首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
河南省夏玉米气候适宜度评价   总被引:3,自引:0,他引:3  
为定量评价气象条件对作物生长及产量形成的影响,本文依据夏玉米不同发育阶段上限温度、最适温度、下限温度、需水量、需光性等生物学指标,构建了河南省夏玉米气候适宜度评价模型。通过对13个代表站30 a全生育期气候适宜度和相对气象产量进行相关分析,表明该模型能较好地反映河南省夏玉米的气候适宜水平及其动态变化。利用检验后的模型计算了河南省67个站1981-2011年夏玉米生长季单因子及综合气候适宜度,结果表明河南省夏玉米大部分生育期光热资源较适宜,能满足玉米生长所需,仅在灌浆后期略显不足,降水是影响夏玉米产量形成的主要限制因子,且降水适宜度年际变化幅度大于日照和温度。综合气候适宜度年际波动表现为抽雄—乳熟期〉出苗—抽雄期〉全生育期。空间分布上气候适宜度呈自西北向东南方向的递增趋势,适宜度高值区分布在南阳东部及驻马店部分地区。  相似文献   

2.
基于内蒙古10个气象站1993—2017年玉米生育期的逐日气象资料,综合气温、降水、日照气候适宜度指标,建立适合内蒙古地区的玉米气候适宜度计算模型,模型检验分析表明此模型能够较为客观地反映内蒙古地区玉米受气候条件影响的情况。对近25 a来内蒙古地区玉米各生育期气候适宜度指数特征及年变化趋势进行分析,结果表明:玉米生长的热量和光照条件较好,而水分条件较差,降水不足是限制内蒙古地区玉米生长的主要气象因素;播种—出苗期和乳熟—成熟期气候适宜度指数变异系数最大,是综合气候条件影响玉米生长发育的关键时期;气候变化特别是降水对内蒙古玉米生长带来的负效应主要表现在抽雄—乳熟期。  相似文献   

3.
沈阳春玉米不同生育阶段需水量及缺水量变化特征   总被引:2,自引:0,他引:2  
慕臣英  梁红  纪瑞鹏  徐全辉  周晓宇  隋东  赵凤  高桐 《干旱气象》2019,37(1):127-133,158
基于1960—2016年沈阳5个气象观测站玉米发育期资料及气象观测资料,计算春玉米不同生育阶段需水量、有效降水量,进而计算水分盈亏指数并分析其变化特征。结果表明:沈阳市春玉米除播种—出苗、出苗—七叶及拔节—抽雄期有效降水量呈增加趋势,其他发育阶段及全生育期呈显著减少趋势;全生育期及各生育阶段需水量均呈下降趋势;全生育期缺水量总体以下降为主,其中拔节—抽雄期处于强下降趋势,播种—出苗和出苗—七叶期呈弱下降趋势。沈阳北部有效降水量偏少、需水量偏高,是缺水量高值区;拔节—抽雄期缺水量最大。  相似文献   

4.
富裕县农田土壤湿度变化及其对玉米发育期和产量的影响   总被引:1,自引:0,他引:1  
本文旨在分析黑龙江省富裕县农田土壤相对湿度对玉米发育期和产量的影响,以期为松嫩平原西部玉米生产提供科学参考。以黑龙江省富裕县为研究区域,利用1982—2017年土壤相对湿度资料、1995—2017年玉米发育期资料、玉米产量资料,采用对比分析、相关分析、Mann-Kendall突变检验法,分析土壤相对湿度变化特征,研究土壤相对湿度对玉米发育期和产量的影响。结果表明:富裕县近36 a土壤相对湿度呈增加—减小—增加的趋势。播种期—出苗期、拔节期—抽雄期、乳熟期—成熟期土壤干旱平均每4—6 a一遇,抽雄期—乳熟期每2—3 a一遇,出苗期—拔节期土壤基本无旱。各发育期土壤相对湿度减小的突变年在1987年前后,增加的突变年在2013年前后。20世纪80年代土壤较适宜,干旱轻,90年代土壤相对湿度迅速下降,干旱最重,之后随着年代的推移土壤干旱逐渐减轻。玉米主要发育期中播种期—出苗期、出苗期—拔节期土壤干旱对产量影响较小,拔节期—成熟期是土壤干旱影响产量的主要时期。  相似文献   

5.
《湖北气象》2021,40(2)
针对干旱气候变化及其对淮河流域夏玉米的可能影响,基于历史灾损构建的致灾阈值模型,应用第5次耦合模式比较计划(Coupled Model Intercomparison Project Phase 5,CMIP5)中的5个全球气候模式(GCMs)和3种典型浓度路径(RCPs)情景输出的逐日气温和降水量数据,计算不同RCPs情景下致灾阈值以上气象干旱发生频率,结合承灾体的暴露度和脆弱性,构建干旱灾害风险评估模型,开展淮河流域21世纪近期(2020—2039年)、中期(2040—2069年)和远期(2070—2099年)夏玉米抽雄—乳熟期卡脖子旱风险预估。结果表明:不同气候模式对淮河流域的气温和降水量具有较好的模拟能力,气温模拟效果更佳。未来夏玉米抽雄—乳熟期将有所提前,该生育期日数缩短;预估未来淮河流域夏玉米抽雄—乳熟期气象干旱日数年际变幅大,从其线性趋势看,RCP4.5和RCP8.5情景下气象干旱日数线性趋势不明显,而RCP6.0情景下线性增加显著。在致灾因子及承灾体的综合影响下,未来淮河流域夏玉米卡脖子旱风险年际波动大,干旱灾害风险增大,21世纪各时期,其风险远期最高、中期最低;不同情景由低向高排放情景下干旱风险依次增高。预估的干旱风险空间差异明显,总体上该流域北部风险高于南部、西部高于东部。  相似文献   

6.
基于气候适宜度的夏玉米发育期模拟模型   总被引:3,自引:0,他引:3  
结合前人气候适宜度的研究成果,以作物生理生态发育过程为基础,构建了夏玉米发育期预报模型。模型中分别建立了夏玉米温度、降水、日照时数适宜度函数,并结合河南省19个农业气象试验站的夏玉米发育期资料,运用通径分析法确定各个生育期温度、降水和日照的影响权重系数,计算出综合适宜度,用来预测夏玉米生育期。结果表明,模型能够较好地预测各个发育期(出苗、七叶、拔节、抽雄、乳熟和成熟)。建模资料的模拟值与观测值比较的均方根误差分别为1.5、3.1、3.4、2.9、4.0、4.5 d。运用独立资料对模型所作预测值的均方根误差在1.0~4.6 d之间。  相似文献   

7.
基于河北省固城生态与农业气象试验站2013—2015年夏玉米田间水分控制试验资料,分多情景模拟自然环境,研究了水分充足条件下夏玉米穗粒重随发育进程(DVS)的变化特征,对比分析了不同持续时间、不同发育阶段、不同程度水分胁迫对产量的影响,并建立了不同情景水分胁迫下土壤相对湿度与产量的定量关系模型。结果表明,在水分充足条件下,夏玉米穗粒重随DVS的增加呈现"慢—快—慢"的增长特征,其中乳熟—乳熟后10d的增长幅度和增长速率均为最大;水分胁迫发生在抽雄后10d—乳熟阶段,粒重减少最明显。夏玉米产量与出苗—拔节(阶段Ⅰ)、拔节—抽雄(阶段Ⅱ)、抽雄—成熟(阶段Ⅲ)以及[阶段Ⅰ+阶段Ⅱ]和[阶段Ⅱ+阶段Ⅲ]5个不同时段土壤相对湿度均呈线性显著正相关关系,其关系模型表明,水分胁迫程度越严重、持续时间越长,产量减少幅度越大,不同阶段、相同胁迫程度和持续时间对产量的影响总体表现为:阶段Ⅰ阶段Ⅱ阶段Ⅲ[阶段Ⅰ+阶段Ⅱ][阶段Ⅱ+阶段Ⅲ],以上阶段土壤相对湿度下降10%,产量分别减少89.7g/m2、122.7g/m2、129.8g/m2、133.7g/m2和144.4g/m2,减幅为22.8%~36.8%。  相似文献   

8.
根据渭南市11个国家气象站1991—2020年逐日气象数据,结合夏玉米农业气象观测站的生育期资料,利用气候适宜度模型来分析渭南市夏玉米不同生育期的温度、日照、降水和气候适宜度特征,以及全生育期各种适宜度的时空分布规律。结果表明:降水是影响渭南夏玉米产量的主要气候因子;乳熟至成熟期渭南夏玉米易受连阴雨天气影响,日照适宜度最小,对产量和品质造成影响;北部温度适宜度最大,南部降水和光照适宜度最大,总体气候适宜度从北向南逐渐增大,南部最适宜种植夏玉米。  相似文献   

9.
利用1980—1984年和2004—2020年锦州市农业气象观测站春玉米物候观测资料和气象观测资料, 采用趋势系数、倾向率、相关分析和通径分析等方法, 分析了锦州市春玉米生育期长度和水热条件的变化趋势, 并探讨了锦州市春玉米生育期长度与水热条件的关系。结果表明: 1980—1984年和2004—2020年锦州地区春玉米各生育期长度变化趋势不同, 除抽雄期、成熟期和生殖生长期外, 其他生育期长度均呈缩短的趋势。营养生长期长度极显著缩短, 生殖生长期长度极显著延长, 因此全生育期呈弱的延长趋势, 变化不明显。春玉米各生育期水热条件变化趋势不同, 热量条件变化显著, 而水分条件变化不显著, 多数生育期≥10 ℃活动积温(DT10)和生长度日(GDD)呈增加的趋势, 其中抽雄期、成熟期和生殖生长期、全生育期热量条件呈极显著增加趋势, 表明热量条件对春玉米生长发育影响最大。相关分析和通径分析表明, DT10和GDD对春玉米生育期长度影响最大, 水分条件对春玉米生育期长度影响较小, 其中出苗期、成熟期和全生育期长度与水分条件相关显著。可见, 锦州地区水热因子之间相互制约、相互影响, 共同影响春玉米的整个生育期。  相似文献   

10.
利用2014年6—10月夏玉米全生育期试验数据和气象数据,采用LG型称重式蒸渗仪分析了在充分供水条件下陕西关中地区夏玉米全生育期最大耗水量及不同生育期的作物系数。结果表明:夏玉米在试验地段从播种到收获共119 d,充分供水条件下夏玉米全生育期最大耗水量599.9 mm。玉米实际蒸发蒸腾量(ET)与参考蒸散量(ET0)的逐日变化趋势倾向率除三叶—七叶期以外,其余时间段呈现出一致性;全生育期日平均ET为5.0 mm/d,抽雄—乳熟期的ET最大,占全生育期的33.2%。夏播玉米各生育期(播种—三叶、三叶—七叶、七叶—拔节、拔节—抽雄、抽雄—乳熟、乳熟—收获)作物系数分别为0.64,0.76,0.80,1.38,1.47,1.58。  相似文献   

11.
Observed daily precipitation data from the National Meteorological Observatory in Hainan province and daily data from the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis-2 dataset from 1981 to 2014 are used to analyze the relationship between Hainan extreme heavy rainfall processes in autumn (referred to as EHRPs) and 10–30 d low-frequency circulation. Based on the key low-frequency signals and the NCEP Climate Forecast System Version 2 (CFSv2) model forecasting products, a dynamical-statistical method is established for the extended-range forecast of EHRPs. The results suggest that EHRPs have a close relationship with the 10–30 d low-frequency oscillation of 850 hPa zonal wind over Hainan Island and to its north, and that they basically occur during the trough phase of the low-frequency oscillation of zonal wind. The latitudinal propagation of the low-frequency wave train in the middle-high latitudes and the meridional propagation of the low-frequency wave train along the coast of East Asia contribute to the ‘north high (cold), south low (warm)’ pattern near Hainan Island, which results in the zonal wind over Hainan Island and to its north reaching its trough, consequently leading to EHRPs. Considering the link between low-frequency circulation and EHRPs, a low-frequency wave train index (LWTI) is defined and adopted to forecast EHRPs by using NCEP CFSv2 forecasting products. EHRPs are predicted to occur during peak phases of LWTI with value larger than 1 for three or more consecutive forecast days. Hindcast experiments for EHRPs in 2015–2016 indicate that EHRPs can be predicted 8–24 d in advance, with an average period of validity of 16.7 d.  相似文献   

12.
Based on the measurements obtained at 64 national meteorological stations in the Beijing–Tianjin–Hebei (BTH) region between 1970 and 2013, the potential evapotranspiration (ET0) in this region was estimated using the Penman–Monteith equation and its sensitivity to maximum temperature (Tmax), minimum temperature (Tmin), wind speed (Vw), net radiation (Rn) and water vapor pressure (Pwv) was analyzed, respectively. The results are shown as follows. (1) The climatic elements in the BTH region underwent significant changes in the study period. Vw and Rn decreased significantly, whereas Tmin, Tmax and Pwv increased considerably. (2) In the BTH region, ET0 also exhibited a significant decreasing trend, and the sensitivity of ET0 to the climatic elements exhibited seasonal characteristics. Of all the climatic elements, ET0 was most sensitive to Pwv in the fall and winter and Rn in the spring and summer. On the annual scale, ET0 was most sensitive to Pwv, followed by Rn, Vw, Tmax and Tmin. In addition, the sensitivity coefficient of ET0 with respect to Pwv had a negative value for all the areas, indicating that increases in Pwv can prevent ET0 from increasing. (3) The sensitivity of ET0 to Tmin and Tmax was significantly lower than its sensitivity to other climatic elements. However, increases in temperature can lead to changes in Pwv and Rn. The temperature should be considered the key intrinsic climatic element that has caused the "evaporation paradox" phenomenon in the BTH region.  相似文献   

13.
Storms that occur at the Bay of Bengal (BoB) are of a bimodal pattern, which is different from that of the other sea areas. By using the NCEP, SST and JTWC data, the causes of the bimodal pattern storm activity of the BoB are diagnosed and analyzed in this paper. The result shows that the seasonal variation of general atmosphere circulation in East Asia has a regulating and controlling impact on the BoB storm activity, and the “bimodal period” of the storm activity corresponds exactly to the seasonal conversion period of atmospheric circulation. The minor wind speed of shear spring and autumn contributed to the storm, which was a crucial factor for the generation and occurrence of the “bimodal pattern” storm activity in the BoB. The analysis on sea surface temperature (SST) shows that the SSTs of all the year around in the BoB area meet the conditions required for the generation of tropical cyclones (TCs). However, the SSTs in the central area of the bay are higher than that of the surrounding areas in spring and autumn, which facilitates the occurrence of a “two-peak” storm activity pattern. The genesis potential index (GPI) quantifies and reflects the environmental conditions for the generation of the BoB storms. For GPI, the intense low-level vortex disturbance in the troposphere and high-humidity atmosphere are the sufficient conditions for storms, while large maximum wind velocity of the ground vortex radius and small vertical wind shear are the necessary conditions of storms.  相似文献   

14.
The spatial and temporal variations of daily maximum temperature(Tmax), daily minimum temperature(Tmin), daily maximum precipitation(Pmax) and daily maximum wind speed(WSmax) were examined in China using Mann-Kendall test and linear regression method. The results indicated that for China as a whole, Tmax, Tmin and Pmax had significant increasing trends at rates of 0.15℃ per decade, 0.45℃ per decade and 0.58 mm per decade,respectively, while WSmax had decreased significantly at 1.18 m·s~(-1) per decade during 1959—2014. In all regions of China, Tmin increased and WSmax decreased significantly. Spatially, Tmax increased significantly at most of the stations in South China(SC), northwestern North China(NC), northeastern Northeast China(NEC), eastern Northwest China(NWC) and eastern Southwest China(SWC), and the increasing trends were significant in NC, SC, NWC and SWC on the regional average. Tmin increased significantly at most of the stations in China, with notable increase in NEC, northern and southeastern NC and northwestern and eastern NWC. Pmax showed no significant trend at most of the stations in China, and on the regional average it decreased significantly in NC but increased in SC, NWC and the mid-lower Yangtze River valley(YR). WSmax decreased significantly at the vast majority of stations in China, with remarkable decrease in northern NC, northern and central YR, central and southern SC and in parts of central NEC and western NWC. With global climate change and rapidly economic development, China has become more vulnerable to climatic extremes and meteorological disasters, so more strategies of mitigation and/or adaptation of climatic extremes,such as environmentally-friendly and low-cost energy production systems and the enhancement of engineering defense measures are necessary for government and social publics.  相似文献   

15.
正AIMS AND SCOPE Atmospheric and Oceanic Science Letters (AOSL) publishes short research letters on all disciplines of the atmosphere sciences and physical oceanography. Contributions from all over the world are welcome.SUBMISSIONAll submitted  相似文献   

16.
17.
<正>With the support of specialized funds for national science institutions,the Guangzhou Institute of Tropical and Marine Meteorology,China Meteorological Administration set up in October 2008 an experiment base for marine meteorology and a number of observation systems for the coastal boundary layer,air-sea flux,marine environmental elements,and basic meteorological elements at Bohe town,Maoming city,Guangdong province,in the northern part of the South China Sea.  相似文献   

18.
《大气和海洋科学快报》2014,7(6):F0003-F0003
AIMS AND SCOPE
Atmospheric and Oceanic Science Letters (AOSL) publishes short research letters on all disciplines of the atmosphere sciences and physical oceanography. Contributions from all over the world are welcome.  相似文献   

19.
《大气和海洋科学快报》2014,(5):F0003-F0003
AIMS AND SCOPE Atmospheric and Oceanic Science Letters (AOSL) pub- lishes short research letters on all disciplines of the atmos- phere sciences and physical oceanography. Contributions from all over the world are welcome.  相似文献   

20.
正AIMS AND SCOPE Atmospheric and Oceanic Science Letters (AOSL) publishes short research letters on all disciplines of the atmosphere sciences  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号