首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
为了探讨风廓线雷达资料的可用性,对2013年9月—2015年10月青岛站和济南站的风廓线雷达与L波段探空雷达测风数据进行相关、误差及有效样本比率分析。结果表明:(1)济南站和青岛站绝大多数高度层00:00和12:00风廓线雷达与L波段探空雷达的水平风速显著正相关,通过α=0.05及以上信度检验;(2)济南站00:00和12:00,晴天1.5 km以上及雨天0.64 km以上大多高度层风廓线雷达的水平风速比L波段探空雷达偏小约2 m·s~(-1),且当风廓线雷达与L波段探空雷达水平风向差≤20°时,有效样本比率基本在70%以上,资料质量很高;(3)青岛站00:00和12:00,6.48 km以下大多高度层风廓线雷达探测的水平风速比L波段探空雷达偏小2~4 m·s~(-1),水平风速资料可用,但当2部雷达风向差≤20°时,有效样本比率仅为20%,海陆风及2种仪器的布设距离是水平风向差异的主要原因。  相似文献   

2.
利用阳江大气探测基地拥有多普勒雷达、L波段探空雷达和地面观测站于一体的条件,将多普勒雷达高密度的VAD风廓线资料与L波段雷达资料进行对比,分析其相关性,得出多普勒VAD风廓线资料在探测资料齐全时,与L波段雷达资料变化趋势一致;一般情况,多普勒风廓线探测值比同一层的探空风偏小;多普勒风廓线RMS误差资料代表多普勒风廓线资料与探空资料的一种差异趋势。  相似文献   

3.
利用2016~2017年科尔沁边界层风廓线雷达每6min的风场资料评估雷达探测性能,主要针对风廓线雷达数据获取率、风廓线雷达与常规探空探测风的相关性等进行了分析。结果表明:风廓线雷达平均数据获取率随高度的增加先增大后减小,3000米以下平均数据获取率都在60%以上。雷达探测数据存在日出后数据缺测率高,午后缺测率低的变化趋势。各层数据获取率与气温和比湿的相关系数分别在0.45和0.35左右。对比风廓线与常规高空探测数据发现:二者v分量的相关系数大于u分量;各高度层中400米到1900米的u分量的相关系数在0.4以上,500米到3400米的v分量的相关系数都在0.6以上;风廓线雷达与常规探空数据u分量相关系数随风速的增大时而减小,从春季到冬季u、v分量相关系数都呈减小趋势。各个季节中风廓线雷达与常规探空数据风速平均偏差春季最小、冬季最大。  相似文献   

4.
文章利用上海边界层风廓线雷达网中3台分别布设在松江泖港和嘉定F1赛车场的TWP3型风廓线雷达以及嘉定外岗的LAP3000型风廓线雷达,在2010年初冬和2011年盛夏各一个月时段的连续原始测风数据,逐个与上海宝山GFE(L)-1型二次探空雷达在相同时段中的原始测风数据进行了对比分析研究.并且还将同布设在嘉定地区的两台不同型号的风廓线雷达进行了测风数据的互比分析.在基本稳定的天气条件下,嘉定F1赛车场、松江泖港以及嘉定外岗风廓线雷达各自与宝山GFE(L)-1型二次雷达探空测风数据进行对比分析的匹配样本数依次是6733、7350和7013对,其在盛夏时段对比统计的各层风速的平均标准差分别是3.34、3.37和4.03m·s-1,在初冬时段则为3.22、3.22和3.42m·s-1.参与互比分析的F1赛车场TWP3型风廓线雷达和外岗LAP3000型风廓线雷达之间的匹配样本数是71981对,其在盛夏时段互比统计的风速平均标准差是3.63 m·s-1,在初冬时段为4.12 m·s-1.有统计曲线表明,本研究中两台TWP3型风廓线雷达与宝山GFE(L)-1型二次雷达探空测风的误差均为2~4 m·s-1,其比对精度明显优于嘉定外岗的LAP3000型风廓线雷达.文章还提出了风廓线雷达的“有效探测高度”新概念.  相似文献   

5.
上海组网风廓线雷达数据质量评估   总被引:4,自引:3,他引:1  
刘梦娟  刘舜 《气象》2016,42(8):962-970
利用2014年6月美国国家环境预报中心(NCEP)的全球模式分析资料,对上海及周边地区组网的七部边界层风廓线雷达的水平测风数据进行了初步分析和比较。由于NCEP全球模式分析资料并未使用上海13:15加密观测探空秒间隔数据,首先用该数据对NCEP分析资料的准确性和代表性进行了检验。结果表明,两者平均偏差与均方根误差均较小,故认为NCEP分析资料可用于客观检验上海及周边地区组网的七部边界层风廓线雷达的水平测风数据。对比分析风廓线雷达与NCEP分析资料表明总体上,风廓线雷达与NCEP分析资料的平均风场风速偏差为-0.14 m·s~(-1),均方根误差为2.72 m·s~(-1),风向偏差为-4.28°。上海组网风廓线雷达测风资料质量与探空观测水平接近,有较高的可用性。  相似文献   

6.
风廓线雷达与L波段雷达探空测风对比分析   总被引:4,自引:0,他引:4  
吴蕾  陈洪滨  康雪 《气象科技》2014,42(2):225-230
为了解风廓线雷达探测的准确性,对北京南郊大气探测试验基地2006-2008年3年的观测资料与常规高空探测资料即L波段雷达探空测风数据进行了对比,计算并分析了不同高度、不同时次、不同风速条件下的对比结果,进行了相关性分析,计算了平均差和标准差。结果表明,二者测风结果有较好的一致性,半小时平均水平风u、v分量的标准差在2.3m/s左右,为风廓线雷达和L波段雷达探空共同的测量误差及不同采样空间和时间的水平风的差异。  相似文献   

7.
对安装在浙江衢州国家基本气象站的CFL-06型低对流层风廓线雷达2022年的数据进行了初步分析,包括进行全年不同季节数据获取率的统计分析,以及选取6个时次的数据与同站址安装的L波段探空雷达的数据进行对比分析,进一步验证风廓线雷达数据的准确性和可信度。结果表明:风廓线雷达数据获取率在不同季节有所区别,一般夏季最高,冬季数据获取率在3km以上有较明显的下降趋势,风廓线雷达的探测高度以及数据获取率与天气、气候条件等息息相关;风廓线雷达与L波段探空雷达数据在晴空条件下一致性较高,在有降水天气过程的情况下,风廓线雷达的数据准确性可能会下降。  相似文献   

8.
使用浙江探空数据对EC再分析数据评估发现两者风场存在较好的相关性,可用EC再分析数据取代探空数据对风廓线数据进行评估。评估结果显示当无降水时,风廓线雷达数据与EC再分析数据相关系数在0.85~0.9之间;当有降水时,两类数据相关系数在0.7~0.8之间。统计结果还显示,无降水时风廓线雷达数据在中层2~4 km与EC再分析数据相对误差较小,在低层和高层由于相关资料的缺测造成相对误差较大。有降水时风廓线雷达数据与EC再分析数据相对误差随高度变化特征不明显。通过对台风个例的风力演变特征分析发现,雷达资料的时空完整性都比较好,相对探空数据可以观察到系统演变过程中更精细的风力结构。  相似文献   

9.
CFL-06型风廓线雷达与L波段探空雷达测风对比分析   总被引:1,自引:0,他引:1  
为探讨风廓线雷达资料的准确性和可用性,将2016年5月2017年4月张家口的风廓线雷达与L波段探空雷达测风资料进行对比分析。结果表明:1)张家口站大多高度层二者风速呈显著正相关,00:00的相关性优于12:00的,8km以上未通过显著性检验。2)4.11km以下风廓线雷达较L波段探空雷达水平风速偏大,平均误差为0.00~1.50m/s;4.11km以上风廓线雷达较L波段探空雷达水平风速偏小,平均误差为0.00~22.13m/s,并随高度的增加而增大。3)水平风速有效样本率(风速差≤3m/s)整体随高度增加呈先增大后减小的趋势,中低层(1.23~3.63km)的有效样本率较高,为60.0%~70.0%。4)2.196.03km各高度层水平风向的有效样本率(风向差≤20°)较大,稳定在70%~80%,有降水时风向有效样本率随高度的增高而增大,且各高度层波动较大。两个时次风向有效样本多集中在风向差为10°的范围内,28km各高度层有效样本率(风向差≤10°)可达到40%~60%。  相似文献   

10.
《气象》2021,(5)
面向中国第一代全球大气/陆面再分析产品(CRA)的应用需求,针对中国风廓线雷达小时产品资料特点,在美国NCEP风廓线综合质量控制方法的基础上,提出一套适用于中国风廓线雷达逐小时水平风产品的质量控制方法。通过对比质量控制前后风廓线雷达资料与探空资料的相关系数、平均偏差及均方根误差,证明了质量控制方案的有效性。以ERA-Interim资料作为间接参考场,通过比较探空资料与不同型号、不同探测高度范围、不同观测时段、不同垂直层次风廓线雷达资料相对ERA-Interim再分析资料的偏差,分析了质量控制前后中国风廓线雷达资料的整体质量。结果表明,经该算法质量控制后,风廓线雷达与探空风场表现出了更好的一致性。不同雷达型号、不同探测高度资料的相关系数从0.17~0.82上升至0.79~0.98。在相对ERA-Interim与探空资料的偏差方面,质量控制后,除边界层风廓线雷达的u风分量在300 hPa以上仍有5 m·s~(-1)左右的偏差外,其他型号雷达的u、v风分量在各垂直层的平均偏差均在3m·s~(-1)以内,证明质量控制算法具有识别高层粗大误差数据的能力,能够使最大探测高度以上的数据得到有效利用。  相似文献   

11.
为了更好地把握风廓线雷达的探测性能和数据精度,对移动风廓线雷达与L波段探空雷达资料进行对比统计分析,结果表明:移动风廓线雷达的有效数据获取率达到80%的高度为3500m,符合边界层风廓线雷达的有效探测高度。移动风廓线的径向速度平均差和标准差随着高度的增加而增加,东西方向的径向速度误差比南北方向的高约0.5—1.0m/s。风廓线雷达自身数据的准确性良好,但是降雨对数据的准确性影响比较大。这次对比试验结果表明,对比试验应该选择比较平稳的天气过程。由于秋冬季节大气环流比较稳定,降雨类型多为层状云降雨,因而风廓线雷达数据可靠性高;对流性降雨过程往往造成风廓线雷达资料可靠性降低。  相似文献   

12.
应用四川省名山站2015~2017年6月21日~7月31日每日四个时次的西南涡加密探空资料与风廓线雷达资料,对比分析了在对流层低层风探测上两种资料的差异。结果表明:名山站风廓线雷达资料有效探测高度约为4200m;风廓线雷达和探空测得的风场廓线形状总体接近,两者的风速偏差较小,仅在个别层次和时次偏差大,风速的偏差大小与风廓线风速大小存在正相关关系,除少数情况外风廓线雷达测得的风速均大于探空;两者风向差值随高度的变化规律与风速相反,在中高层较小,低层较大;除01:15时次的500m高度外,其余时次自低层到高层两者观测到的主风向均由偏东北风变为偏西南风,一致性较好;U风和V风散点分布主要沿对角线呈棒槌型,V风质量优于U风,19:15这一时次的风廓线雷达探测U风相对探空资料存在明显系统性正偏差;风廓线雷达探测高度受降水影响较大,在07:15和13:15时次有降水时其探测高度明显高于无降水时。   相似文献   

13.
高原地区风廓线雷达资料评估   总被引:3,自引:0,他引:3  
董保举  张晔  徐安伦 《气象科技》2009,37(5):580-583
在简述风廓线雷达原理的基础上,将风廓线雷达探测资料与探空资料进行对比分析,发现风速风向一致性较好,温度一致性较差。对风廓线资料总的数据获取率及不同天气条件下的数据获取率进行了统计,大理风廓线雷达边界层高度的数据获取率大于80%,在对流层低层以及边界层的探测能力要远远大于高层,高空雨季后的探测高度大于雨季前的探测高度。不同天气条件下低空的数据获取率差别不大,高空阴雨天的数据获取率大于晴天的数据获取率,阴雨天的探测高度大于晴天的探测高度。  相似文献   

14.
本文首先利用2013年沙坪坝探空站资料与沙坪坝风廓线雷达资料进行对比分析,计算出逐月不同高度上两种资料中风速、风向均方根偏差,验证风廓线雷达资料的可用性。计算结果表明,风廓线雷达资料与探空资料风速、风向的均方根偏差在500h Pa以下层次较小,资料具有较高的可用性。但随着高度继续增加,两者风速、风向偏差均增大,资料可用性降低。在此基础上,选取2013年6月8~9日重庆一次暴雨天气过程,对比分析中低层影响系统在探空观测和风廓线雷达观测中的演变,结果表明,降水过程前后,探空资料可显示有低槽、切变线、冷锋过境,但受时间分辨率限制,无法揭示具体过境时间和演变细节。而风廓线雷达资料能更为细致的显示低槽、切变线、锋面具体过境时间以及西南气流强度变化,为降水预报提供更多可参考信息。  相似文献   

15.
风廓线雷达资料对GRAPES_MESO数值预报系统影响的初步研究   总被引:4,自引:1,他引:3  
谭晓伟  徐枝芳  龚建东 《气象》2016,42(1):26-33
针对一个南方切变线系统降水个例,通过观测系统模拟试验(OSSEs)对我国拟建风廓线雷达观测网内的不同类型风廓线雷达观测资料在GRAPES_MESO系统中的影响、对风廓线雷达观测和探空观测及两者混合使用时在GRAPES_MESO系统中的影响差异进行了初步分析和讨论。试验结果表明,在GRAPES_MESO系统中,风廓线雷达资料对500 hPa高度以下水平风速分析场的修正作用明显优于探空资料;风廓线雷达资料对水平风速分析场的影响高度极限大约在300 hPa附近,经过6h的传播,其影响可以向上继续传播至250 hPa以上高度;在300 hPa高度以下,同化对流层Ⅱ型风廓线雷达资料对水平风速分析场的影响比边界层型风廓线雷达资料略大;单独同化风廓线雷达资料对降水预报的贡献较弱,与探空观测混合使用时有助改进降水预报。  相似文献   

16.
风廓线仪与气球测风资料的对比分析   总被引:3,自引:0,他引:3  
利用风廓线仪和气球同步探测风场资料对比,分析了风廓线仪探测风场资料的可靠性。结果表明:在稳定天气过程中,由于风廓线仪的探测盲区和地物杂波的影响,自地面至高空200m范围内,廓线仪探测的风向、风速与气球探测的风向风速值有一定偏差,200m高度以上风廓线仪和气球探空所测得的风场廓线具有很好的相关性;在复杂天气过程中风场廓线形状出现较大偏差,主要原因是由于气球探空资料在各高度层之间的整体连续性方面存在明显不足,而风廓线仪的观测资料无论在各高度层之间还是整体连续性方面都明显好于气球探空。这与在较高海拔地区,气球观测期间的大气局部不稳定有关。由于气球在经过某高度层时的取值明显受到当时大气层局部小湍流活动或者较强的下沉或上升气流影响,使气球经过该点时的位移与其相邻两点之间出现明显的飘逸,从而造成气球在某个高度范围内的风资料观测值出现较大偏离。但由于探空气球的资料不连续,无法准确判断气流扰动情况,而风廓线仪获取的不同高度上的风资料是10min内的平均观测值,一般不受小范围的空气扰动而出现较大偏离,另外,风廓线仪的观测是连续的,每组观测值之间只存在10min的时间差,通过对前后几组数据的对比分析,可以明显看出当时气流的扰动情况。因此,风廓线仪探测在资料的连续性和分析气流扰动情况,尤其是大尺度湍流活动方面更有探空气球不可替代的作用,风廓线仪观测资料的可靠性具有良好的应用价值。  相似文献   

17.
3000Q型车载式边界层风廓线雷达测风资料的验证   总被引:1,自引:1,他引:0  
刘尉  林举宾 《广东气象》2010,32(5):53-55
利用L波段无线电探空仪、GPS探空仪及Vaisala边界层风廓线雷达,与3000Q型车载式边界层风廓线雷达进行对比观测,验证其测量值的准确性。多次对比试验结果表明,3000Q型风廓线雷达与其他测风手段的观测结果具有较好的一致性,所测得风速、风向值之间的差异不明显。  相似文献   

18.
时间分辨率是风廓线雷达的一个重要指标。根据风廓线雷达工作原理和时间分辨率计算方法,提出一种利用波束轮转技术来提高风廓线雷达时间分辨率的新方法。风廓线雷达使用该方法进行探测时,采用波束优先顺序进行观测,当雷达完成一次完整的观测后,每完成一个波束的观测,将该波束的观测数据替代之前观测数据中该波束的数据,其它波束使用之前的观测数据,组合成一个新的数据后,再进行后续处理。2018年10月1—31日利用L波段风廓线雷达开展了相关观测试验,并将根据两种模式所得结果与探空数据结果进行对比。试验结果表明,使用波束轮转技术可以将风廓线雷达的时间分辨率由6 min提升至1 min,在反演得到的风廓线结果上能够看到明显的变化过程;从与探空数据的对比结果看,使用波束轮转技术得到的大气风场实际情况更加吻合。  相似文献   

19.
为探讨微波辐射计和风廓线雷达探测数据的准确性和可用性,利用天津全运会期间获取的GPS探空资料,分析不同天气条件下微波辐射计探测温湿度、风廓线雷达测风的误差特征。结果表明:晴天、云天和雨天条件下,微波辐射计反演低空温度廓线效果均较好,反演高空温度廓线误差较大,云天条件下,反演的整层温度廓线与探空实测值相关性最优;3种天气条件下,微波辐射计反演相对湿度廓线的误差均较大,与探空实测值的相关性也较差;晴天和云天条件下,风廓线雷达探测风向、风速的误差均较小,雨天风廓线雷达测风效果较差;晴天和云天条件下1750 m以上,雨天3000 m以上,风廓线雷达探测风速数据与探空实测值相关性较好,低空探测风速与探空相关性较差;3500 m以下,3种天气条件下风廓线雷达探测风向与探空实测值相关性较差,3500 m以上相关性较好,数值在0.6—1.0之间波动变化。  相似文献   

20.
测风激光雷达和风廓线雷达作为L波段探空测风的有效补充,均可以提供高时空分辨率的大气风场信息,然而由于工作原理和适用条件存在明显差异,在探测性能上各有优缺点,单一设备的探测数据已不能满足精细化预报的要求。本研究使用2020年1—5月北京南郊观象台的L波段探空资料对同址观测的测风激光雷达和风廓线雷达进行了数据质量评估,结果表明测风激光雷达与探空的一致性较高,U、V分量的相关系数分别为0.97和0.98,均方根误差分别为1.1和0.95 m·s-1,然而在2 km以上数据获取率较低且偏差较大;风廓线雷达与探空相比,U、V分量的相关系数分别为0.94和0.93,均方根误差分别为2.94和2.91 m·s-1,风廓线雷达的探测距离虽然更远,但在0.5 km以下和6 km以上的测量偏差较大。考虑到两种测风雷达在不同探测高度上的性能优缺点,提出分段曲面拟合法对两者的水平风资料进行融合处理,并选取个例对融合效果进行验证,结果表明,融合后的风廓线与融合前相比,风向和风速的一致性均得到明显提升。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号