pacific Convection Oscillation), 简称IPCO。对IPCO两极子区域对流活动进行超前滞后相关分析, 发现IPCO事件形成—发展—消亡的生命周期是由对流活动季节内振荡及其传播造成的。对流扰动首先在赤道中西印度洋形成, 随后逐渐向东发展变强, 在其继续变强的过程中将分两支传播:一支由赤道印度洋向北传播, 至印度半岛南部后逐渐减弱消失;另一支沿赤道继续东传, 在海洋大陆受到抑制, 快速越过海洋大陆到达赤道西太平洋后又开始发展变强, 随后北传至西北太平洋区域逐渐减弱, 最终至我国长江流域中下游到日本区域消失。将这一过程划分为8个位相, 详细分析了不同位相对应的环流场和降水场特征, 最后给出了IPCO事件演化示意图。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号