首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
2000年以来青藏高原湖泊面积变化与气候要素的响应关系   总被引:1,自引:0,他引:1  
青藏高原星罗密布的湖泊对气候变化十分敏感,在自然界水循环和水平衡中发挥着重要作用.以MODIS MOD09A1和SRTM DEM为数据源,提取了2000-2016年青藏高原丰水期面积大于50 km2的湖泊边界,从内外流分区、湖泊主要补给来源和湖水矿化度三个方面对2000年以来湖泊面积变化进行分析,并结合青藏高原近36年气象数据,根据气象要素变化趋势分区,初步探讨青藏高原湖泊面积变化与气候要素的关系.结果表明:青藏高原面积大于50 km2的138个湖泊整体扩张趋势显著,总面积增加2340.67 km2,增长率为235.52 km2/a.其中,扩张型湖泊占67.39%,萎缩型湖泊占12.32%,稳定型湖泊占20.29%.内流湖扩张趋势显著,外流湖扩张趋势较明显;以冰雪融水为主要补给来源的湖泊整体扩张趋势明显,以地表径流和河流补给为主要补给源的湖泊也呈扩张趋势;盐湖和咸水湖以扩张为主,淡水湖的扩张、萎缩和稳定三种类型较均衡.在青藏高原气候暖湿化方向发展背景下,湖泊面积变化与气候要素具有显著的区域相关性.气温和降水变化趋势分区结果表明,气温增加、降水增加强趋势的高原Ⅰ区湖泊扩张程度(78.18%)依次大于气温降低、降水量呈增加趋势的Ⅴ区(66.67%),气温、降水量呈增加趋势的Ⅱ区(60.78%),气温呈降低、降水量呈增加强趋势的Ⅳ区(58.83%)和气温呈增加、降水量呈减少趋势的Ⅲ区(50.00%).湖泊面积变化对气候变化响应研究表明,升温引起的冰雪融水补给对Ⅰ区、Ⅱ区和Ⅲ区湖泊面积扩张的影响显著,加之降水量的增加,湖泊扩张速率明显;Ⅳ区和Ⅴ区湖泊面积扩张主要受降水量增加影响显著.整体而言,气温主要影响以冰雪融水为主要补给来源的湖泊,降水量主要影响以降水和地表径流为主要补给来源的湖泊.  相似文献   

2.
选择1979-2016年间多时期、多类型、多光谱遥感数据,分析评价洞庭湖区内湖近40年的面积变化.结果表明,最近40年洞庭湖区内湖面积保持相对稳定,丰水期间呈上升趋势,枯水期间波动下降,2016年内湖总面积比1980s初减少3.94%.随着湖泊面积增加,湖泊水面面积变化的比例和幅度逐渐减小,大型湖泊(>10 km2)和中型湖泊(5~10 km2)面积相对稳定,小型内湖(<5 km2)面积变化尤为剧烈.内湖水面面积主要受降雨、蒸发等气候因素和生产生活取水、防洪排涝和退田还湖等人为活动调控.1980-2000年和2001-2015年两个时期,洞庭湖区多年平均降雨量呈现不同程度的下降趋势,多年平均蒸发量明显上升.三峡工程运行后,三口分流衰减,但水资源需求量不断增长,退田还湖和留蓄雨洪作为水资源使得丰水期间内湖水面面积增长,气候变化和水资源开发利用导致枯水期水面面积趋于减少.有必要加强洞庭湖区内湖的研究和保护,适当退田还湖提高湖泊率,优化三口水系格局,实施河湖水系连通工程,缓解洞庭湖区季节性水资源紧张问题.  相似文献   

3.
王文种  黄对  刘九夫  刘宏伟  王欢 《湖泊科学》2020,32(5):1552-1563
湖泊变化是气候变化的指示器.为探索利用单一短时间尺度的卫星水位数据源估算长时间序列的湖泊水量变化的可行性,本文利用短时间尺度(2016—2018年) Sentinel-3A合成孔径雷达高度计(SRAL)作为唯一卫星水位数据源,以藏北高原内陆湖泊当惹雍错为例,结合基于Landsat光学遥感数据提取的1988—2018年的湖泊面积,综合分析2016—2018年间的非结冰期遥感湖泊面积与遥感湖泊水位变化,基于该时段范围的水位变化-面积变化关系和水量估算公式,估算1988—2018年湖泊水位水量变化与2001—2018年的年内变化,并结合GLDAS产品数据与雪线变化情况初步探讨湖泊变化的可能原因.结果表明:当惹雍错近30年湖泊面积扩张明显,湖泊水位、水量增加显著,相比1988年,2018年的湖泊面积、水位、水量分别增加21.1 km2、5.29 m、44.75亿m3.其中1988—1998年湖泊面积-水位-水量有所减少,2000—2018年间湖泊变化总体呈增加趋势.2001—2018年内湖泊面积、水位、水量变化呈现干湿季特征.1996—2014/2015年湖泊水量变化为38.3亿/35.5亿m3,水量变化趋势、变化量与以往对应时间段的研究结果具有较强的一致性.湖泊面积扩张主要发生在水下地形平缓的东南部和中西部区域.结合气候因素与雪线变化的分析表明,湖泊水量变化受降雨、气温影响复杂,长时间年际尺度上的湖泊水量增长与气温的一致性较降水量强,湖泊湿季受降水量与气温的影响都较大,其中2008—2018年的湿季降水量、气温与水量变化散点拟合的确定性系数R2分别为0.613、0.845.该研究表明Sentinel-3A合成孔径雷达数据在湖泊水量变化估算上的潜力,为利用单一且只具有短时段数据的卫星雷达数据估算长时间序列湖泊水量变化提供依据.  相似文献   

4.
鄱阳湖是我国最大淡水湖和长江中游仅存的两个通江湖泊之一,重建其近百年自然通江的湖泊湿地演变过程,对于鄱阳湖湿地生态修复与保护具有重要意义.本研究基于两期历史时期地形图和遥感产品,构建了1930s、1970s、1990s、2000s和2010s鄱阳湖湿地格局变化数据集,探究了土地利用方式改变和水文连通变化对鄱阳湖湿地变化的影响.结果表明:鄱阳湖湿地面积由1930s的5024.3 km2下降至2010s的3232.7 km2,近百年损失率高达35.7%,其中1930s-1970s时期面积变化最为显著,损失率达33.2%,且主要集中分布于赣江与饶河的入湖尾闾地区和南部康山圩.湖泊湿地向耕地的转移是鄱阳湖湿地丧失的主要形式,1930s以来,共有累计1149.6 km2的湖泊湿地受垦殖的作用转变为耕地.闸坝与圩垸导致的水文连通性降低加剧了鄱阳湖自然通江的湖泊湿地格局的变化.相较1930s,累计有683.4 km2的湖泊湿地与主湖相阻隔,水文节律完全独立于通江水域.基于地统计学的水文连通函数曲线也表明,近百年来鄱阳湖的横向和纵向水文连通性均呈现一定程度的下降,且在1990s以后保持相对稳定的状态.本研究能够为鄱阳湖乃至长江中游湖泊湿地生态修复与生态系统服务提升提供参考状态与客观资料.  相似文献   

5.
卞宇峥  薛滨  张风菊 《湖泊科学》2021,33(6):1844-1856
洪泽湖是淮河水系中最重要的湖泊之一,是我国的第四大淡水湖,它在防洪、灌溉、航运、跨流域调水以及水资源与水环境保护等方面发挥着重要作用.过去300年来,由于黄淮关系的演变和人类活动的影响,洪泽湖水域面积发生剧烈变化.研究湖泊水域空间变化有助于认识流域环境变化与人类活动影响.本文利用18世纪初以来的古地图、历史文献资料及1981-2016年期间的7期遥感影像数据,采用遥感和地理信息系统技术相结合的方法,分析了近300年来洪泽湖水域时空演变过程及其原因.研究结果表明:过去300年来,洪泽湖面积总体呈减少趋势,年际缩减速率为0.17%,且湖域范围总体表现为由四周向中心缩小的趋势,其中西南湖域的形态变化最为显著.具体而言,清中期以前,黄河多次夺泗入淮,洪泽湖面积变化受黄淮关系、高家堰等水利枢纽的修建以及降水等因素影响.至清末,洪泽湖面积由3078.78 km2下降至2335.73 km2,共减少743.05 km2,其空间形态也发生了剧烈变化,该时期黄河改道、降水以及人口增长导致的湖滨围垦是影响洪泽湖演变的主要原因.建国以来(1949-2016年),洪泽湖面积进一步缩小,由1757.60 km2下降至1488.43 km2,共减少了269.17 km2,其中1995-2000年间湖泊面积下降最为显著,共减少了281.43 km2,湖泊动态变化度达到2.78%,该时期自然因素对湖泊水域面积的影响减弱,而人口增长、围垦及水利工程的修建等人类活动逐渐成为影响洪泽湖演化的主导因素.  相似文献   

6.
冰湖作为区域气候变化的灵敏指示器和主要冰川灾害的启动器,认识其空间分布及变化特征对探讨冰湖对气候变化的响应规律及冰湖溃决危险性评估具有重要意义.基于1968-1980年地形图数据和1994-2016年Landsat TM/OLI遥感影像资料,综合利用RS、GIS技术和数理统计方法分析帕隆藏布流域面积≥ 0.01 km2冰湖时空分布及其动态变化,并对潜在危险性冰湖进行判别和评估.结果表明:2016年帕隆藏布流域共有冰湖351个,面积50.48 km2,且面积和数量分别以面积>1 km2和面积<0.1 km2的冰湖为主,这些冰湖主要分布于海拔2800~5400 m之间.近50年来帕隆藏布流域冰湖总体呈数量增多、面积增加态势;海拔<3000 m的冰湖相对稳定,而海拔>4500 m的冰湖数量和面积增加则相对迅速.近50年间帕隆藏布流域冰川面积减少591.34 km2,气候变暖导致的冰川末端退缩和冰川融水增加为冰湖形成和扩张提供了发育空间和物质来源.切毛措、光谢错等9个冰湖为潜在危险性冰湖,预计未来一段时间内帕隆藏布流域冰湖溃决可能处于活跃阶段,其形成和暴发也将更加频繁.  相似文献   

7.
1974-2016年青海湖水面面积变化遥感监测   总被引:6,自引:2,他引:4  
位于青藏高原东北部的青海湖是我国最大的咸水湖和内陆湖,也是青藏高原东北部的重要水汽源,青海湖面积的动态变化是气候和周围生态环境状况的重要体现.本研究利用长时间序列中分辨率遥感影像数据,通过人工提取湖岸水涯线信息对青海湖水面面积进行监测.结果显示:1974-2016年期间,青海湖面积总体上呈先减后增的变化趋势.2004年水面积最小,为4223.73 km2,比1974年减少253.80 km2.其中1974-1987年期间面积骤减;2000 2009年期间青海湖水面面积变化幅度相对较小,平均变化幅度为6.85 km2.2009-2016年7 a间,水面面积增加了128.27 km2.2012年青海湖面积骤增,比2011年8月同期增加65.12 km2;同年6月和9月的面积变化为2002-2016年最大,达到59.18 km2.湖东岸沙岛的湖岸线变化最为显著,1974-2004年岸线后退最大距离达4.59 km,2012年的年内最大变化距离为0.39 km.青海湖流域内降水补给增加,生态环境治理措施促使入湖河流径流量增大,是近年来湖水面积增加的主要原因.  相似文献   

8.
根据1975年地形图、1970s末至2013年19期Landsat(MSS、TM、ETM+)陆地资源卫星和20032009年ICESat卫星数据,以及近40年气象资料,对西藏佩枯错湖泊面积变化进行分析.结果表明,湖泊面积、湖泊高度变化波动较大,均呈减少和退缩趋势.19752013年间湖泊面积减少10.68 km2,减幅为3.79%.从空间动态变化来看,变化较明显的区域位于该湖的南岸和东北岸,南岸、东北岸湖岸线分别向北、向西南萎缩.20032009年湖面高度和湖泊面积均呈现出下降趋势,分别下降了0.17 m和4.4 km2.19992013年之间对该流域湖泊有影响的冰川变化分析显示,冰川呈现出退缩、面积减少趋势.数据显示冰川面积总共减少了17.17 km2,减少率为7.91%.自1971年以来,流域气温总体呈上升趋势,2000年以后升温显著.佩枯错43 a来降水量年际变化波动较大,年降水量呈减少趋势,总的来说降水量每10 a减少6.99 mm.虽然佩枯错属于降水和冰雪融水补给湖泊,但该流域湖面增减与周围冰川变化的关系并不明显,与温度变化呈负相关,而与流域内降水量呈正相关.综合分析表明,佩枯错流域湖泊变化与冰川退缩关系不密切,降水量是湖泊变化的主要原因.  相似文献   

9.
不同生活型水生植物对水环境的影响和碳固持能力不同,开展大尺度范围内不同生活型水生植物的时空分布和动态变化研究,是全面掌握湖泊水生态环境变化趋势、准确核算水生生态系统碳源/碳汇的前提。以长江中下游10 km2以上(共131个)的湖泊为研究对象,基于野外调查和先验知识,通过光谱分析,研发了不同生活型水生植物遥感高精度机器学习识别算法,解析了长江中下游湖泊群不同生活型水生植物的时空变化规律。研究表明,长江中下游湖泊群不同生活型水生植物遥感监测精度为0.81,Kappa系数为0.74;1986—2020年长江中下游湖泊群水生植物面积为2541.58~4571.42 km2,占湖泊总面积的15.99%~28.77%,沉水植物是优势类型(Max1995=2649.21 km2,Min2005=921.38 km2),其次是挺水植物(Max2005=1779.44 km2,Min2020=569.05 km2)和浮叶植物(Max2015=685.68 km2,Min2000=293.04 km2);水生植物主要分布在长江干流流域湖泊群,其次是鄱阳湖流域、洞庭湖流域、太湖流域和汉江流域;变化趋势上,1986—2020年长江中下游湖泊群水生植物面积呈现先增长(1986—1995年)、后下降(1995—2010年)、再增加(2010年后)的趋势。本研究可为长江中下游湖泊群生态环境调查及水环境管理提供重要参考。  相似文献   

10.
2000-2010年东北地区湖泊动态变化及驱动力分析   总被引:2,自引:0,他引:2       下载免费PDF全文
李宁  刘吉平  王宗明 《湖泊科学》2014,26(4):545-551
以2000、2005和2010年的Landsat TM和ETM遥感影像为主要数据源,利用面向对象的分类方法,提取3期东北地区湖泊数据;在GIS技术的支持下,分析了过去10年东北地区湖泊的时空变化特征,并对导致湖泊面积变化的自然和人文驱动因素进行分析.结果表明:2000-2010年间,东北地区湖泊面积由12234.02 km2减少至11307.58 km2,其中,2005-2010年间湖泊萎缩剧烈程度大于2000-2005年;湖泊数量先增加后减少,10年间共减少了4092个;10年间天然湖泊面积大幅减少,人工湖泊面积略增加;研究区内西北方向湖泊萎缩程度小于东南方向,质心向西北偏移;湖泊变化受自然因素和人类活动的共同影响,人类活动叠加在自然因素之上,对湖泊变化产生了放大作用.  相似文献   

11.
近40 a西藏那曲当惹雍错湖泊面积变化遥感分析   总被引:2,自引:2,他引:0       下载免费PDF全文
西藏著名圣湖之一的当惹雍错,是藏北高原腹地内陆封闭大湖,对湖泊面积变化的长时间序列研究较少,本文通过高分辨率陆地资源卫星Landsat TM/ETM+数据源,利用遥感和地理信息系统软件,通过人工目视解译方法对1977-2014年当惹雍错湖泊面积变化进行系统分析,并结合流域临近气象站资料,流域冰川等辅助数据对其湖泊面积变化原因进行综合分析.结果表明,1977-2014年当惹雍错湖泊平均面积为835.75 km~2,1977-2014年湖泊面积总体呈上升趋势,1970s湖泊平均面积为829.15 km~2,1980s和1990s湖泊平均面积分别为827.50和826.42 km~2,2000年之后湖泊面积明显增加,2000s湖泊平均面积与1970s相比,增幅为8.04 km~2.当惹雍错湖泊空间变化特点是,位于最大河流入口处达尔果藏布的湖泊东南部扩大明显,湖泊西南部小湖1于2014年9月开始明显扩大并与当惹雍错有相连趋势;流域冰川融水是当惹雍错主要补给源,近40 a当惹雍错湖泊面积变化是在气温升高的背景下,冰川、降水量和蒸发量三者共同变化作用的结果.  相似文献   

12.
本文基于505 景 Landsat 卫星影像,通过自动化冰湖边界提取与人工目视解译相结合的方法调查了 2000 和 2020年中国境内冰湖的分布与变化,并结合 1990 年冰湖编目数据,分析中国冰湖变化特征及影响因素。 研究表明,19902020 年中国冰湖面积增加(180.1±0.1) km2,增加了 17.9%。 其中,冰川补给湖面积扩张最显著,为 22.9%,而非冰川补给湖的面积仅扩张 4.9%。 1990 2020 年冰湖面积在较高海拔带呈现增长快速的趋势,其中,在海拔 5500 m 以上冰湖面积扩张最大,达 30.5%。 在区域尺度,非冰川补给湖的变化主要受降水量和蒸发量变化的影响,其中蒸发量变化对非冰川补给湖更为显著;气温升高与冰川普遍退缩则是导致冰川补给湖普遍快速扩张的主要原因。  相似文献   

13.
肖茜  杨昆  洪亮 《湖泊科学》2018,30(4):1083-1096
以云贵高原湖泊近30 a来的TM、ETM~+和OLI遥感影像为数据源,采用归一化水体指数(NDWI)、改进归一化水体指数(MNDWI)、新型水体指数(NWI)、增强型水体指数(EWI)和自动水体提取指数5种水体指数提取了1985—2015年云贵高原10个湖泊表面水体面积,并对各种算法进行精度对比分析.针对湖泊各自特点采用不同的水体指数提取其表面水体面积,并进行水体面积变化时空分析.结果表明:云贵高原湖泊表面水体面积总体呈现先增加后缩减趋势,1985—1995年湖泊表面水体面积增加了30.86 km~2,1995—2015年湖泊水体表面面积减少了48.12 km~2,其中,面积变化最大的是杞麓湖与异龙湖.对云贵高原湖泊表面水体面积变化与该区域的年降水量、蒸发量、平均气温、流域植被覆盖面积和人类活动时空进行相关分析,结果表明:1)高原湖泊对区域气候变化的响应具有明显的空间差异性,云贵高原湖泊的表面水体面积与气候相关性较显著,气温升高引起蒸发加速,降水量下降,湖面不断缩小,与逐年上升的气温呈负相关,与逐年波动上升的蒸发量呈负相关,与逐年减少的降水量呈正相关;2)云贵高原湖泊各流域的植被覆盖面积与湖泊面积变化相关性较弱;3)人类活动是影响湖泊面积变化的重要因素,大肆围湖造田、围湖养殖以及旅游开发等人类活动直接导致云贵高原湖泊面积的锐减,并对湖泊生态环境产生重要影响.  相似文献   

14.
Potential future changes in lake physical processes (e.g. stratification and freezing) can be assessed through exploring their sensitivity to climate change, and assessing the current vulnerability of different lake types to plausible changes in meteorological drivers. This study quantifies the impacts of climate change and sensitivity of lake physical processes within a large (5100 km2) Precambrian Shield catchment in south‐central Ontario. Historic regional relationships are established between climate drivers, lake morphology, and lake physical changes through generalized linear modelling (GLM), and are used to quantify likely changes in timing of ice phenology and lake stratification across 72 lakes under a range of future climate models and scenarios. In response to projections of increased temperature (ensemble mean of +3.3 °C), both earlier ice‐off and onset of summer stratification were projected, with later ice‐on and fall turnover compared to the baseline. Process sensitivity to climate change varied by lake type; shallower lakes with a smaller volume (less than 15 m deep and less than 0.05 km3) were more sensitive to processes associated with lake heating (stratification onset and ice‐off), and deeper lakes with a larger surface area (greater than 30 m deep and greater than 1000 ha) were more sensitive to processes associated with lake cooling (fall turnover and ice‐on). These results indicate that whereas small lakes are vulnerable to climate warming because of changes that occur in spring and summer, larger lakes are particularly sensitive during the fall. The findings suggest that lake morphology and associated sensitivity should be considered in the development of sustainable lake management strategies. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
全球变化下青藏高原湖泊在地表水循环中的作用   总被引:2,自引:2,他引:0  
青藏高原是地球上最重要的高海拔地区之一,对全球变化具有敏感响应.青藏高原作为"亚洲水塔",其地表水资源及其变化对高原本身及周边地区的经济社会发展具有重要的影响.然而,在气候变暖的情况下,构成高原地表水资源的各个组分,如冰川、湖泊、河流、降水等水体的相变及其转化却鲜为人知.湖泊是青藏高原地表水体相变和水循环的关键环节.湖泊面积、水位和水量对西风和印度季风的降水变化非常敏感,但湖泊面积和水量变化在不同区域和时段的响应也不尽相同.湖泊水温对气候变暖具有明显响应,湖泊水温和水下温跃层深度的变化能够对水—气的热量交换具有明显影响,从而影响了区域蒸发和降水等水循环过程.由于湖泊水量增加,高原中部色林错地区湖泊盐度自1970s以来普遍下降.根据60多个湖泊实地监测建立的遥感反演模型研究发现,2000—2019年湖泊透明度普遍升高.对不同补给类型的大湖水量平衡监测发现,影响湖泊变化的气象和水文要素具有较大差异.在目前的暖湿气候条件下,青藏高原的湖泊将会持续扩张.为了深入认识湖泊变化在青藏高原区域水循环和气候变化中的作用,需要全面了解湖泊水量赋存及连续的时间序列变化,需要深入了解湖泊理化参数变化及对湖泊大气之间热量交换的影响,需要更多来自大湖流域的综合连续观测数据.  相似文献   

16.
近45a内蒙古浑善达克沙地湖泊群的变化   总被引:1,自引:1,他引:0  
浑善达克沙地处于季风边缘区,其气候特性和人类活动决定了该地区生态系统的脆弱和环境变化的敏感性.目前,该区湖泊生态环境问题十分严重,对研究区的水资源、草原景观以及当地居民生产生活造成了严重影响.选取1969年1∶50000地形图所指示的面积≥0.01 km~2的175个湖泊为研究对象,结合1973-2013年的17期Landsat MSS/TM/ETM/OLI卫星遥感影像数据,对1969-2013年间的湖泊群变化进行了系统的研究和初步探讨.结果表明:1969年湖泊群总面积为502.04 km~2,而2013年其面积为303.42 km~2,总体呈萎缩趋势.其中面积萎缩和干涸的湖泊分别为88和85个,而面积扩张的湖泊仅有2个(人工筑坝所致).近45 a间,1970s-1980s湖泊面积波动性减少,而在1990s初期则出现持续上升状态.在1995-2011年湖泊面积总体下降,到2013年则出现微弱的扩张现象.从湖泊变化空间分布格局来看,萎缩和干涸的湖泊集中在该沙地腹地.  相似文献   

17.
梁新歌  王涵  赵爽  宋春桥 《湖泊科学》2023,35(6):2111-2122
在全球气候变暖和极端气候事件增加的背景下,流域水文循环过程受到的影响越来越强烈,导致湖泊水位变化表现出复杂的时空特征。而泛北极地区是地球上湖泊数量与面积分布最为集中的区域之一,该地区湖泊对气候变化响应非常敏感。因此,了解这些湖泊近期水文变化特征十分必要。本研究共搜集了36个泛北极大型湖泊(>500 km2)基于遥感或站点观测的近20年水位数据,分析其时空变化特征。本文使用线性回归模型来估算湖泊水位的变化趋势,进而利用皮尔逊相关分析了其主要水文影响变量和大气环流机制,并运用Mann-Kendall突变检验法探讨了水位突变的原因。结果表明,泛北极湖泊的水位整体上呈现不同程度上升(平均速率为0.013 m/a),有23个(64%)湖泊的水位呈上升趋势;研究湖泊中有10个通过90%统计显著性检验。其中,水位上升速率最大的湖泊是位于哈萨克斯坦的腾吉兹湖,上升速率为0.078 m/a。泛北极湖泊水位的波动主要与径流有关,有19个(53%)湖泊的水位波动与径流的增加更为相关;相比而言,位于亚洲的极地湖泊水位的上升与流域蒸发的降低显著相关,尤其是库苏古尔湖。从区域大气环流影响来看,泛北极湖泊水位变化主要与厄尔尼诺-南方涛动有关,其次是北极涛动和北大西洋涛动。本研究有助于加深对泛北极湖泊近20年水位变化规律及气候影响特征的科学理解。  相似文献   

18.
长江中下游典型湖泊营养盐历史变化模拟   总被引:2,自引:1,他引:1  
郭娅  于革 《湖泊科学》2016,28(4):875-886
湖泊营养盐变化在自然条件下受到气候水文因素控制,同时受到湖泊生态系统生物群落作用和反馈.作为动力机制探讨,本文试图基于水文和生态动力学方法,分别构建气候-流域水文作用于湖泊营养盐的外源模式和湖泊生物群落作用于湖泊营养盐的內源模式.针对长江中下游典型湖泊,经过控制实验和率定,发现营养盐模拟与观测数据在时间序列上达到90%百分位的正相关,因此用来模拟1640 1840 A.D.期间的营养盐演变历史.研究表明:(1)模拟的湖泊营养盐变化与沉积钻孔揭示的历史营养盐变化基本一致,沉积记录与模式模拟的7个湖泊的营养盐变化均显著相关;(2)气候因素是湖泊营养盐历史演变的主控因子,来自于湖泊生物群落的反馈作用贡献约占40%;(3)在温度和降水因子的驱动下,湖泊营养盐历史变化主要受降水控制,在极端干旱时期,60%的营养盐变化同步响应于降水变化.同时,面积在400 km2以下的湖泊营养盐对气候变化的响应比2000 km2以上的大湖更为敏感.研究结果对长江中下游湖泊营养状态的长期变化机理认识和趋势控制提供科学依据.  相似文献   

19.
段水强 《湖泊科学》2018,30(1):256-265
柴达木盆地众多的湖泊不仅对维持当地脆弱的生态环境具有极其重要的作用,而且中心盐湖也是重要的矿产资源.进入21世纪以来,受气候变化和人类活动的共同影响,盆地湖泊发生了一系列重大变化.为科学认识这一问题,选取了1976-2015年6期Landsat系列卫星影像,解译了该区域1 km2以上的湖泊水面,并分析了湖泊变化对气候和人类活动的响应.结果表明:柴达木盆地湖泊面积总体上存在扩张(1976-1990年)萎缩(1990-2000年)扩张(2000-2010年)萎缩(2010-2015年)4个阶段的变化过程,2010年湖泊面积最大,2015年湖泊又明显萎缩.就气候水文因素而言,湖泊面积变化主要受山区降水径流的影响.湖面变化与前3 a的降水径流关系最为密切.进入21世纪以来,气候变化与上游社会经济耗水、盐湖周边人为阻隔河湖连通、开采卤水、修建人工盐田、排放老卤等人类活动,对盆地中心湖泊的空间格局、面积都产生了显著影响,苦水沟、达布逊湖南部形成了新湖泊,鸦湖、团结湖面积显著扩大,东、西台吉乃尔湖逐渐萎缩、干涸,一里平湖由以前的干盐湖在2010年一跃成为盆地最大的湖泊.针对盐湖大规模开发产生的负面影响,提出了合理开发盐湖资源的建议.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号