首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 125 毫秒
1.
利用1998年青藏高原地面雷达资料、探空资料和地面降水资料,计算分析了青藏高原的雷达回波、层结热力参量及其降水的统计特征。结果表明,在6月中旬青藏高原雨季来临之后,云中对流活动明显增强,雷达回波强度增大,回波顶高和回波面积增加,层结热力参量明显改变,对流凝结高度下降,气块能量增加,降水量显著增大。  相似文献   

2.
王梦晓  王瑞  傅云飞 《高原气象》2019,38(3):539-551
利用热带测雨卫星测雨雷达(TRMM PR)降水回波反射率因子廓线(降水率廓线)与全球探空大气温湿廓线(IGRA)的多年融合资料,研究了青藏高原拉萨站夏季降水结构及相应的大气温湿结构特征。结果表明,该站降水回波反射率因子分布在17~45 dBz,大部分小于26 dBz;回波顶高度达17 km,呈现“瘦高”外形;相应的大气低层湿润,降水云内大气并非饱和,但温度露点差比全部状态时的值小。深厚降水系统的回波外形也呈现“瘦高”,按照降水率随高度的非线性变化,其垂直结构可分为三层,而浅薄降水系统的垂直结构呈现一层,即平均降水率斜率随高度呈对数线性变化,最大平均降水率(0.7 mm·h^-1)出现在地面。深厚降水与浅薄降水云体内400 hPa高度(7.5 km)上下的露点温度递减的速率不同。降水云体内的零度层高度大约6.3 km,但PR没有探测到零度层亮带。统计结果还表明拉萨探空站及附近的大气可降水量为20.89 mm·d^-1,降水转化率为27.0%,深厚降水系统的降水转化率是浅薄降水系统的2.9倍,深厚降水系统和浅薄降水系统的CAPE值分别为1941.7 J·kg^-1和1451.8 J·kg^-1。本研究结果为模式模拟青藏高原降水云内的温湿结构提供了观测依据。  相似文献   

3.
浅谈零度层亮带的成因及其对降水预报的作用   总被引:1,自引:0,他引:1  
每年的春夏季节,降水频繁,我站711雷达在降水回波中常常能观测到零度层亮带。下面简单分析一下其物理成因及与天气预报的关系。 大范围稳定和连续性层状云降水一般在气旋内部和锋面上形成,它们是深厚潮湿的空气层缓慢持续上升的结果。这种降水回波范围广、持续时间长、强度均匀、结构松散、连成片,故也称片状回波。在距离高度显示器上,层状云降水回波占满对流层下部,顶部比较平坦,顶高  相似文献   

4.
闽北地区前汛期锋面云系雷达回波特征   总被引:1,自引:0,他引:1  
本文利用多年雷达回波资料,统计分析华南前汛期(闽北)锋面云系不同部位,不同云型回波的结构,降水特征,层结稳定度;并对地形和中尺度系统与回波的新生、发展,组组化的关系作探讨。  相似文献   

5.
利用2008—2012年4—6月古田试验区的新一代天气雷达、探空及地面雨量观测等资料,结合天气形势分析,研究古田试验区云系的回波特征与人工增雨作业条件,结果表明:影响古田试验区的主要天气系统分别为低涡切变、暖区辐合、高空槽和大陆高压。降水云系以积层混合云为主,其次为积状云。天气系统所对应的云系回波类型及降水情况有明显差异,积层混合云的结构有利降水;积层混合云大于25 d Bz的回波面积明显比积状云大,且平均回波顶高和最大回波顶高均比积状云低;积状云的垂直积分液态水含量明显比积层混合云大;积状云和积层混合云的负温层厚度超2 km;积层混合云的最大回波强度、大于25 d Bz的回波面积和负温层厚度与区域平均日雨量有着明显的对应关系。古田试验区积层混合云的作业指标为回波强度大于25 d Bz,大于25d Bz的回波面积S25 d Bz要大于400 km~2,回波顶高大于5.5 km,负温层厚度大于1.5km,垂直积分液态水含量大于1 kg/m~2。  相似文献   

6.
一次积层混合云系人工增雨作业的综合观测分析   总被引:1,自引:0,他引:1  
综合利用多普勒天气雷达资料、FY-2E静止卫星反演云参数、MODIS极轨卫星反演产品和地面降水资料,对湖南2013年8月17日一次飞行作业的积层混合云降水结构及催化效果进行了分析。研究表明,作业云系以云顶温度较低的积层混合云为主。-10℃以上存在深厚的冰相增长带,云顶以冰相的大粒子为主;-10℃层以下,云滴的凝结碰并作用显著,冰相过程显著。光学厚度与地面降水有很好的正相关性,能很好地反映降水落区。回波垂直廓线表明,催化云系冷层厚度较大,0℃层附近液水含量较为充沛,降水以冰相过程为主。深厚的冰相层和冰水混合层的配置有利于降水的发生,在以冷云过程形成降水的位置进行催化作业,催化部位和时机较为科学合理。物理统计分析发现,催化后高层的回波强度率先增长,低层响应较为滞后,说明催化率先引起高层降水粒子的增长,雨滴增长下落后导致低层回波出现增长。相对于对比区,催化能引起回波强度和降水增强,并能相对延长目标云区的生命期,催化效果较为明显。  相似文献   

7.
讨论了不同类型降水回波的自动识别方法。根据不同类型降水回波的特征,选择了4个识别因子——面积复杂度、强度梯度、强中心强度和面积因子,形成一个可以自动识别3种类型降水回波的3层判别系统。  相似文献   

8.
基于雷达回波强度面积谱识别降水云类型   总被引:1,自引:1,他引:0       下载免费PDF全文
基于谱分析原理提出了雷达回波强度面积谱的概念及算法,利用宁夏银川多普勒天气雷达回波资料,分析了不同性质降水云的雷达回波强度面积谱,并根据不同性质降水云雷达回波强度面积谱特征,提出了基于雷达回波强度面积谱识别降水云类型的方法,利用强回波面积(回波强度不小于40 dBZ的回波面积)占总回波面积百分比和基本降水回波面积(回波强度不小于20 dBZ的回波面积)占总回波面积百分比作为降水云类型判别的主要因子,提炼出基于雷达回波强度面积谱特征参数的层状云、积层混合云、对流云等不同类型降水云的判别指标,建立了基于雷达回波的降水云类型自动判识模型。利用该模型对2016-2017年6次强降水过程进行了降水云类型判别试验,模型准确判别出6次强降水过程中2次为对流云降水、4次为混合云降水,判别结果较好地反映了降水云类型,验证了判识方法的可行性。  相似文献   

9.
长生命史飑线在强、弱对流降水过程中的异同点分析   总被引:5,自引:0,他引:5  
姚晨  郑媛媛  张雪晨 《高原气象》2012,31(5):1366-1375
利用常规气象资料、自动站资料、NCEP再分析资料和多普勒雷达资料,对发生在我国中纬度地区不同对流环境下两次长生命史飑线过程的物理机制和中尺度特征进行了分析。结果表明:(1)飑线在近地面层有较强的水汽辐合,但强对流降水过程中的飑线湿层深厚,水汽辐合的层次更为深广、强度更强,存在较低的抬升凝结高度。(2)高层强冷平流与低层暖平流的叠加是飑线的共同特征之一;不同之处在于弱对流降水过程中飑线不稳定层结的建立更多地依靠高层冷平流的作用,有更高的温度直减率,具有弱降水超级单体的一些特征;强对流降水过程中飑线低层暖平流的加强也是造成大气不稳定的重要原因,θse在中层呈现出湿中性层结特征,存在更大的热力不稳定度,是典型的强降水超级单体特性。(3)长生命史飑线的发展离不开强环境风垂直风切变;强对流降水过程中垂直风切变主要是风速随高度变化而产生的,弱对流降水过程中垂直风切变主要表现为风向随高度的变化。(4)飑线沿着出流边界和引导气流方向移动。(5)飑线在雷达回波上的共同点:都出现典型弓形回波,减弱的标志亦是阵风锋逐渐远离回波主体,弓形回波逐渐断裂,强回波后侧的层状云回波面积开始增大;不同点在于弓形回波的演变方式不同,弱对流降水过程中的弓形回波有超级单体风暴的典型结构,而强对流降水过程中弓形回波的形成是由强降水超级单体的发展而来,单体结构明显不同于经典超级单体中非降水或弱降水超级单体。(6)速度场上低层存在着径向速度的大值区,中低层有辐合,并伴有中气旋存在,中层存在明显的MARC(Mid-Altitude Radial Convergence)。1km高度以下的径向速度大值区、MARC和中气旋对地面灾害性大风有提前预警作用。  相似文献   

10.
冷锋云系降水中尺度结构的一次TRMM卫星观测和特征分析   总被引:3,自引:0,他引:3  
利用TRMM(the tropical rainfall measuring mission)卫星资料,对一次低槽冷锋云系和江淮气旋共同影响下的冷锋积层混合云系中雨带和雨核的特征进行了分析,研究表明,冷锋的不同部位云系结构很不均匀,可分为典型的积层混合云系、均匀的层状云系和弱的积层混合云系3种类型,南部典型的积层混合性云系中存在明显的短回波带结构,短回波带的平均长度63.0 km,宽度19.4 km,平均降雨率14.54 mm/h,同时短回波带中还有明显的雨核特征;北部均匀的层状云系中,大范围的降水在1~2 mm/h之间,其中嵌有2~7 mm/h大小不等的较强降雨带,并且存在冷锋雨带结构;中部较弱的积层混合云系中以冷锋雨带和冷锋前的暖区雨带为主,冷锋雨带上有多个雨核的结构;同时,不同性质的云系结构如短回波带、雨核以及均匀的层状云的降水的垂直廓线表现为不同的特点。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号