首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
根据洞庭湖区24个气象站1960-2013年夏季逐日气温资料,采用线性趋势分析及滑动平均等方法研究了洞庭湖区近54年夏季高温的变化特征.结果表明:洞庭湖区夏季高温日数和高温日平均最高气温分别以0.142 d/年、0.006℃/年的变化速率递增,尤其是进入21世纪后,高温日数和高温日平均最高气温变化都明显加快.洞庭湖区夏季高温日数多年平均为18 d,2013年最多为47d,1987年最少为8d.高温日平均最高气温多年平均为36.1℃,2013年最高,为37.0℃,1965年最低,为35.5℃.洞庭湖区各单站的夏季平均高温日数和高温日平均最高气温变化并不一致,有9个站夏季平均高温日呈显著增加趋势,有12个站夏季高温日平均最高气温呈显著增强趋势,其余站点增加趋势并不显著.单站夏季平均高温日变化速率最大的是华容,以0.425 d/年的变化速率递增.单站夏季高温日平均最高气温变化速率最大的是安乡,以0.020℃/年的变化速率递增.洞庭湖区夏季高温日数和高温日平均最高气温均呈现出由北部的湖区向环洞庭湖山区呈辐射状递增的分布趋势.高温日数安化最多,为28 d,荆州、公安、石首、岳阳最少,均为12d.高温日平均最高气温安化最高,为36.6℃,石首最低,为35.6℃.洞庭湖区夏季年最多高温日数出现在安乡和益阳,为55 d.极端最高气温出现在益阳,为43.6℃.  相似文献   

2.
利用MICAPS资料及逐日气温资料对贵州省铜仁市近30 a来的高温天气特征进行分析。结果表明:(1)近30 a来,铜仁市高温日共出现1 258 d,平均达41.9 d/a;8月出现的概率最大,达37.4%,其次是7月达34.6%;持续3 d的高温天气过程最多,达45次,高温最长持续日数达18 d;高温日数呈现线性下降趋势,且年际变化明显,但极端高温呈略微上升趋势,递增率为0.15℃/10 a;(2)近30 a沿河县是高温中心,达1 080 d,年均高温日数为36 d;铜仁市极端最高气温在39.3~41.6℃之间;(3)根据500 hPa环流形势可把204次高温天气过程归为3类:即偏南风型、大陆高压型和588线控制型,其中588线控制型占121次;中高层下沉气流偏强、西南季风偏强导致水汽辐合偏北是铜仁出现高温的直接原因。  相似文献   

3.
新疆吐鲁番市1952~2012年气温变化特征及城市化影响   总被引:1,自引:0,他引:1  
利用吐鲁番气象站1952 ~2012 年逐月平均气温和平均最高、最低气温,逐日最高、最低气温以及高温、低温日数资料,采用线性回归、9 a 滑动平均方法,研究吐鲁番市近61 a 气温变化趋势,对比了吐鲁番东坎农试站1981 ~2012 年逐月平均最高、最低气温资料,分析近32 a 城市化进程对吐鲁番市气温的影响.结果表明:吐鲁番市除夏季平均气温、冬季极端最高气温呈下降趋势外,其余均呈不同程度上升趋势,其中尤以冬季极端最低气温和平均最低气温增加最为显著,且气温增加趋势夏季均低于冬季;高温日以1. 3 d/10 a 速率增加,而低温日以4. 8 d/10 a 速率减少;城市化进程对温度的影响具有季节变化和日变化特点.冬季温度差大于其他季节,最低温度温差明显大于最高温度温差.  相似文献   

4.
中国东部地区夏季极端高温的特征分析   总被引:6,自引:2,他引:4  
梁梅  吴立广 《气象科学》2015,35(6):701-709
利用中国东部地区449个气象站的日最高气温资料,应用趋势分析法等,分析了1960-2012年夏季极端高温日数、持续高温日数的时空变化特征。分析发现:北方地区、华南地区和杭州湾周围地区两个高温指数都呈现增加趋势,长江与黄河之间的中部地区都减小。而在长江下游南部地区极端高温日数显著增加,但持续高温日数却明显减少。从季节特征上看,淮河以北的地区两个高温指数主要集中在6、7月;而以南的区域主要集中在7、8月。各个地区的这两个高温指数与降水日数均呈现显著的负相关,但南北有明显的差异,北方地区负相关的在年际变率以及5 a尺度都很显著,而中部地区则只在年际尺度上显著。杭州湾与华南地区持续高温日数与降水日数的相关体现在5 a尺度上。北方极端高温的显著增加与该地区降水日数与降水量明显减少密切相关。西北太平洋副热带高压显著的西伸,与东南地区的两个高温指数的变化有关。  相似文献   

5.
南京夏季高温日数异常的分析   总被引:3,自引:2,他引:1  
孙燕  濮梅娟  张备  姚丽娜  刘梅 《气象科学》2010,30(2):279-284
利用南京气象观测站1951—2007年逐日最高气温观测资料,美国NCEP/NCAR再分析资料中1951年1月—2006年12月的平均高度场、风场资料,运用小波分析、二项式滑动平均、合成分析等方法,分析了南京57a来高温日数的月、季、年际、年代际变化的时间变化特征和异常年份同期7、8月的大气环流特征。发现:(1)南京57a来年平均出现高温的日数为14.7d,高温日主要出集中在7、8月份;(2)南京高温日数具有明显的年际变化,其年际变化最高可达29d(1965年为8天,1966年有37d),57a来南京高温日数异常偏多年有8a、偏少年有7a;(3)南京高温日数1950s到1960s相对偏多,1970s到1990s初处在一个相对偏少的时期,1990s至今,都处在高温日数偏多的阶段;(4)南京高温日数异常偏多时,南亚高压异常偏东、偏北,副高异常偏西、偏北,出现了纬向上"相向而行"的趋势。  相似文献   

6.
利用东源县和紫金县国家气象站1978-2018年的逐日气象数据,分析了河源城区高温和炎热天气特征。结果表明:河源城区总高温日数、一般高温日数和重高温日数均呈明显增加趋势,无严重高温日。总高温日数存在4~5、8~9和准15年时间尺度的周期变化。常年首次在5、6月出现高温日;高温炎热日出现次数最多在7、8月份;极端年最高气温介于36.2~39℃。炎热日数以0.26 d/年速率明显增加,同一个炎热临界值,相对湿度增大,对应的最高气温会降低。炎热日数与热岛效应强度之间存在显著性的相关关系。高温炎热过程主要受副热带高压控制、热带气旋外围下沉气流和El Niňo事件影响。  相似文献   

7.
1951—2010年长沙市极端气温事件的变化特征   总被引:2,自引:0,他引:2  
利用1951-2010年长沙最高和最低气温资料,运用国际上通用的百分位阈值法确定暖日、暖夜和冷日、冷夜数,采用线性倾向估计法和M-K突变检测等方法,研究长沙市60 a来极端气温事件的时空变化特征。结果表明,暖日和暖夜数分别以3.48个.(10a)-1和3.06个.(10a)-1的速率显著增加,冷日和冷夜数分别以-2.13个.(10a)-1和-1.78个.(10a)-1的速率显著减少,白天增暖幅度大于夜间增暖幅度。研究还表明,阶段性特征明显,近60 a来暖日和冷日、冷夜数发生了明显的突变。暖日数增加秋季最显著,春季次之;暖夜数增加夏季最显著,冬季次之。冷日(夜)数减少的季节主要是春季和冬季;四季都在变暖,但以春季、冬季变暖最明显。7月暖日(暖夜)数增加最显著,4月和2月冷日(冷夜)数减少最显著。  相似文献   

8.
1956-2006年中国高温日数的变化趋势   总被引:3,自引:0,他引:3  
 利用全国541个站的均一化日最高气温资料,分析了高温日数的时空变化特征及其对全球变暖的响应。结果表明:1956-2006年我国高温日数有两个高值中心,分别出现在吐鲁番盆地和江南地区。高温日数呈现"增加-减少-增加"的趋势;新疆的高温日数有准3 a的周期变化,中国东部4个地区的高温日数都存在3~6 a的周期变化。中东部地区高温日数由减少转变为增加趋势的时间并不一致,随着纬度的增加而逐渐延迟。  相似文献   

9.
近49年广东高温的气候特征及其变化规律   总被引:7,自引:0,他引:7  
利用广东省86个站点1961—2009年逐日最高气温资料,分析了广东高温日数、极端最高气温的时空变化特征。结果表明,49年来,广东年平均高温日数为14.7 d,2003年最多(27.8 d),其次是2009年(27.6 d),1973年最少(4.6 d)。广东每年高温集中于6—9月,7、8月是高温频发期。49年来广东年平均高温日数呈明显的增加趋势,以2.9 d/(10 a)的速率增加,特别是2000年以后更加明显,并具有2~3 a和4~6 a两个显著周期。广东各站年高温日数和年极端最高气温的上升趋势非常明显,部分地区趋势系数高达0.6~0.8。广东月平均高温日数在7、8月变化最大,特别是1990年代后显著增加;2001—2009年广东86个站的年高温日数有三个地区增加最明显,增加中心分别位于广东的东部、中部以北和西部地区,高温日数距平都在15 d以上。21世纪以来,异常高温年频繁出现。  相似文献   

10.
利用全国541个站的均一化日最高气温资料,分析了高温日数的时空变化特征及其对全球变暖的响应。结果表明:1956-2006年我国高温日数有两个高值中心,分别出现在吐鲁番盆地和江南地区。高温日数呈现"增加-减少-增加"的趋势;新疆的高温日数有准3 a的周期变化,中国东部4个地区的高温日数都存在3~6 a的周期变化。中东部地区高温日数由减少转变为增加趋势的时间并不一致,随着纬度的增加而逐渐延迟。  相似文献   

11.
2005年6月17~24日,华南地区发生了连续多日的暴雨天气过程,其显著特征是存在着南北两条雨带,北支雨带(福建中北部)由准静止的梅雨锋造成,南支雨带(广东中东部)发生在锋前暖区之中,这种连续多日共存的双雨带现象引起了气象学家的广泛关注.为了探究锋面和锋前暖区暴雨的成因,加深这两类不同性质暴雨的认识,利用NCEP每6 h一次的1°×1°经纬度再分析资料以及华南地区加密观测的逐小时地面降水等资料,以此次连续多日维持的双雨带降水过程为例,详细分析了锋面附近与锋前暖湿区内暴雨系统的主要物理差异.结果发现:梅雨锋暴雨和锋前暖区暴雨不仅在中尺度雨团活动、系统动力结构、大气不稳定机制和大气加热结构等存在明显的差异,而且在水汽输送、中尺度环境以及与暴雨有关的垂直环流之间也存在着不同点,这些差异可能是造成锋前暖区暴雨难以模拟和预报的主要原因.  相似文献   

12.
阿克苏河流域1999年夏季洪水气象条件分析和预报服务   总被引:9,自引:4,他引:5  
1999年 7月中旬到 8月上旬 ,阿克苏河流域出现历史罕见洪水。高温融雪以及山区降水是这次洪水的主要气象成因。 5 0 0hPa南疆稳定的副热带高压和中亚到帕米尔高原一带的副热带低槽是造成阿克苏河流域特大洪水的主要影响系统。  相似文献   

13.
2013年夏季我国南方区域性高温天气的极端性分析   总被引:16,自引:2,他引:14       下载免费PDF全文
唐恬  金荣花  彭相瑜  牛若芸 《气象》2014,40(10):1207-1215
提利用1960-2013年我国南方10省(市)733个站点的日最高、最低气温和日平均气温资料,对2013年夏季我国南方高温天气的极端性进行了系统的分析。分析结果显示:2013年夏季我国南方高温天气具有显著的群发性特征,覆盖了长江中下游以及重庆等八个省、两个直辖市;也具有以高温天气过程重现构成的持续性特征,主要经历了4次高温天气过程,其中,7月22日至8月21日的第三次高温天气过程,强度最强、范围最广。重点围绕区域性高温在历史上的极端性做进一步分析,结果表明:所研究高温区域的夏季平均气温、平均最高气温、平均最低气温均破历史纪录,为近50年新高;平均高温日数和强度也超过了历年平均高温日数和强度的极值,属历史罕见;高温日数和高温强度的高值区域范围比历年向北扩展,且高值中心值超过历史最高纪录,极端性突出;2013年极端高温事件的发生次数突破了历史纪录,其中8月的极端高温事件十分突出。  相似文献   

14.
北京夏季高温闷热天气的气候特征和2008夏季奥运会   总被引:19,自引:4,他引:19  
王迎春  葛国庆  陶祖钰 《气象》2003,29(9):23-27
利用1951~2000年北京6、7、8月的逐日最高和最低温度资料,统计分析了北京夏季高温天气和闷热天气的逐月、旬、候的分布及持续时间。结果表明,北京夏季高温天气和闷热天气发生概率分别为1/10和1/20,是一个适宜举办奥运会的城市。高温天气主要集中在6月下旬和7月份,逐候分布呈双峰型,分别在6月第6候和7月第5候。闷热天气主要集中在7月中旬到8月上旬,逐候分布也呈双峰型,分别在7月第6候和8月第2候。6月份高温天气较多,但闷热天气很少。8月份高温日数非常稀少,但闷热天气日数还有一定数量。每年至少出现一次持续2天的高温天气,另外还非常有可能出现一次持续3天或3天以上的高温天气(0.84次/年)以及一次2天及2天以上的持续闷热天气(0.88次/年)。高温天气和闷热天气的平均持续日数均约为3天。8月中、下旬,高温天气和闷热天气出现的概率都非常小,是最适宜举办夏季奥运会的时期。  相似文献   

15.
利用南沙气象探测基地的地面常规观测资料对南沙的高温日进行了统计,并对2012年7-8月的高温天气过程做了分析,结果发现:南沙高温日数和持续高温出现最多的是2009年,持续高温以2d最多,持续时间最长的为3d;南沙高温主要在6-9月出现,集中出现在7月下旬-8月下旬,高温日出现最多的是8月;高温一般出现在15:00前后.2012年高温出现时副高一般断裂成块状或者脊线比较偏北,受热带气旋的影响较大;所有的高温日都受热带气旋外围下沉气流影响;当热带气旋位于南沙区偏东时,出现高温持续的时间较长,而且过程最高气温也较高.高温日当天08:00气温高、云量偏少、地面风速低、以西到西北风为主,湿度偏低.  相似文献   

16.
重庆市臭氧污染及其气象因子预报方法对比研究   总被引:1,自引:0,他引:1  
利用2014年1月1日至2018年12月31日的重庆市空气质量日均值资料,分析了重庆近5 a臭氧污染的特征。发现重庆市臭氧是除PM2.5以外的第二大大气污染物,具有较强的季节变化特征,主要污染时段位于夏半年,在7—8月臭氧污染程度明显超过了PM2.5。臭氧年平均浓度呈现逐年增加的趋势,首要污染物为臭氧的日数在2018年首次超过PM2.5,臭氧成为2018年重庆市的第一大污染物,表明重庆正在由一个以颗粒物污染为主的城市转变为臭氧污染为主的城市。通过对同期逐日气象资料与臭氧8 h滑动平均日最大值相关性分析发现,大气温度、湿度及气压均为影响臭氧污染的重要气象因子。利用气象影响因子,采用逐步回归、支持向量机、神经网络方法对臭氧8 h滑动平均日最大值进行预报实验表明,三种预报模型均具有较强的预报能力,但总体来看预报均比实况略偏小。支持向量机方法的预报效果要稍好于逐步回归和神经网络方法,可为重庆市臭氧浓度预报提供参考。  相似文献   

17.
沈阳地区对流层顶气候特征分析   总被引:11,自引:3,他引:11       下载免费PDF全文
对1977~1992年1,4,7,10月沈阳第一和第二对流层顶月平均高度和温度数据进行分析。结果表明:沈阳是以第一对流层顶为主的地区,第二对流层顶只有夏季发生频率较高;第一对流层顶的高度、温度以及出现频率都表现出明显的季节变化特征,其中高度在1月最低,7月最高;温度在3月最低,8月最高。第二对流层顶高度的季节变化表现为冬春季高、夏秋季低。温度表现为冬季高,夏季低。第一对流层顶在各个月份温度都随高度增高而降低,降幅1月最小,7月最大,4月和10月居中。第二对流层顶温度随高度变化只在7月显著递减;第一对流层顶高度在10月显著降低,降幅为453m/10a,其他月份变化趋势不明显。第一对流层顶在7月显著降温,降幅为1·8℃/10a,10月增温显著,升幅为2·0℃/10a。第二对流层顶高度在不同月份都表现出弱升高趋势,但不显著。1月和10月的降温和升温显著,降幅和升幅分别为1·7℃/10a和1·2℃/10a。  相似文献   

18.
次仁央宗  柯宗建  陈丽娟  尼玛吉 《气象》2016,42(11):1342-1350
利用西藏地区1980-2013年夏季降水量资料、NCEP再分析资料等,分析了西藏地区夏季降水主模态季节内变化特征,尤其是盛夏7和8月降水异常对应的大尺度环流特征和影响系统。结果表明:西藏夏季降水存在明显的季节内变化,6和7月降水主模态的时间系数变化具有较好的持续性,而7和8月降水主模态的时间系数的相关关系明显减弱。西藏地区7和8月降水偏多年,西藏地区上游低层纬向风场均呈西风异常,但是水汽来源有差异;同时欧亚中高纬地区对流层中高层环流存在显著差异。西藏7月降水与南亚高压强度存在显著负相关关系,南亚高压偏强/弱时,降水偏少/多。西藏8月降水与南亚高压的位置关系更密切,南亚高压偏南/北,降水偏多/少。  相似文献   

19.
2010年江苏省连续性高温特点及成因分析   总被引:7,自引:3,他引:4  
利用江苏省常规气象观测资料、1961—2010年全省73个站的历史高温资料以及NCEAP 2.5×2.5再分析资料,分析总结了江苏省高温天气气候特点及2010年高温情况,并在此基础上重点对2010年连续高温天气特点及成因进行了分析。结果表明:江苏省高温日数以7月最多(占高温总日数的44.1%)、8月次之(占29.2%);空间分布上呈西南部地区多,东部沿海少的特点;2010年8月连续高温频发,过程间隔时间短,且区域性连续高温时段主要集中在8月份,较多年平均偏晚,部分市县最高气温创当地有气象资料以来的历史新高;盛夏期间前期赤道辐合带不活跃,不利于副高北抬,是造成该年出梅后区域性连续高温偏晚的一个重要原因;而8月份南亚高压脊线位置偏南,强盛的副高持续控制江苏省,加上台风北上活动影响少,致使该月连续性高温频发。连续高温期间副高能快速恢复增强,促使连续性高温过程频繁且间隔时间短。  相似文献   

20.
基于CRU、CMAP、PREC/L、CN05.1、NCEP/NCAR以及全国160个台站的月降水资料,采用经验正交函数(EOF)分解、依赖于季节的经验正交函数(SEOF)分解、滑动平均、空间相关、回归以及合成分析等多元统计方法研究了近50 a华南盛夏降水异常的基本特征及其季节内差异,并讨论了其大气环流异常。结果表明:(1)盛夏7、8月华南降水异常的空间分布都表现为区域一致性,即整个华南地区都为正(负)异常。(2)华南盛夏降水异常在月季变化的时间尺度上存在着同位相和反位相演变,1963—1993年,华南7、8月降水大致为反相演变,即7月华南全区一致偏涝(旱)而8月一致偏旱(涝);1994—2015年,二者总体表现为同相演变,即7月华南全区降水一致偏涝(旱)时8月亦一致偏涝(旱)。(3)大气遥相关型的变化是同相和反相两种演变模态产生的主要原因,同相期间对流层中层7月表现为欧亚遥相关(EU)和东亚太平洋遥相关(EAP)相互配置,8月表现为类似EU和太平洋北美遥相关(PNA)型;反相期间对流层中层7月表现为类似北美东西遥相关(NAEW)型,8月表现为类似EAP型。(4)西太平洋副热带高压的变化与华南盛夏降水季节内差异密切相关。反相期间7月与8月西太平洋副热带高压的差异主要体现在东西位置变化较大,而同相期间变化不大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号