首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
滇中中元古代昆阳群的地震事件沉积 及其地质意义   总被引:31,自引:3,他引:31  
地震及其引发的海啸作为一种灾害性的地质事件可以在地层中形成地震-海啸事件沉积记录.云南滇中地区中元古代大龙口组发育地震断裂层、微同沉积断裂、微褶皱纹理、泥晶脉(molartooth构造)、丘状层理等典型的地震-海啸沉积标志,并形成震积岩(A,包括液化泥晶脉灰岩、震裂岩、震褶岩、自碎屑角砾岩和内碎屑副角砾岩等)、海啸岩(B,具丘状层理或平行层理的内碎屑灰岩)及背景沉积(C)三个沉积单元.它们组合成A-B-C,A-C,B-C等3种类型的沉积序列.这些沉积序列分别代表地震-海啸-背景沉积(地震引发海啸)、地震-背景沉积(地震未引发海啸)、海啸-背景沉积(远离地震中心)的事件沉积序列.滇中地区中元古代处于裂谷盆地的构造背景下,大龙口组的地震事件沉积是裂谷盆地构造活动的沉积响应.  相似文献   

2.
首次从郯庐断裂带马站和郯城断陷盆地的下白垩统大盛群中识别出了80多层震积岩.它们所记录的地震事件发生在早白垩世约110~100 Ma,当时该断裂带正发生拉张-伸展且间有挤压-走滑的强构造活动,引发了一系列5~8.5级的强地震事件.地震触动大盛群洪积-湖泊相饱和-半固结的沉积物发生液化、触变、坠落、断裂、裂开、充填及褶曲等层内同沉积变形,从而形成了各种各样的震积岩,包括液化砂墙、液化砂脉、液化角砾岩、液化均一层、负载构造、火焰构造、球-枕构造、布丁构造、底辟构造、震裂缝充填构造、巨型砾岩楔及同沉积断层等.显然,这些震积岩是郯庐断裂带早白垩世强构造与地震活动的新证据;由它们记录的一系列强烈地震事件也是对当时华北克拉通破坏的同步响应.  相似文献   

3.
首次从胶州市上白垩统红土崖组史家屯段中识别出了一些震火山岩和强地震引起的软泥砂质沉积物的触变变形构造(震积岩)。震火山岩是强地震破坏火山喷出物形成的具同震变形构造的火山岩。震积岩是强地震触动饱和-半固结的软沉积物发生液化、触变、断裂、裂开、充填等形成的具软沉积物变形构造的沉积岩层。红土崖组史家屯段主要由玄武质火山岩夹河湖相泥砂质(砂质泥和泥质砂)沉积层组成。史家屯段中,震火山岩的主要类型为具同震裂隙的震裂玄武岩和震碎玄武岩(震碎玄武质角砾岩)等;软泥砂质沉积物的触变变形主要包括触变泥砂质脉和具曲折边界的触变泥砂质层。受强地震作用,饱和泥砂质沉积物不会发生液化,但会发生触变,即其结构会被破坏而具较强的流动性。由于玄武质火山岩层被地震破坏(震裂、震碎),强地震致使触变泥砂质沉积物沿玄武岩中的震裂隙而流动,结果形成了触变脉变形构造,也使火山岩层与泥砂质层的边界变得十分曲折。在重力和震动力的联合作用下,被震碎的玄武质岩块沉入触变泥砂质中,形成了触变泥砂质沉积物的包体。这些晚白垩世末期的强地震事件记录,所反映的地震烈度约Ⅶ至Ⅹ度以上。史家屯段主要分布在诸城凹陷北部的百尺河断裂以南地带,晚白垩世末该断裂发生强构造与地震活动,也为当时的玄武岩浆上侵和喷发提供了通道。晚白垩世末,玄武岩浆多次沿百尺河断裂间歇式地上侵和喷发,同时产生的火山地震或由百尺河断裂的活动产生的构造地震,致使火山熔岩和下伏的红色饱和泥砂层发生了上述变形,结果形成了地震成因的火山岩与泥砂质沉积层的变形构造。因此,它们所记录的地震事件,应是晚白垩世诸城凹陷发生强构造裂陷和百尺河断裂发生激烈断裂活动的响应。文中具地震成因的岩土层变形构造,也为分析类似岩土地基的地震力破坏效应提供了新资料。  相似文献   

4.
林芝地区雅鲁藏布江下游位于喜马拉雅东构造结附近,这里一直是青藏高原构造演化的重要地区,许多断裂活动和重要构造事件都发生在该地区。通过对雅鲁藏布江沿岸大量软沉积物沉积类型、特征和成因等观察分析,发现了大量与地震活动有关的震积岩,形成了与地震活动有关的多种类型的软沉积物变形构造。主要包括液化卷曲变形、层内错断、负载构造和火焰构造等,表明了该区曾遭受过大范围的地震活动和构造运动。通过对该区软沉积物变形构造的研究,有助于补充该区古地震记录,这对于研究该区的构造活动性具有重要的地质意义。  相似文献   

5.
震积岩(物)是地史时期地震事件的岩石学记录,其震积层序自下而上由微型递变断裂层、微褶皱层、碎块层和液化均一层组成。震积岩可作为古地震计,以了解地史时期地震的时空分布、地震强度和迁移规律。以作者发现的峨眉震积岩为例,描述了震积层序中的各种特征,总结了认识和辨别震积岩的标志  相似文献   

6.
祁连山山间盆地内的新生代沉积物是研究新生代以来祁连山构造演化的重要材料.本文以位于祁连山中部祁连盆地内的新生代沉积物为研究对象,利用磁性地层学方法结合碎屑颗粒裂变径迹定年方法获取其沉积时代框架,在此基础上,结合岩性变化与沉积环境变迁分析祁连山构造演化历史.野外实测剖面显示该盆地内的第三系可划分为下部砾岩组和上部砂岩组两大岩性单元.古地磁结果显示砾岩组的沉积时代约为10—14.3Ma.砾岩组沉积大约在14.3 Ma开始形成,指示祁连山14.3 Ma以来构造活动变强烈.磁组构结果显示砾石组顶部沉积形成时的受力方向与现今祁连盆地周缘断层分布所指示的应力方向一致,表明这些断层大约在10 Ma附近开始活动.我们的结果揭示祁连山中部山脉14.3 Ma以来尤其在10 Ma附近构造活动较强烈.这与过去低温热年代学所获得的祁连山山体的快速冷却年龄及祁连山两端大型盆地内的第三系所记录的构造事件发生的时间基本吻合.而砂岩组的古地磁结果并未通过褶皱检验,其古地磁记录发生了后期重磁化,无法获得地层的准确沉积年龄.  相似文献   

7.
山西省是中国东部地震活动最强烈的省份之一,汾渭地震带历史时期曾发生过多次强震。通过对新发现的山西平陆地区黄河沿岸震积层剖面进行研究,简述剖面中软沉积物变形的特征、规模及变形构造类型,结合该地区历史地震资料和黄河水文资料,分析与震积层对应的历史地震事件。该研究可为地震事件及其变形构造的深入研究提供基础资料和参考依据。  相似文献   

8.
软沉积物变形构造是确定古地震存在的关键证据之一。拒马河流域野三坡地区雾迷山组中识别出2个软沉积物变形事件层,分别位于雾迷山组的底部、岩性段I的顶部。典型的变形构造有丘槽构造、水压破碎构造和液化脉构造。丘槽构造可进一步分成2类  相似文献   

9.
下刚果盆地是西非被动大陆边缘系列盆地之一,为一大陆裂谷与被动陆缘盆地形成的叠合盆地.盆地储层为渐新统和中新统的浊积砂体.由于早白垩世末期盆地发育大规模蒸发岩层序,上覆沉积负载与非洲板块西倾使得盐岩塑性流动,造成盐上圈闭形成都与盐活动相关.S区块处于盐岩过渡构造带,由于储层分布受沉积相与盐构造的双重控制,难以准确地预测储层,针对上述难点,此文提出了如下的技术思路及流程,即首先利用地震解释得到目的层构造形态,其次综合利用地震属性和地震分频技术得到砂体分布图及沉积相图,并分析构造和砂体的配置关系,寻找有利圈闭,最后利用avo直接烃检测技术对含油气性进行预测.结果显示预测的有利区与已知油田有着很好的对应,且识别的3个未钻圈闭勘探前景良好.应用效果验证了本技术方法对盐相关圈闭具有很好的适用性,可在同类型圈闭中进一步应用.  相似文献   

10.
鹤庆盆地是青藏滇缅印尼巨型歹字型构造与川滇经向构造带复合部位的一个山间盆地,它的形成与南北向断裂密切有关,东西向冲断层及基性岩脉也相当发育。在晚近地质时期,它们都在强烈活动,因此,本区是构造的强化地带。 笔者在开展滇西北红河断裂带新活动的研究工作中,发现了鹤庆盆地一起古地震事件,古地震遗迹保留在盆地西部山麓的缓坡带上,主要表现为: 1.地震断层(照1、2):在南半榜洗马池水库北侧及鹤云寺西缓山坡上均有发现。两处均由中更新世及晚更新世河湖相亚粘土、亚砂土、中—细砂层及砂砾石层组成。断层断开了最新的晚更新世地层。在剖面  相似文献   

11.
系统收集整理昆明盆地238个钻孔资料,根据<建筑抗震设计规范>(CB50011-2001)中砂土液化的判别方法,对其中81个钻孔进行了液化判别和等级划分.结果显示,昆明盆地地形平坦,由北向南高程渐低,自然坡降为1‰~2‰,地层由第四纪的冲积、湖积及湖沼相沉积之砂质粘土、淤泥、草煤及粉砂组成,其液化判定结果与盆地地貌和沉积物的分布规律一致.在Ⅷ度以上地震烈度影响下,滇池北岸到昆明机场的范围内存在砂土液化的可能.  相似文献   

12.
桥台在桥梁系统中占据重要位置,桥台的稳定性直接影响到桥梁的抗震性能。在国内外大量震害中发现大量由桥台破坏引起的桥梁损坏,而且这些破坏常常伴随着由于液化引起的地面大变形。为研究液化场地中桥台滑坡机理,采用完全耦合的有效应力分析方法,利用修正的PasterZienkiewicz Mark-Ⅲ模型来模拟砂土在地震荷载作用下的液化特性。研究台顶梁重和液化层位置对桥台位移的影响,并分析夯实作用对砂土液化的影响。结果表明:模拟得出结果与振动台试验结果基本一致,而且简单的夯实不能降低砂土液化的风险。  相似文献   

13.
Liquefaction macrophenomena in the great Wenchuan earthquake   总被引:3,自引:2,他引:1  
On May 12, 2008 at 14:28, a catastrophic magnitude M 8.0 earthquake struck the Sichuan Province of China.The epicenter was located at Wenchuan (31.00°N, 103.40°E). Liquefaction macrophenomena and corresponding destruction was observed throughout a vast area of 500 km long and 200 km wide following the earthquake. This paper illustrates the geographic distribution of the liquefaction and the relationship between liquefaction behavior and seismic intensity, and summarizes the liquefaction macrophenomena, including sandboils and waterspouts, ground subsidence, ground fissures etc., and relevant liquefaction features. A brief summary of the structural damage caused by liquefaction is presented and discussed. Based on comparisons with liquefaction phenomena observed in the 1976 Tangshan and 1975 Haicheng earthquakes, preliminary analyses were performed, which revealed some new features of liquefaction behavior and associated issues arising from this event. The site investigation indicated that the spatial non-uniformity of liquefaction distribution was obvious and most of the liquefied sites were located in regions of seismic intensity Ⅷ. However, liquefaction phenomena at ten different sites in regions of seismic intensity Ⅵ were also observed for the first time in China mainland. Sandboils and waterspouts ranged from centimeters to tens of meters, with most between 1 m to 3 m. Dramatically high water/sand ejections,e.g., more than 10 m, were observed at four different sites. The sand ejections included silty sand, fine sand, medium sand,course sand and gravel, but the ejected sand amount was less than that in the 1976 Tangshan earthquake. Possible liquefaction of natural gravel soils was observed for the first time in China mainland.  相似文献   

14.
Flow failure of sandy subsoil induced by seismic liquefaction is known to cause significant damage to structures. It is induced not only by the dynamic forces exerted by seismic acceleration but also by the static gravity force in consequence of the topography of the ground. The ground flow may sometimes continue after the end of the seismic loading and finally the ground is significantly deformed to cause a failure.This paper numerically predicts the magnitude of flow that could occur when soil liquefaction continues for a sufficiently long period. It is considered that liquefied soil behaves like a viscous liquid, and hence, ground flow is governed by the principle of minimum potential energy. In the calculation, liquefied sand is assumed to be a viscous liquid that deforms in undrained conditions with its volume remaining constant. To consider the non-linearity due to large displacement, the updated Lagrangian method is used to solve the equation of motion. The Newmark β method is employed to calculate the time history of the ground motion. Finally, a simulation using this calculation method shows that the proposed method gives reasonable results for the conditions indicated.  相似文献   

15.
More than 80 layers of seismites were recognized from the Early Cretaceous Dasheng Group in the Mazhan and Tancheng graben basins in the Tanlu Fault Zone, eastern China. The responsible seismic events took place about 110–100 Ma in the Early Cretaceous. The fault zone was affected at the time by strong tectonics, due to tension-related stretching and scattered squeezing by strike-slip faults. These tectonic activities induced a series of strong earthquakes with Richter magnitudes(M) of 5–8.5. The earthquakes affected saturated or semi-consolidated flood and lake sediments, and produced intra-layer deformations by several processes, including liquefaction, thixotropy, drop, faulting, cracking, filling and folding, which resulted in the formation of various soft-sediment deformation structures, such as dikes and veins of liquefied sand, liquefied breccias, liquefied homogeneous layers, load structures, flame structures, ball-and-pillow structures, boudinage, diapirs, fissure infillings, a giant conglomerate wedge, and syn-sedimentary faults. The seismites are new evidence of tectonic and seismic activities in the Tanlu Fault Zone during the Early Cretaceous; the series of strong seismic events that can be deduced from them must be considered as a response to the destruction of the North China Craton.  相似文献   

16.
Flowslides that override a liquefied substrate can vastly enhance a disaster after failure initiation. These effects may result from the rapid velocity and long runout distance from slides mobilized into flows. It is thus crucial to provide an improved understanding of the transformation mechanisms of catastrophic flowslides for hazard evaluation. This study examines the Saleshan landslide in Gansu, China, which occurred in 1983 and killed more than 200 people. The Saleshan landslide travelled for approximately 1 km due to pore water pressure generation resulting from overrunning and liquefication of the alluvial sands in the river valley below. We used geomorphologic and topographic maps to determine its dynamic features and mobilization behaviors on the landslide body, and placemarks and seismic signals to identify its approximate velocity at different sites. Electrical resistivity tomography (ERT) surveys also revealed the hydrogeological conditions post-landslide, showing a clear groundwater table along with the liquefied alluvial sand and gravel layers. Particle size distributions and triaxial shear behaviors confirmed more ready liquefaction of superficial loess and underlying alluvial sand in comparison with the red soil above and below them. Novel loading impact triaxial testing was also performed on the alluvial sand to elucidate its liquefaction potential in undrained and drained conditions. The alluvial sand was found to be markedly prone to liquefaction in undrained conditions due to impact-induced increased pore water pressure. The results further demonstrated that the Saleshan landslide underwent a transformation from a slowing slide on a steep slope, where it originated, to flow on a nearly flat terrace with abundant groundwater that it overrode. The transformation mechanism involved the liquefied alluvium sand substrate, which greatly enhanced the landslide mobility. Along with recent, similar findings from landslides globally, substrate liquefaction may result in a widespread, significant increase in landslide mobility and thus hazard, and the present study identifies the requisite conditions for this phenomenon to occur.  相似文献   

17.
汶川大地震中成都地区液化及其震害现象较为显著.通过现场调查和工程地质资料分析,成都地区的液化特点为:液化带主要集中都江堰市液化在烈度Ⅵ、Ⅶ、Ⅷ、X和X度区均有出现,但Ⅶ度区最为集中液化喷水高度多在1-3m之间,最高一处超过10m液化场地喷出物涵盖了多种土类,约67%为粉细砂,且有卵砾石,约占11%液化带普遍伴随地裂缝,...  相似文献   

18.
Cement-mixed piles, as countermeasure against liquefaction of silt and sand ground, can improve the shear strength and bearing capacity of foundation soil, meaning cement-mixed piles are capable of resisting displacement when an earthquake happens. However, investigations of cement-mixed piles by experimental methods such as the shaking table test is few and far between. It is especially true for the seismic performance of cement-mixed piles in liquefiable railway foundations in high seismic intensity regions. To this end, a cross-section of the Yuxi-Mengzi railway was selected as the prototype and studied by the shaking table test in this study. The results showed that composite foundation of cement-mixed piles was not liquefied when the seismic acceleration was lower than 0.30g. In the process of acceleration increasing from 0.30g at 2Hz to 0.60g at 3Hz, the upper middle silt outside slope toe was partly liquefied. The foundation soil under the shoulders and center of subgrade was far from the initial liquefaction criterion during the test. Cement-mixed piles can effectively reduce the embankment settlement and differential settlement. It can be concluded that, the design of cement-mixed piles can ensure the seismic performance of the subgrade, and satisfy the seismic design requirements of the Yuxi-Mengzi railway in areas of VⅢ degrees seismic fortification intensity.  相似文献   

19.
饱和砂土透镜体液化对建筑物地震反应的影响   总被引:2,自引:0,他引:2  
采用一种能分析有结构物存在的场地地震液化问题的二维有效应力有限元分析方法,研究饱和砂土透镜体液化对建筑物地震反应的影响。计算中采用了更为合理的迭代方式处理土的非线性,考虑了Kc对孔压的作用,引入了透射边界。取建筑物为短周期结构。考虑了透镜化宽度、厚度、埋深以及输入地震动类型幅值对结构加速度反应的影响。计算结果表明:(1)所采用的方法与已有的模型实验结果有很好的对应关系,可用于招考莪存在下的场地砂土  相似文献   

20.
A lot of seismic volcanic rocks and strong earthquake-induced thixotropic deformation structures in soft mud-sandy sediments(seismites)were identified from the Upper Cretaceous Shijiatun Member of the Hongtuya Formation for the first time in Jiaozhou City of the Zhucheng Sag, eastern China. Seismic volcanic rocks are volcanic rocks with co-seismic deformation structures which were produced by major earthquakes destroying volcano ejecta. Seismites are sediment layers with soft-sediment deformation structures formed by strong earthquake triggering saturated or semi-consolidated soft sediments to produce liquefaction, thixotropy, faults, cracks and filling and so forth. The Shijiatun Member of the Hongtuya Formation mainly consists of basaltic volcano rocks interbedded with mud-sandy(muddy sand and sandy mud)deposition layers of the river-lake facies. In the Shijiatun Member, main types of seismic volcanic rocks are shattered basalts with co-seismic fissures and seismic basaltic breccias. The thixotropic deformations of soft mud-sandy sediments mainly include thixotropic mud-sandy veins and thixotropic mud-sandy layers with tortuous boundaries. Under the strong earthquake action, saturated mud-sandy sediments could not be liquefied, instead resulting in thixotropy, i.e. their texture can be damaged and their flow-ability or rheology becomes strong. Because basaltic volcano rocks were damaged(shattered, seismic broken), a major earthquake can lead to thixotropic mud-sandy sediments flowing along seismic fissures in basalts, resulting in the formation of deformation structure of thixotropic veins, and boundaries between volcano rock and mud-sand layer became quite winding. Under the koinonia of gravity and vibration force, seismic breccia blocks sunk into thixotropic mud-sandy layers, resulting in the formation of inclusions of thixotropic mud-sandy sediments. Seismic intensity reflected by these strong earthquake records during the end stage of the Late Cretaceous was about Ⅶ to more than X degrees. The Shijiatun Member is mainly distributed in the south of the Baichihe fault in the northern Zhucheng Sag, and the fault has generated many strong tectonic and earthquake activities at the end of the late Cretaceous, also provided the channel for intrusion and eruption of basaltic magma then. At the end of the late Cretaceous, intermittent intrusion and eruption of basaltic magma took place along the Baichihe fault, meanwhile the volcano earthquakes took place or tectonic earthquakes were generated by the Baichihe fault which caused the deformation of the volcano lava and underlying strata of red saturated muddy-sand, resulting in the formation of various seismo-genesis deformations of volcanic rocks interbedded with mud-sandy sediment layers. Therefore, strong seismic events recorded by them should be responses to strong tectonic taphrogenesis of the Zhucheng Sag and intense activity of the Baichihe fault in the end of Late Cretaceous. In addition, these seismogenic deformation structures of rock-soil layers provide new data for the analysis of the failure effect produced by seismic force in similar rock-soil foundations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号