首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
江娃利  谢新生 《地震地质》2002,24(2):177-187
当探槽开挖长度未跨过断层变形带时,得到的断层垂直位移将偏离断层活动的真实情况,在缺少依据帮助确定断层陡坎原始下坡角的具体位置时,通过断层陡坎高度获得的断层垂直位移也将与实际情况有较大的偏离,文中对此进行了讨论。并讨论了应用断层两侧近水平地层累积变位量的分解确定古地震事件期次的方法,以及探槽剖面中断层两侧同层地层厚度差异是断层活动事件的反映等问题。引用了内蒙古大青山山前断裂和狼山山前断裂、北京平原夏垫断裂和南口-孙河断裂及日本丹那断层探槽开挖的实例。  相似文献   

2.
Anqiu-Juxian Fault is an important fault in the Tanlu fault zone, with the largest seismic risk, the most recent activity date and the most obvious surface traces. It is also the seismogenic fault of the Tancheng M8 1/2 earthquake in 1668. There are many different views about the southern termination location of surface rupture of the Tancheng earthquake and the Holocene activity in Jiangsu segment of this fault. Research on the latest activity time of the Jiangsu segment of Anqiu-Juxian Fault, particularly the termination location of surface rupture of the Tancheng earthquake, is of great significance to the assessment of its earthquake potential and seismic risk. Based on trench excavation on the Jiangsu segment of Anqiu-Juxian Fault, we discuss the time and characteristics of its latest activity. Multiple geological sections from southern Maling Mountain to Chonggang Mountain indicate that there was an ancient seismic event occurring in Holocene on the Jiangsu segment of Anqiu-Juxian Fault. We suggest the time of the latest seismic event is about(4.853±0.012)~(2.92±0.3)ka BP by dating results. The latest activity is characterized by thrust strike-slip faulting, with the maximum displacement of 1m. Combined with the fault rupture characteristics of each section, it is inferred that only one large-scale paleo-earthquake event occurred on the Jiangsu segment of Anqiu-Juxian Fault since the Holocene. The upper parts of the fault are covered by horizontal sand layers, not only on the trench in the west of Chonggang mountain but also on the trench in Hehuan Road in Suqian city, which indicates that the main part of the Jiangsu segment of Anqiu-Juxian Fault was probably not the surface rupture zone of the 1668 Tancheng M8 1/2 earthquake. In short, the Jiangsu segment of Anqiu-Juxian Fault has experienced many paleo-earthquake events since the late Pleistocene, with obvious activity during the Holocene. The seismic activities of the Jiangsu segment of Anqiu-Juxian Fault have the characteristics of large magnitude and low frequency. The Jiangsu segment of Anqiu-Juxian Fault has the deep tectonic and seismic-geological backgrounds of big earthquakes generation and should be highly valued by scientists.  相似文献   

3.
在对依兰-伊通断裂通河段晚第四纪活动参数获取的基础上,对该断裂的几何学特征和晚第四纪活动特征及有关拟建铁路地震安全的设防参数进行了探讨.研究结果表明,依兰-伊通断裂通河段总体走向N30-40°E,由3条断层组成,中支最新活动时代为全新世.该断裂未来发生7级地震时的水平位移量可能达2.2m左右,垂直位错量约为1.1m左右.该断裂全新世以来的活动性质表现为右旋走滑为主,兼具逆冲活动.根据探槽结果和野外地震地质调查得出断裂垂直位错约(1.0±0.2)m,右旋位错量约为(2.7±0.1)m,(1730-30)aB.P.以来的垂直滑动速率和水平滑动速率分别约为(0.57±0.11)mrn/a和(1.57±0.06)mm/a.未来100年内若遭遇地震,其最大水平位错量约2.87m,垂直位错值为1.04m.断层影响带宽度约为8m.该研究结果为拟建哈—佳铁路工程可能遭受的断层影响和抗震设防提供了一定的数据基础,也为地震安评中线状工程的抗断评价问题提供了一定的参考.  相似文献   

4.
More attention has been paid to the late Quaternary activity of the boundary fault of the Sichuan-Yunnan block in eastern Tibet. The Lijiang-Xiaojinhe Fault (LXF) locates along the boundary of the northwest Sichuan and central Yunnan sub-blocks in the Sichuan-Yunnan block. Clear displaced landforms show that the fault has undergone strong late-Quaternary activity. However there is no surface-rupturing earthquake occurring on the LXF in the historical record. The LXF crosses the city of Lijiang, one of the most important tourist cities in Southwest China. The rupture behavior on this fault remains unclear and it is hard to assess its seismic hazard in the future. In this study, on the base of the interpretation of high-resolution satellite imagery, we chose the middle segment of the LXF and dug three trenches at Muzhuda, Hongxing, and Gantangzi sites to constrain the ages of paleoearthquakes combined with radiocarbon dating and OxCal modeling. The Muzhuda trench shows that at least three events occurred on the middle segment of the LXF at 7 940~6 540a BP, 4 740~4 050a BP and 1 830~420a BP, respectively. The Hongxing trench indicates that the LXF underwent two events at 5 120~3 200a BP and 2 100~1 220a BP. The Gantangzi trench reveals at least three paleoearthquakes at 44 980~17 660a BP, 7 210~3 810a BP and 2 540~1 540a BP, respectively. The events in the Gantangzi trench might be incomplete because of stratigraphic gap. These three trenches indicate that three events occurred on the middle segment of the LXF in the Holocene at 7 940~7 210a BP, 4 740~4 050a BP and 1 830~1 540a BP, respectively. Large earthquakes on the middle segment of the LXF appear to fit the quasi-periodic model with the mean recurrence interval of~3 000a and the estimated magnitude 7.5. Given the strong late-Quaternary activity of the middle segment of the LXF and a long elapsed time, we propose that the middle segment of the LXF might have a high seismic hazard potential in the near future.  相似文献   

5.
Along the northern piedmont of Mt. Lishan, the characteristics and locations of the active normal Lishan fault in west of Huaqing Pool provide important evidences for determining the seismotectonic environment, seismic stability evaluation of engineering in the eastern Weihe Basin. After reviewing the results from high-density resistivity method, seismic profile data, geological drillhole section and trenching in west of the Huaqing Pool, it is found that the strike of western normal Lishan Fault changes from EW direction at the eastern part to the direction of N60°W, and the fault consists of two branches, dipping NE with a high dip angle of~75°. The artificial shallow seismic profile data reveals that the attitude of strata near Lishan Fault mainly dips to south, which is presumed to be related to the southward tilt movement of Mt. Lishan since the Cenozoic. The section of geological drillhole reveals that since the late middle Pleistocene, the displacement of the paleo-soil layer S2 is about 10m. And the maximum displacement of western Lishan Fault recorded in the paleo-soil layer S1 reaches 7.8m since the late Pleistocene. In addition, evidences from trench profile show that the western Lishan Fault was active at least 3 times since Malan loess deposition with 14 C dating age(32 170±530)Cal a BP. The multiple activities of the Lishan Fault result in a total displacement about 3.0m in the Malan loess layer L1. The latest activity of the western Lishan Fault produced a displacement of about 0.9m in the early Holocene loess layer L0((8 630±20)Cal a BP)and caused obvious tensile cracks in the Holocene dark leoss layer S0((4 390±20)Cal a BP). Briefly, we have obtained a vertical movement rate of about 0.11~0.19mm/a since the Holocene((8 630±20)Cal a BP)in the western extension of the Lishan Fault, the recurrence interval of earthquakes on the fault is about(10.7±0.5)ka, and the co-seismic surface rupture in a single event is inferred to be about 0.9m.  相似文献   

6.
The Yangjia Village-Yaodian segment of Weihe Fault, starting from Yangjia Village in the west, passing through Weijiaquan, Jinjiazhuang, Donger Village, Chenjiatai to Yaodian, occurs as a NE-striking fault dipping south with a total length of 33 kilometers. As a syn-depositional normal fault, it extends along the leading and trail edge of T1, T2 and T3 terrace at the northern bank of Weihe River. Results of remote sensing interpretation, shallow seismic exploration, exploratory trench, and drilling show that the Yangjia Village-Yaodian section of Weihe Fault manifests as fault scarps, overlapping with the NE-extending terrace scarp at the northern bank of Weihe River. Weihe Fault broke the T1 that can be distinguished on the shallow seismic profile and multiple profiles with broken signs from T1 to the ground, which is the same with the cracks through the Han Tomb at the top of the exploratory trench in Yangjia Village. It shows that the fault may still be active from the late Pleistocene to Holocene. Through composite drilling section and the analysis of exploratory trench, there is no significant difference in activity between the Yangjia Village-Jinjiazhuang and Donger Village-Yaodian section. This segment has experienced a large displacement event since (46.0±3.3)ka BP, approximately 11.0~16.5m, with a vertical slip rate of 0.34~0.45mm/a. The most recent activity occurred approximately around 2.0ka BP. The left-step en echelon fracture zone at Jingjiazhuang separates this section into two minor ones, Yangjia Village-Jinjiazhuang section and Donger Villag-Yaodian section. Yangjia Village-Yaodian section in Weihe Fault and Yaodian-Zhangjiawan section which was found out in the Xi'an active fault detection and seismic risk assessment project can be combined into the Yangjia Village-Zhangjiawan section.  相似文献   

7.
The Bolokenu-Aqikekuduk fault zone(B-A Fault)is a 1 000km long right-lateral strike-slip active fault in the Tianshan Mountains. Its late Quaternary activity characteristics are helpful to understand the role of active strike-slip faults in regional compressional strain distribution and orogenic processes in the continental compression environment, as well as seismic hazard assessment. In this paper, research on the paleoearthquakes is carried out by remote sensing image interpretation, field investigation, trench excavation and Quaternary dating in the Jinghe section of B-A Fault. In this paper, two trenches were excavated on in the pluvial fans of Fan2b in the bulge and Fan3a in the fault scarp. The markers such as different strata, cracks and colluvial wedges in the trenches are identified and the age of sedimentation is determined by means of OSL dating for different strata. Four most recent paleoearthquakes on the B-A Fault are revealed in trench TC1 and three most recent paleoearthquakes are revealed in trench TC2. Only the latest event was constrained by the OSL age among the three events revealed in the trench TC2. Therefore, when establishing the recurrence of the paleoearthquakes, we mainly rely on the paleoearthquake events in trench TC1, which are labeled E1-E4 from oldest to youngest, and their dates are constrained to the following time ranges: E1(19.4±2.5)~(19.0±2.5)ka BP, E2(18.6±1.4)~(17.3±1.4)ka BP, E3(12.2±1.2)~(6.6±0.8)ka BP, and E4 6.9~6.2ka BP, respectively. The earthquake recurrence intervals are(1.2±0.5)ka, (8.7±3.0)ka and(2.8±3)ka, respectively. According to the sedimentation rate of the stratum, it can be judged that there is a sedimentary discontinuity between the paleoearthquakes E2 and E3, and the paleoearthquake events between E2 and E3 may not be recorded by the stratum. Ignoring the sedimentary discontinuous strata and the earthquakes occurring during the sedimentary discontinuity, the earthquake recurrence interval of the Jinghe section of B-A Fault is ~1~3ka. This is consistent with the earthquake recurrence interval(~2ka)calculated from the slip rate and the minimum displacement. The elapsed time of the latest paleoearthquake recorded in the trench is ~6.9~6.2ka BP. The magnitude of the latest event defined by the single event displacement on the fault is ~MW7.4, and a longer earthquake elapsed time indicates the higher seismic risk of the B-A Fault.  相似文献   

8.
王虎  冉勇康  陈立春  史翔梃 《地震地质》2008,30(4):1033-1045
合理估计逆断层地表破裂缩短量是全面认识同震地表变形参数的核心内容,目前还没有较成熟的方法。以汶川MS8.0地震地表破裂为例,尝试通过探槽开挖来研究逆断层水平缩短量的计算问题。在分析汶川地震同震变形的基础上,总结了3种陡坎的成因模式:断层断错地表型、挠曲型、断层与挠曲叠加型,并依据这些模型提出了一些水平缩短量的计算方法及其限制条件,以及如何理解逆断层地表破裂探槽开挖所揭示的信息。最后给出了汶川MS8.0地震白鹿中心学校和汉旺全新村两地点水平缩短量的求解过程及结论,计算得到白鹿中心学校探槽水平缩短量为(2.83±0.3)m,汉旺全新村探槽水平缩短量为(0.61±0.11)m  相似文献   

9.
The Xiaojiang fault zone is located in the southeastern margin of the Tibetan plateau, the boundary faults of Sichuan-Yunnan block and South China block. The largest historical earthquake in Yunnan Province, with magnitude 8 occurred on the western branch of the Xiaojiang Fault in Songming County, 1833. Research on the Late Quaternary surface deformation and strong earthquake rupture behavior on the Xiaojiang Fault is crucial to understand the future seismic risk of the fault zone and the Sichuan-Yunnan region, even crucial for the study of tectonic evolution of the southeastern margin of Tibetan plateau. We have some new understanding through several large trenches excavated on the western branch of the Xiaojiang fault zone. We excavated a large trench at Caohaizi and identified six paleoseismic events, named U through Z from the oldest to the youngest. Ages of these six events are constrained at 40000-36300BC, 35400-24800BC, 9500BC-500AD, 390-720AD, 1120-1620AD and 1750AD-present. The Ganhaizi trench revealed three paleoearthquakes, named GHZ-E1 to GHZ-E3 from the oldest to the youngest. Ages of the three events are constrained at 3300BC-400AD, 770-1120AD, 1460AD-present. The Dafendi trench revealed three paleoearthquakes, named E1 to E3 from the oldest to the youngest, and their ages are constrained at 22300-19600BC, 18820-18400BC, and 18250-present. Caohaizi and Ganhaizi trenches are excavated on the western branch of the Xiaojiang Fault, the distance between them is 400m. We constrained four late Holocene paleoearthquakes with progressive constraining method, which are respectively at 500-720AD, 770-1120AD, AD 1460-1620 and 1833AD, with an average recurrence interval of 370~440a. Large earthquake recurrence in the late Holocene is less than the recurrence interval of~900a as proposed in the previous studies. Thus, the seismic hazard on the Xiaojiang Fault should be reevaluated. We excavated a large trench at Dafendi, about 30km away south of Caohaizi trench. Combining with previous paleoseismological research, it is found that the western branch of Xiaojiang Fault was likely to be dominated by segmented rupturing in the period from late of Late Pleistocene to early and middle Holocene, while it was characterized by large earthquakes clustering and whole segment rupturing since late Holocene.  相似文献   

10.
本文研究了兴都库什及帕米尔地区地震的空间分布.发现h<70km的地震分布广泛,h≥100km的地震形成-S形的倾斜中源地震带.在71.5°E以西,中源地震带倾向接近正北,倾角随深度变化,在深部接近垂直,且倾角自西向东逐渐变陡,在71.5°E以东,倾向逐渐由东南变为正南. 分析了121个mb≥5.0地震的机制解.浅源地震机制解的P轴大多位于NS和NNW-SSE方向,且多近水平,反映此区受到NS或NNW-SSE方向挤压.各剖面应力轴分布规律性强,在150km以下,总的趋势是机制解的T轴接近于倾斜的中源地震带的下倾方向,而P轴倾角较小且垂直于倾斜的中源地震带的走向.  相似文献   

11.
Although the kinematics and mechanics of the Yilan-Yitong fault zone (YYFZ) since the Mesozoic-early Cenozoic were studied very well in the past decades,few results about the average recurrence interval of great earthquakes in late Quaternary,which is the most important parameter for us to understand the active tectonics and potential seismic hazard of this crucial structure,were obtained because of its unfavorable work environments.Based on interpretations of high-resolution satellite images and detailed geologic and geomorphic mapping,we discovered that there exist linear fault scarp landforms and troughs in the Shangzhi part of YYFZ with a length of more than 25km.Synthesized results of trenches excavation and differential GPS measurements of terrace surfaces indicate two paleo-events EⅠ and EⅡ occurring in Shangzhi part during the late Holocene,which resulted in ca.(3.2±0.1) m accumulated vertical coseismic displacement with strike-slip motion accompanied by thrusting and shortening deformation.14C samples dating suggests that event EⅠ might occur at (440±30) and (180±30) a BP and event EⅡ might happen between (4 090±30) and (3 880±30) a BP,and the average recurrence interval of major earthquakes on the YYFZ is around (3 675±235) a.Historical written records discovered from Korea show that the event EⅠ may correspond to the earthquake occurring in AD 1810(Qing Dynasty in Chinese history) in Ningguta area with magnitude 7.0.  相似文献   

12.
The Xianshuihe Fault, the boundary of Bayan Har active tectonic block and Sichuan-Yunnan active tectonic block, is one of the most active fault zones in the world. In the past nearly 300 years, 9 historical earthquakes of magnitude ≥ 7 have been recorded. Since 2008, several catastrophic earthquakes, such as Wenchuan MS8 earthquake, Yushu MS7.1 earthquake and Lushan MS7 earthquake, have occurred on the other Bayan Har block boundary fault zones. However, only the Kangding MS6.3 earthquake in 2014 was documented on the Xianshuihe Fault. Thus, the study of surface deformation and rupture behavior of large earthquakes in the late Quaternary on the Xianshuihe Fault is of fundamental importance for understanding the future seismic risk of this fault, and even the entire western Sichuan region. On the basis of the former work, combined with our detailed geomorphic and geological survey, we excavated a combined trench on the Qianning segment of Xianshuihe fault zone which has a long elapse time. Charcoal and woods in the trench are abundant. 30 samples were dated to constrain the ages of the paleoseismic events. Five events were identified in the past 9  000 years, whose ages are:8070-6395 BC, 5445-5125 BC, 4355-4180 BC, 625-1240 AD and the Qianning earthquake in 1893. The large earthquake recurrence behavior on this segment does not follow the characteristic earthquake recurrence model. The recurrence interval is 1000~2000 years in early period and in turn there is a quiet period of about 5 000 years after 4355-4180 BC event. Then it enters the active period again. Two earthquakes with surface rupture occurred in the past 1000 years and the latest two earthquakes may have lower magnitude. The left-lateral coseismic displacement of the 1893 Qianning earthquake is about 2.9m.  相似文献   

13.
太行山山前断裂带的构造特征   总被引:64,自引:1,他引:63       下载免费PDF全文
徐杰  高战武  宋长青 《地震地质》2000,22(2):111-122
据近年来的地质和地球物理资料对太行山山前断裂带做了研究 ,得到一些新的认识。断裂带开始出现于中生代 ,主要形成于早第三纪 ,由一系列NE -NNE向断裂左型斜列组成。断裂带的结构构造和活动具有鲜明的分段性 ,中北段的保定 -石家庄等断裂为大型拆离断裂 ,在倾向上水平延伸 70km左右 ,早第三纪水平拉张断距约 17km ,垂直断距 50 0 0~ 60 0 0m。断裂带基本上是发育于上地壳的拆离滑脱构造 ,不属深大断裂。它第四纪活动性不强 ,与强震活动没有直接成因关系 ,但断裂带南、北两部分与其它走向的地震构造带交汇 ,对区域地震构造和地震预测研究仍有重要意义  相似文献   

14.
岷山断块位于中国南北强震构造带的中段, 区域地质构造复杂, 活动断裂众多, 强震频发。 4条不同走向的活动断裂NE向龙门山构造带的茂汶断裂、 NWW向东昆仑断裂带的塔藏断裂、 近NS向的岷江断裂和NNW—NS向的虎牙断裂构成岷山断块的南北西东边界。 638—2017年该区域共发生了10次6级以上破坏性地震, 2017年九寨沟7.0级地震就是其中之一。 结合区域构造背景, 对岷山断块所发生的6级以上地震的发震构造特征、 地震活动特性进行归纳总结, 综合分析该区域地震地质特征及地震危险性, 得出以下认识: ① 地震分布空间分区特征显著, 破坏性强震发震构造多为活动性较强的岷山断块东西边界断裂, 震中位置多位于两组或多组活动断裂构造的交会或穿切部位; ② 地震分布时间特征表现为随着时间发展具有迁移回返和原地复发性等特点; ③ 岷山断块东西边界断裂破坏性地震的发生具有一定的时间关联性, 东边界虎牙断裂1973—2017年的地震序列为西边界岷江断裂1933—1960年地震序列约40年后的地震构造响应; ④ 未来岷山断块仍应是继续关注的强震潜在危险区, 岷江断裂中北段的强震潜在危险区是近期值得深入研究的地区之一。  相似文献   

15.
Surface rupture zone of historical earthquake is the most intuitive geomorphological response to fault activity. The rupture pattern, coseismic displacement and its geometric spatial distribution are important for determining segmentation and long-term movement behaviors of active fault. In the Barkol Basin of Xinjiang, according to the comprehensive result from remote sensing image interpretation, field surgery, high-resolution small unmanned aerial vehicles photography, terrain deformation measurements and trench excavation on geomorphological points, not only the new surface ruptures of the two M7 1/2 historical earthquakes in Barkol in 1842 and 1914 were found and defined between Xiongkuer and the southwest of Barkol County in southwestern part of the basin, but also the latest deformation evidence of the EW fold-up faults in the eastern part of the Basin was identified. Combined with the ancient document analysis of the two historical earthquakes, we finally conclude that the surface rupture zone in the western segment on the southern margin of the Barkol Basin is the seismogenic structure of the M7 1/2 earthquake in 1842. The surface rupture zone is mainly characterized by left-lateral strike-slip, roughly with en echelon arrangement spreading from Xiongkuer to the south of Barkol County. The length of the surface rupture zone determined by field investigation is at least about 65km, and the maximum horizontal displacement appears around the Xiongkuer Village. At the same time, the surface rupture zone gradually shows more significant thrust extrusion from west to east, and has a tendency of extension towards the central of the Barkol Basin. The average observed displacement of the entire surface rupture obtained by counting the coseismic offsets of multiple faulted gullies is(4.1±1.0)m, with the coseismic characteristic displacement of ~4m. The epicenter position should appear at the place with the largest horizontal dislocation amount near Xiongkuer Village. In addition, the length of the fold-blind fault zone in the vicinity of the Kuisu Town and the eastward extension to the Yanchi Township of the Yiwu Basin, which was discovered in the center of the Barkol Basin, is about 90km. The folded blind fault causes significant fold deformation in the latest sedimentary strata such as floodplain, and in addition, as shown on many outcrop sections, the bending-moment faults associated with the coseismic fold deformation have ruptured the surface. Therefore, the location of the epicenter should be located at the maximum fold deformation, which is near the Kuisu Town. The new research results not only further improve the understanding of the epicenter location and seismogenic faults of the two historical earthquakes in the Barkol Basin, but also provide an important reference for analyzing regional seismic hazards.  相似文献   

16.
通过断错地貌调查和探槽开挖,获得了临汾盆地西界罗云山山前断裂带龙祠-峪口段的最新活动信息:该段山前洪积扇后缘断断续续存在高2.5m、5.2m、8m左右的地表地貌陡坎;附近冲沟的Ⅰ级阶地热释光测年为距今7500a左右;在NW向的席坊沟内存在拔沟3.5m、8m、18m左右的3级阶地,与地貌陡坎有对应关系;席坊沟探槽揭示罗云...  相似文献   

17.
The NE-trending Xinyi-Lianjiang fault zone is a tectonic belt, located in the interior of the Yunkai uplift in the west of Guangdong Province, clamping the Lianjiang synclinorium and consisting of the eastern branch and the western branch. The southwestern segment of the eastern branch of Xinyi-Lianjiang fault zone, about 34km long, extends from the north of Guanqiao, through Lianjiang, to the north of Hengshan. However, it is still unclear about whether the segment extends to Jiuzhoujiang alluvial plain or not, which is in the southwest of Hengshan. If it does, what is about its fault activity? According to ‘Catalogue of the Modern Earthquakes of China’, two moderately strong earthquakes with magnitude 6.0 and 6.5 struck the Lianjiang region in 1605 AD. So it is necessary to acquire the knowledge about the activity of the segment fault, which is probably the corresponding seismogenic structure of the two destructive earthquakes. And the study on the fault activity of the segment can boost the research on seismotectonics of moderately strong earthquakes in Southeast China. In order to obtain the understanding of the existence of the buried fault of the southwestern segment, shallow seismic exploration profiles and composite borehole sections have been conducted. The results indicate its existence. Two shallow seismic exploration profiles show that buried depth of the upper breakpoints and vertical throw of the buried fault are 60m and 4~7m(L5-1 and L5-2 segment, the Hengshan section), 85m and 5~8m(L5-3 segment), 73m and 3~5m(Tiantouzai section), respectively and all of them suggest the buried fault has offset the base of the Quaternary strata. Two composite borehole sections reveal that the depth of the upper breakpoints and vertical throws of the buried segment are about 66m and 7.5m(Hengshan section) and 75m and 5m(Tiantouzai section), respectively. The drilling geological section in Hengshan reveals that the width of the fault could be up to 27m. Chronology data of Quaternary strata in the two drilling sections, obtained by means of electron spin resonance(ESR), suggest that the latest activity age of the buried fault of the southwestern segment is from late of early Pleistocene(Tiantouzai section) to early stage of middle Pleistocene(Hengshan section). Slip rates, obtained by Hengshan section and Tiantouzai section, are 0.1mm/a and 0.013mm/a, respectively. As shown by the fault profile located in a bedrock exposed region in Shajing, there are at least two stages of fault gouge and near-horizontal striation on the fault surface, indicating that the latest activity of the southwestern segment is characterized by strike-slip movement. Chronology data suggest that the age of the gouge formed in the later stage is(348±49) ka.  相似文献   

18.
近断层竖向与水平向加速度反应谱比值特征   总被引:4,自引:2,他引:2       下载免费PDF全文
显著的竖向地震动是近断层地震动区别于远场地震动的重要特征之一,为更合理地确定竖向地震动作用,研究了近断层区域竖向地震动的反应谱特征及其与水平向反应谱比值的影响因素.首先,选取1952—1999年世界范围内震级在M5.4—7.6之间的18次地震的地震动记录,研究竖向地震加速度反应谱及其与水平向加速度反应谱比值特征;然后统计分析了断层距、场地条件、震级以及断层机制对竖向与水平向加速度反应谱比的影响.结果表明,一般情况下竖向加速度具有更丰富的短周期分量,并且竖向加速度反应谱衰减较慢;断层距在20km以内的近断层区域、软弱土层场地、中等震级地震和逆断层大震级中长周期范围等条件下,具有较大的竖向与水平向加速度反应谱比值;在近断层区域的结构抗震设计中应充分考虑竖向地震动的影响.  相似文献   

19.
Given the scarcity of research on the activity of Xinyi-Sihong segment of the Tanlu Fault zone, this paper focuses on the Zhangshan segment where there are quite evident geomorphic features to complement the shortage of the research on the northern part of Xinyi-Sihong segment. This study enriches evidences for the late Quaternary activity and paleoseismological events on the Xinyi-Sihong segment. The Zhangshan segment is located at Xiaodian Town to Jintou Village of Suqian City, stretching towards NE for 7 kilometers with a dip angle of 60~80. Research of tectonic geomorphology shows that gullies in northern part of Zhangshan segment were evidently displaced, while in the southern, two NE-trending right-stepped fault scarps are developed, with an average height of 3 meters, which generally suggests that the fault was dominated by thrust and dextral motion. Two trenches were excavated in the southern part of Zhangshan segment, numbered Mayao trench 1 and Mayao trench 2. Both trenches reveal that:(1)within this segment, Tanlu Fault shows periodic fault activity, that is, normal faulting during Pliocene epoch while thrust faulting in Quaternary period; (2)an event occurred between 15.12ka BP to 11.82 BP; (3)the latest event possibly took place around 3 500 a BP. Based on integrated results of previous studies, we identify the dates of paleoseismic events on the Xinyi-Sihong segment as follows:more than 960 thousands years ago, early to middle period of late Pleistocene, (15.12~11.82)ka BP, (11.76±0.05)ka~(10.53±0.05)ka BP, (10.15±0.05)ka~(8.16±0.05)ka BP and 4 960~3 510a BP.  相似文献   

20.
甘孜-玉树断裂带的新构造特征与地震危险性估计   总被引:19,自引:2,他引:17       下载免费PDF全文
本文综合野外调查,卫、航影象判读,地震活动及震源机制等资料,初步研究了北西向甘孜-玉树断裂带的新构造特征,探讨了拉分构造的发育与强震活动的关系。结果表明:该断裂带是一自中生代以来形成和发展的大型活动断裂带;第四纪以来以强烈的水平左旋剪切错动为主,水平与垂直位错之比约为10:1。从历史地震活动规律推断了在未来20—30年内,该带将进入一个新的地震活跃期,并具有发生M≥7级地震的危险性  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号