首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
青藏高原东北缘深地震测深震相研究与地壳细结构   总被引:32,自引:17,他引:15       下载免费PDF全文
通过对青藏高原东北缘不同构造单元深地震测深资料震相的综合分析,利用反射率理论地震图方法对实际记录模拟计算,进一步研究东北缘区域内部不同构造单元地壳细结构.结果显示:西秦岭褶皱造山带分隔了南北不同性质的地壳结构,北侧为相对稳定的临夏—兰州新生代盆地、南侧为强烈改造的松潘—甘孜地块;松潘—甘孜地块在青藏高原东北缘的构造演化过程中改造为萎缩的若尔盖高原盆地和盆地边缘褶皱造山两类不同的地壳结构;青藏高原东北缘中下地壳普遍存在以多层高低速相间、低速度结构为主的破碎松弛结构,这种特征在缝合带和造山带尤为明显,显示为地壳形变增厚、流变滑动的重要场所;结合二维速度结构及GPS研究结果,对青藏高原东北缘地壳形变及动力学过程进行了讨论.  相似文献   

2.
青藏高原东缘龙门山逆冲构造深部电性结构特征   总被引:4,自引:12,他引:4       下载免费PDF全文
通过对汶川地震前观测的碌曲—若尔盖—北川—中江大地电磁剖面的数据处理和反演解释,揭示了沿剖面的松潘—甘孜地块、川西前陆盆地、龙门山构造带及秦岭构造带50 km深度的电性结构特征及相互关系,表明青藏高原东缘向东挤压,迫使向东流动的地壳物质沿高原东缘堆积,并向扬子陆块逆冲推覆.龙门山恰好位于松潘—甘孜地块与扬子陆块对挤部位,主要受松潘—甘孜地块壳内高导层滑脱和四川盆地基底高阻体阻挡的约束,地壳深部存在着西倾且连续展布的壳内低阻层,表明龙门山深部确实存在着逆冲推覆构造,其逆冲断裂系中的三条断裂不仅以不同的倾角向西北倾斜,并且向深部逐渐汇集,但茂县—汶川断裂可能在深部与北川—映秀断裂是分离的.龙门山两翼的四川盆地和松潘甘孜褶皱带的电性结构既具有明显差异性,又具有一定的相关性.四川盆地显示巨厚的低阻沉积盖层和连续稳定的高阻基底的二元电性结构,而松潘—甘孜地块则表现为反向二元结构,即上部大套高阻褶皱带,下部整体为低阻的变化带,龙门山逆冲构造带本身又表现为松潘地块逆冲上覆在四川盆地之上,构成上部高阻褶皱带、中部低阻逆冲断裂带和底部盆地高阻基底的三层电性结构.对比龙门山逆冲构造断裂带的西倾延伸上下盘两侧的两个反对称的二元电性结构,松潘区块深部推断的结晶基底与龙门山断裂带下盘推断的下伏盆地结晶基底又存在某种内在对应关系,推断可能存在一个西延至若尔盖地块的泛扬子陆块.因此,龙门山构造带地壳电性结构研究对于揭示青藏高原东缘陆内造山动力过程,探索汶川大地震的深部生成机理都具有重要意义.  相似文献   

3.
若尔盖与西秦岭地震反射岩石圈结构和盆山耦合   总被引:10,自引:0,他引:10       下载免费PDF全文
松潘地块北缘的若尔盖盆地与西秦岭造山带相接触,构成青藏高原东北缘典型的新生代盆山构造.其岩石圈结构与深部构造关系,记录了青藏高原东北缘板块碰撞的深部过程,同时又关联着若尔盖盆地油气远景的评价.2004年秋冬季,我们完成了第一条跨越若尔盖盆地和西秦岭造山带的深地震反射剖面.整个剖面全长254 km,分5段完成,其中第2段剖面(简称SP04_2)横过盆山结合部位.SP04_2剖面首次揭示若尔盖盆地-西秦岭造山带盆山结合部位的岩石圈结构,发现了若尔盖盆地和西秦岭造山带下地壳均以北倾为主的强反射特征,提供出若尔盖盆地下地壳整体向西秦岭造山带俯冲的地震学证据,揭示了若尔盖盆地和西秦岭造山带在挤压构造体系下形成的深部构造关系.而近于平的Moho反射特征又反映出两者在造山后期经历了强烈的伸展作用.  相似文献   

4.
扇形边界条件下的龙门山壳幔电性结构特征   总被引:10,自引:8,他引:2       下载免费PDF全文
沿甘肃碌曲-四川龙门山-重庆合川布设了长周期大地电磁剖面,对龙门山及邻区进行了壳幔电性结构探测,采用更直观合理的扇形边界条件下的反演算法对长周期大地电磁资料进行二维反演.该剖面电性结果揭示了自北西向南东岩石圈深部的若尔盖壳幔高阻块体、松潘壳幔低阻带、龙门山壳幔高阻块体和川中壳幔高阻块体电性结构特征;龙门山逆冲推覆构造带下方的龙门山壳幔高阻体显示为向北西延伸的楔形构造,推断龙门山及松潘-甘孜地块由于受青藏高原东缘和上扬子地块双向挤压,松潘-甘孜地块地壳物质向龙门山逆冲推覆,中下地壳至上地幔向下向南东俯冲,呈现上扬子地块西缘壳幔高阻楔形体插入青藏高原东缘的态势;初步认为上扬子地块西缘深部以松潘壳幔韧性剪切带作为中新生代以来的边界.  相似文献   

5.
南北地震带岩石圈S波速度结构面波层析成像   总被引:13,自引:8,他引:5       下载免费PDF全文
本文利用天然地震面波记录和层析成像方法,研究了南北地震带及邻近区域的岩石圈S波速度结构和各向异性特征.结果表明南北地震带的东边界不但是地壳厚度剧变带,也是地壳速度的显著分界.其西侧中下地壳的S波速度显著低于东侧,强震大多发生在低速区内部和边界.青藏高原东缘中下地壳速度显著低于正常大陆地壳,在松潘甘孜地块和川滇地块西部大约25~45 km深度存在壳内低速层;这些低速特征与高原主体的低速区相连,有利于下地壳物质的侧向流动.地壳的各向异性图像与下地壳流动模式相符,即下地壳物质绕喜马拉雅东构造结运动,东向的运动遇到扬子坚硬地壳阻挡而变为向南和向北东的运动.面波层析成像结果支持青藏高原地壳运动的下地壳流动模型.南北地震带的岩石圈厚度与其东侧的扬子和鄂尔多斯地块相似但速度较低.川滇西部地块上地幔顶部(莫霍面至88 km左右)异常低速;松潘甘孜地块上地幔盖层中有低速夹层(约90~130 km深度).岩石圈上地幔的速度分布图像与地壳显著不同,在高原主体与川滇之间存在北北东向高速带,可能会阻挡地幔物质的东向运动.上地幔各向异性较弱且与地壳的分布图像显然不同.因此青藏高原岩石圈地幔的构造运动具有与地壳不同的模式,软弱的下地壳提供了壳幔运动解耦的条件.  相似文献   

6.
对龙门山及其邻近地区20个宽频带地震台站的记录提取远震P波接收函数,并应用H-k叠加方法,求得每个台站下方的地壳厚度和波速比.以此为约束,进一步作接收函数反演,获得各个台站下方的S波速度结构.后龙门山与松潘-甘孜地块的地壳速度结构相似,而前龙门山的地壳速度结构则与四川盆地相似.由此说明,中央主断裂带是青藏高原东部与扬子地块之间主要的边界断裂.松潘甘孜地块至后龙门山中南部地区存在下地壳低速层,有利于中上地壳物质的滑脱作用.远震接收函数和布格重力异常的分析结果支持龙门山断裂带深部构造为滑脱-逆冲型的论断.在松潘-甘孜地块内可能具有双层的滑脱构造.上层滑脱发生在10~15km的深度上,该滑脱带表现为高温韧性滑脱剪切带.下层滑脱则发生在30km左右的深度上,其下方为青藏高原东部广泛存在的下地壳流.布格重力异常的分析表明,在中上地壳,四川盆地的密度较高,松潘-甘孜地块密度相对较低.龙门山断裂带位于密度较高的一侧,是松潘-甘孜地块向东南方的四川盆地逆冲的结果.在地壳下部,四川盆地为高P波速度和高密度区,表明地壳物质是坚硬的.松潘-甘孜块体是低S波速度和低密度区,表明物质比较软弱.高密度块体阻挡了青藏高原东部下地壳物质向四川盆地下方的流动.受印度板块往北运动的影响,青藏高原下地壳物质向东流动.中上地壳物质向东运动受到刚性强度较大的扬子地块的阻挡,在龙门山断裂带上产生应力集中,导致中央断裂带上应力突然释放,产生汶川Ms8.0级地震.  相似文献   

7.
对龙门山及其邻近地区20个宽频带地震台站的记录提取远震P波接收函数,并应用H-k叠加方法,求得每个台站下方的地壳厚度和波速比.以此为约束,进一步作接收函数反演,获得各个台站下方的s波速度结构.后龙门山与松潘-甘孜地块的地壳速度结构相似,而前龙门山的地壳速度结构则与四川盆地相似.由此说明,中央主断裂带是青藏高原东部与扬子地块之间主要的边界断裂.松潘甘孜地块至后龙门山中南部地区存在下地壳低速层,有利于中上地壳物质的滑脱作用.远震接收函数和布格重力异常的分析结果支持龙门山断裂带深部构造为滑脱-逆冲型的论断.在松潘-甘孜地块内可能具有双层的滑脱构造.上层滑脱发生在10—15km的深度上,该滑脱带表现为高温韧性滑脱剪切带.下层滑脱则发生在30km左右的深度上,其下方为青藏高原东部广泛存在的下地壳流.布格重力异常的分析表明,在中上地壳,四川盆地的密度较高,松潘.甘孜地块密度相对较低.龙门山断裂带位于密度较高的一侧,是松潘-甘孜地块向东南方的四川盆地逆冲的结果.在地壳下部,四川盆地为高P波速度和高密度区,表明地壳物质是坚硬的,松潘-甘孜块体是低s波速度和低密度区,表明物质比较软弱.高密度块体阻挡了青藏高原东部下地壳物质向四川盆地下方的流动.受印度板块往北运动的影响,青藏高原下地壳物质向东流动.中上地壳物质向东运动受到刚性强度较大的扬子地块的阻挡,在龙门山断裂带上产生应力集中,导致中央断裂带上应力突然释放,产生汶川Ms8.0级地震.  相似文献   

8.
龙门山中段及两侧地壳结构与汶川地震构造   总被引:2,自引:0,他引:2  
2010年完成了由四川盆地中部向西北方向、近垂直穿越龙门山中段5·12汶川特大地震极震区和川西北高原、总长500 km的深地震宽角反/折射测深野外工作,沿测线建立了较为完善的地震测深观测系统,取得了丰富观测记录.对反映不同构造单元的震相记录、特别是强震构造区复杂震相信息的详细分析和模拟追踪计算,得到龙门山中段褶皱造山带及两侧的二维非均匀地壳速度结构模型.揭示了稳定的四川盆地地壳结构与被改造增厚的川西北高原地壳结构性质差异;探测到高原壳内介质由上向下的岩性变化,特别是下地壳介质速度大幅降低、岩性强烈弱化的塑性流变性质;发现了四川盆地与川西北高原之间褶皱造山带下地壳存在由西向东、下缓上陡的巨型铲式上升流以及上升流与龙门山中段断裂构造体系的关系;上升流沿褶皱带东部边缘在龙门山中段上中地壳以陡倾角度向上逆冲,造成龙门山上地壳中央断裂带附近强烈上隆并使结晶基底突出地表大幅抬升.综合区域构造应力场和现有地质成果进一步研究青藏高原东缘龙门山中段盆山耦合与造山构造,壳内断裂体系与强震孕育环境构造.  相似文献   

9.
基于横跨青藏高原东缘龙门山造山带的链式宽频带台阵数据,通过系统拾取28个台站观测到的147个远震事件所对应的Pms转换波分裂参数,获得了青藏高原东缘强烈盆山相互作用区不同构造域的地壳各向异性特征.结果表明,青藏高原东缘盆山相互作用区的地壳各向异性具有明显的分区性,松潘-甘孜地块的地壳各向异性强度(分裂时差约0.28 s...  相似文献   

10.
青藏高原是全球造山带研究的热点地区,此前在青藏高原开展的三维层析成像研究大多基于线性反演方法.本文利用青藏高原东缘及邻区布设的127个宽频带固定地震台站记录的连续波形资料,首先通过噪声互相关提取了3~50sRayleigh波群速度频散曲线并反演得到群速度分布,再进一步采用模拟退火法反演了研究区的三维S波速度及泊松比结构.结果显示:(1)松潘—甘孜地块的中下地壳低速异常主要分布在龙日坝断裂带、鲜水河断裂带、龙门山断裂带和岷山隆起所围限的区域,而该区域的中下地壳仅具有中等泊松比值,推测松潘—甘孜地块中下地壳的低速物质可能是青藏高原与扬子块体长期相互作用产生的塑性低速滑脱层;上地壳脆性物质在板块作用下沿中地壳低速滑脱层顶界面发生逆冲增厚,造成龙门山的持续抬升和地形起伏,并在构造边界带形成了应变积累和应力集中;而龙门山断裂带的上地壳低速软弱物质为地壳发生破裂提供了有利条件,从而在某种程度上促进了汶川地震和芦山地震的发生.(2)岷山隆起一带中下地壳的高泊松比异常呈"凸起"形态,结合前人研究发现的较高热流和岩石快速抬升现象,推测岷山隆起一带可能存在岩石圈的拆沉,导致地幔热物质上涌而形成下地壳高泊松比物质.(3)川滇地块的北部和南部具有不同的S波速度和泊松比分布特征.30km深度下川滇地块北部具有明显的低速异常,而该深度下并不具有明显的高泊松比值特征;此外剖面成像结果也显示川滇地块内的低速异常与高泊松比的分布不一致,因此川滇地块的研究结果不支持下地壳流模型.综合其他地震学证据,本文认为川滇地块的变形模式为上地壳纯剪切增厚,块体变形主要受块体内部的走滑断裂及活动边界断裂控制.  相似文献   

11.
六盘山断裂带及其邻区地壳结构   总被引:4,自引:1,他引:3       下载免费PDF全文
新生代期间,中国大陆西部受印度一欧亚板块碰撞和青藏高原隆升影响,以地壳缩短、增厚、陆内造山和强烈地震活动等为主要特征.在青藏高原东北边缘,高原物质侧向移动被鄂尔多斯地块所阻,在六盘山地区发育了一系列左旋斜冲断裂.断裂带周缘构造变形强烈,地震活动频繁,是研究青藏高原横向扩展控制大陆内部弥散变形的理想场所.本文对穿越青藏高原东北缘一六盘山断裂带一鄂尔多斯地块的宽角反射与折射地震资料使用层析成像和射线反演算法进行成像,获得了研究区地壳速度结构模型,其结果反映出六盘山断裂带两侧地壳结构、构造特征差异显著:1)上地壳层析成像结果显示鄂尔多斯盆地一侧地壳上部速度较低,等值线呈近水平状,具有典型的沉积盆地特征,而青藏高原东北缘一侧上地壳速度相对较高,横向变化剧烈,呈褶皱状,二者的分界为海原一六盘山逆冲走滑断裂;2)全地壳射线反演结果显示鄂尔多斯地块地壳速度梯度大,下地壳底部速度高由铁镁质物质组成,具有典型稳定古老克拉通的特征,青藏高原东北缘地壳速度总体较低,主要由长英质及长英-铁镁质过渡物质组成,具有典型造山带的特征,而六盘山断裂带下方地壳速度结构复杂,层面呈拱形,部分层出现速度逆转,为两个构造单元的接触过渡带;3)青藏高原东北缘一侧地壳厚度~50 km,鄂尔多斯地块地壳厚度~42 km,六盘山断裂带下方莫霍面发生叠置,揭示出青藏高原东北缘、鄂尔多斯地壳在六盘山下汇聚,较薄且刚性的鄂尔多斯地壳挤入较厚且塑性的青藏高原东北缘地壳中的构造模式.  相似文献   

12.
青藏高原东缘地壳运动与深部过程的研究   总被引:26,自引:9,他引:26       下载免费PDF全文
由于青藏高原东部地区记录了高原约50 Ma演化历史中物质东流的构造史,因此受到地学界的广泛重视. 现代大地测量与地质研究结果给出了该区现代地壳运动的图像,为地球动力学数值模拟提供了重要的边界约束条件. 利用重力异常计算的高原及邻区地幔对流应力场与地表地壳运动格局的明显差异表征了高原东部地壳与地幔物质的运动解耦. 基于随深度变化地壳蠕变率的动力学模拟结果显示,高原东部地壳增厚与高原内部存在很大差异,高原东部地壳增厚主要表现为下地壳的增厚,并且地幔形变过程与地表变化也不一致,同样显示出地壳、地幔运动的解耦. 研究表明,下地壳低强度分布可能是导致这种解耦的重要原因,而了解高原东部地壳及上地幔物理力学性质对我们认识高原物质东流至关重要.  相似文献   

13.
利用四川地震台网2000年1月~2008年4月的地震数据,使用地震层析成像方法反演了龙门山及其邻近地区的地壳P波速度结构,以此为依据分析了龙门山断裂带和汶川Ms8.0地震的深部构造特征.研究结果表明,龙门山的地壳速度结构和深部动力学性质与汶川Ms8.0地震的破裂起始点、震源深度以及破裂传播方向密切相关.龙门山西侧的彭灌杂岩体是地壳内部应变强度较大、易于应力长期积累的主要载体,汶川Ms8.0地震即位于彭灌杂岩体的南端,毗邻四川盆地的西部边缘,该块体与四川盆地地壳的碰撞是引发汶川Ms8.0地震的直接原因.在汶川以北,沿着龙门山断裂的高速异常有利于破裂的发生和传递,而汶川以南地壳强度相对较弱,不易产生脆性破裂而引发地震,这可能是地震破裂自汶川向东北方向延伸、汶川以南缺少地震活动的重要原因.汶川Ms8.0地震的深部动力成因与龙门山断裂两侧的构造差异有关,松潘-甘孜造山带中下地壳强度较弱,青藏高原的向东运动受到四川盆地刚性岩石层阻碍,迫使龙门山发生垂向变形,中下地壳厚度增加,莫霍面弯曲下沉,基底则褶皱抬升向山前盆地逆冲,地壳形变所产生的应力积累为汶川地震的发生提供了深部动力来源.  相似文献   

14.
2013年7月22日甘肃岷县漳县交界处发生MS6.6地震后,横跨西秦岭造山带和地震区沿NE方向的剖面进行了45个大地电磁测点的观测。使用远参考和"Robust"技术以及相位张量分解技术处理数据,采用NLCG 2维反演方法,获得的深部电性结构图像揭示:西秦岭造山带自地表至深度约20km存在东北和西南浅、中部深的倒"梯形"高电阻体,在高阻体之下为低电阻层,高、低电阻层相互契合;西秦岭造山带西南侧的松潘-甘孜地块(北部)在深度约20km存在西南深、东北浅的中下地壳低阻层,其东北侧的陇西盆地具有稳定的成层性结构,显示出西秦岭造山带正处于松潘-甘孜地块向北挤压和陇西盆地向南的阻挡挤压作用中。东昆仑断裂带(塔藏段)错断了松潘-甘孜地块中下地壳低阻层,迭部-白龙江断裂和光盖山-迭山断裂带延伸深度不大,在深部归并于东昆仑断裂带(塔藏段),东昆仑断裂带(塔藏段)内部结构和介质的低阻特性是东昆仑断裂带在塔藏段水平滑动速率逐渐减小、垂向运动逐渐增强的深层原因。西秦岭北缘断裂为陡立的大型电性边界带,延伸深度穿过莫霍面;临潭-宕昌断裂带表现为具有一定宽度的低阻带,延伸深度归并到中下地壳低阻层中。2013年甘肃岷县漳县6.6级地震震源区处于倒"梯形"高阻体的西秦岭造山带的核部,即位于高低电阻体接触区,同时发生在低阻破碎带的临潭-宕昌断裂带附近。松潘-甘孜地块从SW向NE推挤、东北侧陇西盆地阻挡的相互作用是2013年岷县漳县MS6.6地震发生的动力学原因,岷县漳县地震震源区特殊的高低阻介质属性和接触关系是该次地震发生的内部因素。  相似文献   

15.
西秦岭造山带(中段)及其两侧地块深部电性结构特征   总被引:15,自引:5,他引:10       下载免费PDF全文
本文对跨过西秦岭造山带(中段)的阿坝—若尔盖—临潭—兰州大地电磁剖面(WQL-L1)所采集到的数据进行了精细化处理分析和二维反演研究,结合跨过2013年岷县漳县地震区的WQL-L6剖面大地电磁探测结果和以往的地质与地球物理资料,对西秦岭造山带(中段)的深部电性结构、主要断裂带延伸状况以及与南北两侧地块的接触关系等进行了分析研究,结果表明:东昆仑断裂带塔藏段、迭部—白龙江断裂和光盖山—迭山断裂带共同组成了东昆仑断裂系统,分隔了松潘—甘孜地块和西秦岭造山带(中段);西秦岭北缘断裂带为主要的高角度南倾大型电性边界带,延伸深度穿过莫霍面;临潭—宕昌断裂带具有电性边界带特征,其延伸情况具有东、西差异.西秦岭造山带(中段)自地表到深度约20km范围表现为东北和西南浅、中部深的倒"梯形"高阻层,在高阻层之下广泛发育低阻层,低阻层与高阻层相互契合,呈现相互挤压堆积的式样,其西南侧的松潘—甘孜地块中下地壳存在西南深、东北浅低阻层,其东北侧的陇西盆地具有稳定的成层性结构,显示出西秦岭造山带(中段)正处于松潘—甘孜地块向北挤压和陇西盆地向南的阻挡挤压作用中.松潘—甘孜地块从西南向东北推挤、东北侧陇西盆地相对阻挡的相互作用是2013年岷县漳县6.6级地震发生的外部动力学机制,同时地震震源区特殊介质属性是该次地震发生的内部因素.西秦岭造山带(中段)中上地壳倒"梯形"高阻体埋深西薄、东厚的分段差异与该段内部中强地震分布差异有关.东昆仑断裂玛沁段和塔藏段内部的深部电性结构差异和延伸状况与东昆仑断裂自西向东走滑速率减小有内在联系.  相似文献   

16.
基于青藏高原东北缘及邻区流动密集地震台阵——喜马拉雅二期2013年12月至2015年8月期间的三分量连续波形数据,采用背景噪声成像方法获得了Rayleigh波周期为6~30 s和Love波6~25 s的二维相速度.6~12 s Rayleigh和Love波相速度在鄂尔多斯盆地及银川—河套地堑呈现明显的低速异常,而在西秦岭造山带和中亚造山带则显示高速异常.16~25 s的相速度同时受中下地壳及上地幔顶部速度结构和地壳厚度影响.此周期范围内,位于青藏高原的祁连地块和松潘甘孜地块北部呈现大范围相速度低速异常,青藏高原周边的鄂尔多斯和西秦岭造山带表现为高速异常.青藏高原与周边块体相速度的横向不均匀性,可能反映了构造活动或者地壳厚度的差异.此外,中亚造山带在周期16~20 s时,Rayleigh波相速度高低相间,但Love波大范围高速异常,两者差异可能反映了径向各向异性的影响.  相似文献   

17.
2008年5月12日我国四川省汶川地区发生了震惊世界的MS8.0地震.历史上,同类地震在大陆内部极为罕见.该地震深部构造背景的研究对理解其成因极为重要.本文利用中国地震局地质研究所地震动力学国家重点实验室在川西地区布设的大规模密集流动宽频带地震台阵记录的远震P波波形数据和接收函数非线性反演方法,得到了沿北纬31°线的19个台站下方120 km深度范围内的S波速度结构及台站下方地壳的平均泊松比.该观测剖面穿越了主震区,总长度约为420 km. 我们的结果揭示了川滇地块、松潘-甘孜地块和四川盆地三个不同地块构造差异.上述三个地块的地壳结构特征可以概括为:(1)四川盆地前陆壳幔界面向西侧倾斜并有较为明显的横向变形,地壳厚度存在46~52 km的横向变化,中下地壳S波速度存在横向变化,地壳平均泊松比值较高(0.28~0.31),但在龙门山断裂带附近,显示了坚硬地壳的特征,地壳平均泊松比仅为0.2;(2)松潘-甘孜地块地壳厚度由西侧靠近鲜水河断裂的60 km,向东减薄为52 km,在14~50 km深度范围内存在S波速度2.75~3.15 km/s的楔状低速区,其厚度由西侧的~30 km向东逐渐减薄为~15 km,相应区域的地壳平均泊松比高达0.29~0.31; (3)鲜水河断裂西侧,川滇地块地壳结构相对简单,地壳厚度为58 km,并在26 km深度存在约10 km厚度的高速层,地壳内平均泊松比约为0.25;(4)汶川大震区在12~23 km深度上具有近乎4.0 km/s的S波高速结构,而其下方的地壳为低速结构,地壳平均泊松比0.31~0.32,汶川大震的余震序列主要分布在高速介质区域内. 本文的结果表明松潘-甘孜地块的地壳相对软弱;而且并不存在四川盆地向西侧的俯冲.我们认为在青藏高原东向挤压的长期作用下,四川盆地强硬地壳的阻挡作用可导致松潘-甘孜地块内部蓄积很大的应变能量以及上、下地壳在壳内低速层顶部边界的解耦,在龙门山断裂带附近形成上地壳的铲形逆冲推覆.汶川大地震及其邻近区域所具有的坚硬上地壳和四川盆地的阻挡作用为低应变率下的高强度应力积累创造了必要条件,而松潘-甘孜地块长期变形积累的高应变能构成了孕育汶川大地震的动力来源.  相似文献   

18.
青藏高原东缘及四川盆地的壳幔导电性结构研究   总被引:24,自引:16,他引:8  
自从2008年MS8.0级汶川大地震发生以来,青藏高原东缘便成为地质与地球物理研究的热点区域.该区域的龙门山断裂带标志着青藏高原东缘与四川盆地的边界.汶川地震即发生于龙门山断裂带内的映秀-北川断裂上.该地区现有的研究工作多集中于青藏高原东缘及四川盆地的西部,对四川盆地东部构造情况的研究目前较少.在SinoProbe项目的资助下,完成了一条跨越青藏高原东缘及整个四川盆地的大地电磁测深剖面.该剖面自西北始于青藏高原内部的松潘-甘孜地块,向东南延伸穿过龙门山断裂带、四川盆地内部及四川盆地东部的华蓥山断裂,最终止于重庆东南的川东滑脱褶皱带附近.维性分析表明剖面数据整体二维性较好,通过二维反演得到了最终的电性结构模型.该模型表明,从电性结构上看,沿剖面可分为三个主要的电性结构单元,分别为:浅部高阻、中下地壳低阻的松潘-甘孜地块,浅部低阻、中下地壳相对高阻的四川盆地,以及华蓥山以东整体为高阻特征的扬子克拉通地块.龙门山断裂带在电性结构上表现为倾角较缓、北西倾向的逆冲低阻体,反映了青藏高原东缘相对四川盆地的推覆作用.其在地下向青藏高原内部延伸,深度约为20 km左右.在标志逆冲推覆滑脱面的低阻层下存在一电性梯度带,表征着低阻的青藏高原中下地壳与高阻的扬子地壳之间的电性转换.位于四川盆地东边界的华蓥山断裂在电性结构上表现为一倾向为南东向的低阻体插入高阻的扬子克拉通结晶基底,切割深度约为30 km左右.这一结构反映出华蓥山向西的推覆作用.在电性结构模型的基础上,进一步讨论了青藏高原东缘的壳内物质流、青藏块体与扬子块体的深部关系以及青藏高原东部的隆升机制等构造问题.  相似文献   

19.
通过对南北地震带北段区域所布设的676个流动地震台站观测资料进行处理,联合反演面波频散与接收函数数据,获得了研究区内地壳厚度、沉积层厚度的分布情况以及地壳上地幔高分辨率S波速度结构成像结果.反演结果显示研究区地壳厚度从青藏高原东北缘向外总体逐渐变薄,秦岭造山带地壳厚度较同属青藏高原东北缘的北祁连块体明显减薄;鄂尔多斯盆地及河套盆地分布有非常厚的沉积层,阿拉善块体部分区域也有一定沉积层分布,沉积层与研究区内盆地位置较为一致;松潘—甘孜块体、北祁连造山带等青藏高原东北缘总体表现为S波低速异常;在中下地壳,松潘—甘孜块体下方的低速体比北祁连造山带下方的低速体S波速度值更小、分布深度更浅,更有可能对应于部分熔融的地壳;鄂尔多斯盆地在中下地壳以及上地幔内有着较大范围的高速异常一直延伸到120 km以下,而河套盆地地幔只在80 km以上部分有着高速异常的分布,此深度可能代表了河套盆地的岩石圈厚度,来自深部地幔的热物质上涌造成了该区域的岩石圈减薄;阿拉善块体在地壳和上地幔都表现出高低速共存的分布特征,暗示阿拉善块体西部岩石圈可能受青藏高原东北缘的挤压作用发生改造.  相似文献   

20.
汶川Ms8.0地震:地壳上地幔S波速度结构的初步研究   总被引:27,自引:11,他引:16       下载免费PDF全文
2008年5月12日我国四川省汶川地区发生了震惊世界的Ms8.0地震.历史上,同类地震在大陆内部极为罕见.该地震深部构造背景的研究对理解其成因极为重要.本文利用中国地震局地质研究所地震动力学国家重点实验室在川西地区布设的大规模密集流动宽频带地震台阵记录的远震P波波形数据和接收函数非线性反演方法,得到了沿北纬31°线的19个台站下方120 km深度范围内的S泼速度结构及台站下方地壳的平均泊松比.该观测剖面穿越了主震区,总长度约为420 km.我们的结果揭示了川滇地块、松潘-甘孜地块和四川盆地三个不同地块构造差异.上述三个地块的地壳结构特征口J以概括为:(1)四川盆地前陆壳幔界面向西侧倾斜井有较为明显的横向变肜,地壳厚度存在46~52 km的横向变化,中下地壳S波速度存在横向变化,地壳平均泊松比值较高(0.28~0.31),但在龙门山断裂带附近,显示了坚硬地壳的特征,地壳平均泊松比仪为0.2;(2)松潘-甘孜地块地壳厚度由西侧靠近鲜水河断裂的60 km,向东减薄为52 km,在14~50 km深度范围内存在S波速度2.75~3.15 km/s的楔状低速区,其厚度由西侧的~30 km向东逐渐减薄为~15 km,相应区域的地壳平均泊松比高达0.29~0.31;(3)鲜水河断裂西侧,川滇地块地壳结构相对简单,地壳厚度为58 km,并在26 km深度存在约10 km厚度的高速层,地壳内平均泊松比约为0.25;(4)汶川大震区在12~23 km深度上具有近乎4.0 km/s的S波高速结构,而其下方的地壳为低速结构,地壳平均泊松比0.31~0.32,汶川大震的余震序列主要分布在高速介质区域内.本文的结果表明松潘-甘孜地块的地壳相对软弱;而且并不仔在四川盆地向西侧的俯冲,我们认为在青藏高原东向挤压的长期作用下,四川盆地强硬地壳的阻挡作用可导致松潘-甘孜地块内部蓄积很大的应变能量以及上、下地壳存壳内低速层顶部边界的解耦,在龙门山断裂带附近形成上地壳的铲形逆冲推覆.汶川大地震及其邻近区域所具有的坚硬上地壳和四川盆地的阻挡作用为低应变率下的高慢度应力积累创造了必要条件,而松潘-甘孜地块长期变形积累的高应变能构成了孕育汶川大地震的动力来源.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号