首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 556 毫秒
1.
The Arctic hydrologic cycle is intensifying, as evidenced by increased rates of precipitation, evapotranspiration, and riverine discharge. However, the controls on water fluxes from terrestrial to aquatic systems in upland Arctic landscapes are poorly understood. Upland landscapes account for one third of the Arctic land surface and are often drained by zero‐order geomorphic flowpath features called water tracks. Previous work in the region attributed rapid runoff response at larger stream orders to water tracks, but models suggest water tracks are hydrologically disconnected from the surrounding hillslope. To better understand the role of water tracks in upland landscapes, we investigated the surface and subsurface hydrologic responses of 6 water tracks and their hillslope watersheds to natural patterns of rainfall, soil thaw, and drainage. Between storms, both water track discharge and the water table in the hillslope watersheds exhibited diel fluctuations that, when lagged by 5 hr, were temporally correlated with peak evapotranspiration rate. Water track soils remained saturated for more of the summer season than soils in their surrounding hillslope watersheds. When rainfall occurred, the subsurface response was nearly instantaneous, but the water tracks took significantly longer than the hillslopes to respond to rainfall, and longer than the responses previously observed in nearby larger order Arctic streams. There was also evidence for antecedent soil water storage conditions controlling the magnitude of runoff response. Based on these observations, we used a broken stick model to test the hypothesis that runoff production in response to individual storms was primarily controlled by rainfall amount and antecedent water storage conditions near the water track outlet. We found that the relative importance of the two factors varied by site, and that water tracks with similar watershed geometries and at similar landscape positions had similar rainfall–runoff model relationships. Thus, the response of terrestrial water fluxes in the upland Arctic to climate change depends on the non‐linear interactions between rainfall patterns and subsurface water storage capacity on hillslopes. Predicting these interactions across the landscape remains an important challenge.  相似文献   

2.
The transformation of snowmelt water chemical composition during melt, elution and runoff in an Arctic tundra basin is investigated. The chemistry of the water flowing along pathways from the surface of melting snow to the 95·5 ha basin outlet is related to relevant hydrological processes. In so doing, this paper offers physically based explanations for the transformation of major ion concentrations and loads of runoff water associated with snowmelt and rainfall along hydrological pathways to the stream outlet. Late‐lying snowdrifts were found to influence the ion chemistry in adjacent reaches of the stream channel greatly. As the initial pulse of ion‐rich melt water drained from the snowdrift and was conveyed through hillslope flowpaths, the concentrations of most ions increased, and the duration of the peak ionic pulse lengthened. Over the first 3 m of overland flow, the concentrations of all ions except for NO increased by one to two orders of magnitude, with the largest increase for K+, Ca2+ and Mg2+. This was roughly equivalent to the concentration increase that resulted from percolation of relatively dilute water through 0·25 m of unsaturated soil. The Na+ and Cl? were the dominant ions in snowmelt water, whereas Ca2+ and Mg2+ dominated the hillslope runoff. On slopes below a large melting snowdrift, ion concentrations of melt water flowing in the saturated layer of the soil were very similar to the relatively dilute concentrations found in surface runoff. However, once the snowdrift ablated, ion concentrations of subsurface flow increased above parent melt‐water concentrations. Three seasonally characteristic hydrochemical regimes were identified in a stream reach adjacent to late‐lying snowdrifts. In the first two stages, the water chemistry in the stream channel strongly resembled the hillslope drainage water. In the third stage, in‐stream geochemical processes, including the weathering/ion exchange of Ca2+ and Mg2+, were the main control of streamwater chemistry. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

3.
Joshua C. Koch 《水文研究》2016,30(21):3918-3931
Arctic thaw lakes are an important source of water for aquatic ecosystems, wildlife, and humans. Many recent studies have observed changes in Arctic surface waters related to climate warming and permafrost thaw; however, explaining the trends and predicting future responses to warming is difficult without a stronger fundamental understanding of Arctic lake water budgets. By measuring and simulating surface and subsurface hydrologic fluxes, this work quantified the water budgets of three lakes with varying levels of seasonal drainage, and tested the hypothesis that lateral and subsurface flows are a major component of the post‐snowmelt water budgets. A water budget focused only on post‐snowmelt surface water fluxes (stream discharge, precipitation, and evaporation) could not close the budget for two of three lakes, even when uncertainty in input parameters was rigorously considered using a Monte Carlo approach. The water budgets indicated large, positive residuals, consistent with up to 70% of mid‐summer inflows entering lakes from lateral fluxes. Lateral inflows and outflows were simulated based on three processes; supra‐permafrost subsurface inflows from basin‐edge polygonal ground, and exchange between seasonally drained lakes and their drained margins through runoff and evapotranspiration. Measurements and simulations indicate that rapid subsurface flow through highly conductive flowpaths in the polygonal ground can explain the majority of the inflow. Drained lakes were hydrologically connected to marshy areas on the lake margins, receiving water from runoff following precipitation and losing up to 38% of lake efflux to drained margin evapotranspiration. Lateral fluxes can be a major part of Arctic thaw lake water budgets and a major control on summertime lake water levels. Incorporating these dynamics into models will improve our ability to predict lake volume changes, solute fluxes, and habitat availability in the changing Arctic. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

4.
Use of isotopes to quantify the temporal dynamics of the transformation of precipitation into run‐off has revealed fundamental new insights into catchment flow paths and mixing processes that influence biogeochemical transport. However, catchments underlain by permafrost have received little attention in isotope‐based studies, despite their global importance in terms of rapid environmental change. These high‐latitude regions offer limited access for data collection during critical periods (e.g., early phases of snowmelt). Additionally, spatio‐temporal variable freeze–thaw cycles, together with the development of an active layer, have a time variant influence on catchment hydrology. All of these characteristics make the application of traditional transit time estimation approaches challenging. We describe an isotope‐based study undertaken to provide a preliminary assessment of travel times at Siksik Creek in the western Canadian Arctic. We adopted a model–data fusion approach to estimate the volumes and isotopic characteristics of snowpack and meltwater. Using samples collected in the spring/summer, we characterize the isotopic composition of summer rainfall, melt from snow, soil water, and stream water. In addition, soil moisture dynamics and the temporal evolution of the active layer profile were monitored. First approximations of transit times were estimated for soil and streamwater compositions using lumped convolution integral models and temporally variable inputs including snowmelt, ice thaw, and summer rainfall. Comparing transit time estimates using a variety of inputs revealed that transit time was best estimated using all available inflows (i.e., snowmelt, soil ice thaw, and rainfall). Early spring transit times were short, dominated by snowmelt and soil ice thaw and limited catchment storage when soils are predominantly frozen. However, significant and increasing mixing with water in the active layer during the summer resulted in more damped steam water variation and longer mean travel times (~1.5 years). The study has also highlighted key data needs to better constrain travel time estimates in permafrost catchments.  相似文献   

5.
High Arctic river responses to changing hydroclimatic and landscape processes are poorly understood. In non‐glacierized basins, snowmelt and rainfall generate river discharge, which provides first order control over fluxes. Further factors include the seasonality of precipitation, seasonal active layer development, and permafrost disturbance. These controls were evaluated in terms of sedimentary and biogeochemical fluxes from paired catchments at Cape Bounty, Melville Island, Nunavut during 2006–2009. Results indicate that the source of runoff can be more important than the amount of runoff for sediment, solutes, and organic yields. Although the snowmelt period is typically the most important time for these yields, heavy late summer precipitation events can create disproportionately large yields. Rainfall increases yields because it hydrologically connects areas otherwise isolated. Inorganic solute yields from late summer rainfall are higher because the thick active layer maximizes hydrologic interactions with mineral soils and generates high solute concentrations. Results also indicate that while the catchments are broadly similar, subtle topographic differences result in important inter‐catchment differences in runoff and suspended and dissolved loads. The East watershed, which had less extensive permafrost disturbance, consistently had higher concentrations of dissolved solids. These higher dissolved fluxes cannot therefore be explained by thermokarst features, but rather by deeper active layer development, due to a greater proportion of south‐facing slopes. Although warm temperatures in 2007 led to extensive active layer disturbance in the West watershed, because the disturbances were largely hydrologically disconnected, the total disturbed area was small, and inter‐annual variability in discharge was high, there was no detectable response in dissolved loads to disturbances. Sediment availability increased after 2007, but yields have largely returned to pre‐disturbance levels. Results indicate that seasonality and frequency‐magnitude characteristics of projected increases in precipitation must be considered along with active layer changes to predict the fluvial sedimentary and biogeochemical response to regional climate change. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
Polar Bear Pass is a large High Arctic low‐gradient wetland (100 km2) bordered by low‐lying hills which are notched by a series of v‐shaped valleys. The spring and summer hydrology of two High Arctic hillslope‐wetland catchments, a first‐order stream, 0·2 km2 Landing Strip Creek (LSC) and a larger second‐order basin, 4·2 km2 Windy Creek (WC), is described here. A water balance framework was employed in 2008 to examine the movement of water from upland reaches into the low‐lying wetland. Snowcover was low in both basins (<50 mm in water equivalent units), but they both exhibited nival‐type regimes. After the main snowmelt season ended, runoff ceased in the smaller catchment (LSC), but not at the larger basin (WC) which continued to flow throughout the summer. Both basins responded to summer rains in different ways. At LSC, late‐summer continuous streamflow occurred only when rainfall satisfied the large soil moisture deficit in the upper bowl‐shaped zone of the basin. At WC, the presence of thinly thawed, ice‐rich polygonal terrain within the stream channel and in the upper reaches of the catchment likely limited infiltration in these near‐stream zones and enhanced runoff in response to both moderate and high rainfall. Subsequently, seasonal runoff ratios differed between the two sites (0·19 vs 0·68) as did the seasonal storage + residual (+16 vs ?50 mm). This suggests that the post‐snowmelt season runoff response to summer precipitation is very much modified by the unique basin characteristics (soil‐type, vegetation, ground ice) and their location within each stream order type. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
Solute and runoff fluxes from two adjacent alpine streams (one glacial and one non‐glacial) were investigated to determine how the inorganic solute chemistry of runoff responded to seasonal and interannual changes in runoff sources and volume, and to differences in physical catchment properties. Intercatchment differences in solute composition were primarily controlled by differences in catchment geology and the presence of soils, whereas differences in total solute fluxes were largely dependent on specific discharge. The glacial stream catchment had higher chemical denudation rates due to the high rates of flushing (higher specific discharge). The non‐glacial Bow River had higher overall concentrations of solutes despite the greater prevalence of more resistant lithologies in this catchment. This is likely the result of both longer average water–rock contact times, and a greater supply of protons from organic soils and/or pyrite oxidation. Increases in snowpack depth/snowmelt runoff reduced the retention of nitrate in the Bow River catchment (i.e. increased nitrate export), probably by reducing net biological uptake, or by reducing the proportion of runoff that had contact with biologically active soil horizons that tend to remove nitrate. The two streams exhibited opposite solute flux responses to climate perturbations over three melt seasons (1998, 1999, and 2000). The 1998 El Niño event resulted in an unusually thin winter snowpack, and increased runoff and solute fluxes from the glacial catchment, but decreased fluxes from the Bow River catchment. Solute fluxes in the Bow River increased proportionally to discharge, indicating that increased snowmelt runoff in this catchment resulted in a proportional increase in weathering rates. In contrast, the proportional variation in solute flux in the glacial stream was only ∼70–80% of the variation in water flux. This suggests that increased ablation of glacier ice and the development of subglacial channels during the 1998 El Niño year apparently reduced the average water–rock contact time in the glacial catchment relative to seasons when the subglacial drainage system was primarily distributed in character. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

8.
Variation in solute concentrations of soil and stream water during throughflow events was studied at Bicknoller Combe, Somerset, England. The main hydrological process acting in the catchment involves a delayed throughflow discharge pulse a day or two after the rainfall event. During the period of storm runoff, coincident with the rainfall, the solutes in the stream are diluted, but their concentration in the throughflow remains unchanged. During the delayed throughflow pulse, concentrations of both soil and stream water increase. This is due to additional leaching from the soil in hollows where saturated moisture conditions prevail. The results suggest that two distinct erosional environments may exist: on the spurs, leaching seems to be related solely to infiltration processes, whilst in the hollows, saturated throughflow also contributes to the solute removal. This contrast in erosional processes may perhaps account for the difference in slope form and development between the hollow and spur zones.  相似文献   

9.
Extended severe dry and wet periods are frequently observed in the northern continental climate of the Canadian Prairies. Prairie streamflow is mainly driven by spring snowmelt of the winter snowpack, whilst summer rainfall is an important control on evapotranspiration and thus seasonality affects the hydrological response to drought and wet periods in complex ways. A field‐tested physically based model was used to investigate the influences of climatic variability on hydrological processes in this region. The model was set up to resolve agricultural fields and to include key cold regions processes. It was parameterized from local and regional measurements without calibration and run for the South Tobacco Creek basin in southern Manitoba, Canada. The model was tested against snow depth and streamflow observations at multiple scales and performed well enough to explore the impacts of wet and dry periods on hydrological processes governing the basin scale hydrological response. Four hydro‐climatic patterns with distinctive climatic seasonality and runoff responses were identified from differing combinations of wet/dry winter and summer seasons. Water balance analyses of these patterns identified substantive multiyear subsurface soil moisture storage depletion during drought (2001–2005) and recharge during a subsequent wet period (2009–2011). The fractional percentage of heavy rainfall days was a useful metric to explain the contrasting runoff volumes between dry and wet summers. Finally, a comparison of modeling approaches highlights the importance of antecedent fall soil moisture, ice lens formation during the snowmelt period, and peak snow water equivalent in simulating snowmelt runoff.  相似文献   

10.
Mountain headwater catchments in the semi‐arid Intermountain West are important sources of surface water because these high elevations receive more precipitation than neighboring lowlands. This study examined subsurface runoff in two hillslopes, one aspen dominated, the other conifer dominated, adjacent to a first order stream in snow‐driven northern Utah. Snow accumulation, soil moisture, trenchflow and streamflow were examined in hillslopes and their adjacent stream. Snow water equivalents (SWEs) were greater under aspen stands compared to conifer, the difference increasing with higher annual precipitation. Semi‐variograms of shallow spatial soil moisture patterns and transects of continuous soil moisture showed no increase in soil moisture downslope, suggesting the absence of subsurface flow in shallow (~12 cm) soil layers of either vegetation type. However, a clear threshold relationship between soil moisture and streamflow indicated hillslope–stream connectivity, deeper within the soil profile. Subsurface flow was detected at ~50 cm depth, which was sustained for longer in the conifer hillslope. Soil profiles under the two vegetation types varied, with deep aspen soils having greater water storage capacity than shallow rocky conifer soils. Though SWEs were less under the conifers, the soil profile had less water storage capacity and produced more subsurface lateral flow during the spring snowmelt. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
Global warming has leaded to permafrost degradation, with potential impacts on the runoff generation processes of permafrost influenced alpine meadow hillslope. Stable isotopes have the potential to trace the complex runoff generation processes. In this study, precipitation, hillslope surface and subsurface runoff, stream water, and mobile soil water (MSW) at different hillslope positions and depths were collected during the summer rainfall period to analyse the major flow pathway based on stable isotopic signatures. The results indicated that (a) compared with precipitation, the δ2H values of MSW showed little temporal variation but strong heterogeneity with enriched isotopic ratios at lower hillslope positions and in deeper soil layers. (b) The δ2H values of middle-slope surface runoff and shallow subsurface flow were similar to those of precipitation and MSW of the same soil layer, respectively. (c) Middle-slope shallow subsurface flow was the major flow pathway of the permafrost influenced alpine meadow hillslope, which turned into surface runoff at the riparian zone before contributing to the streamflow. (d) The slight variation of δ2H values in stream water was shown to be related to mixing processes of new water (precipitation, 2%) and old water (middle-slope shallow subsurface flow, 98%) in the highly transmissive shallow thawed soil layers. It was inferred that supra-permafrost water levels would be lowered to a less conductive, deeper soil layer under further warming and thawing permafrost, which would result in a declined streamflow and delayed runoff peak. This study explained the “rapid mobilization of old water” paradox in permafrost influenced alpine meadow hillslope and improved our understanding of permafrost hillslope hydrology in alpine regions.  相似文献   

12.
13.
Twelve modified passive capillary samplers (M‐PCAPS) were installed in remote locations within a large, alpine watershed located in the southern Rocky Mountains of Colorado to collect samples of infiltration during the snowmelt and summer rainfall seasons. These samples were collected in order to provide better constraints on the isotopic composition of soil‐water endmembers in the watershed. The seasonally integrated stable isotope composition (δ18O and δ2H) of soil‐meltwater collected with M‐PCAPS installed at shallow soil depths < 10 cm was similar to the seasonally integrated isotopic composition of bulk snow taken at the soil surface. However, meltwater which infiltrated to depths > 20 cm evolved along an isotopic enrichment line similar to the trendline described by the evolution of fresh snow to surface runoff from snowmelt in the watershed. Coincident changes in geochemistry were also observed at depth suggesting that the isotopic and geochemical composition of deep infiltration may be very different from that obtained by surface and/or shallow‐subsurface measurements. The M‐PCAPS design was also used to estimate downward fluxes of meltwater during the snowmelt season. Shallow and deep infiltration averaged 8·4 and 4·7 cm of event water or 54 and 33% of the measured snow water equivalent (SWE), respectively. Finally, dominant shallow‐subsurface runoff processes occurring during snowmelt could be identified using geochemical data obtained with the M‐PCAPS design. One soil regime was dominated by a combination of slow matrix flow in the shallow soil profile and fast preferential flow at depth through a layer of platy, volcanic rocks. The other soil regime lacked the rock layer and was dominated by slow matrix flow. Based on these results, the M‐PCAPS design appears to be a useful, robust methodology to quantify soil‐water fluxes during the snowmelt season and to sample the stable isotopic and geochemical composition of soil‐meltwater endmembers in remote watersheds. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
Warming in the Arctic is occurring at twice the rate of the global average, resulting in permafrost thaw and a restructuring of the Arctic hydrologic cycle as indicated by increased stream discharge during low-flow periods. In these cold regions, permafrost thaw is postulated to increase low-flow discharge, or baseflow, through either: (a) localized increases in groundwater storage and discharge to streams due to increased aquifer transmissivity from thickening of the freeze–thaw layer above permafrost known as the active layer or (b) long-term increases in regional groundwater circulation via enhancement of groundwater–surface water interactions due to extensive permafrost loss over decades. While increasing baseflow has been observed throughout northern Eurasia, the precise mechanistic causes remain elusive. In this study, we differentiate between where these two subsurface physical mechanisms of baseflow increase are occurring by performing a baseflow recession analysis using daily streamflow records from 1913 to 2003 for 139 stations in northern Eurasia underlain by varying permafrost areal extents. Results indicate that from 1913 to 2003, the majority of catchments underlain by continuous permafrost have an increasing trend in their recession flow intercepts, a proxy for increasing active layer thickness. Alternatively, the majority of catchments underlain by permafrost types that are less spatially extensive (e.g., discontinuous, sporadic, isolated, or no permafrost) have decreasing trends in their recession flow intercepts, indicating that a potential increase in active layer thickness is not the driving factor of baseflow variations in these catchments. This may indicate that in catchments underlain by continuous permafrost, active layer thickening correlates with increases in baseflow, whereas, in other catchments with less extensive permafrost, increases in baseflow may be caused by wholesale permafrost loss and vertical talik expansion that enhances regional groundwater circulation. The results of this work may inform our understanding of the subsurface mechanisms responsible for the changing Arctic hydrologic cycle.  相似文献   

15.
Hydrological fluxes and associated nutrient budget were studied during a 2 year period (1998–99) in a montane moist evergreen broad‐leaved forest at Ailao Mountain, Yunnan. Water samples of rainfall, throughfall, and stemflow, and of surface runoff, soil water, and stream flow were collected bimonthly to determine the concentration and fluxes of nutrients. Soil budgets were determined from the difference between precipitation input (including nutrient leaching from canopy) and output via runoff and drainage. The forest was characterized by low canopy interception and surface runoff, and high percolation and stream flow. Concentrations of nutrients were increased in throughfall and stemflow compared with precipitation. Surface runoff and drainage water had higher nutrient concentrations than precipitation and stream water. Total nitrogen and NH4+‐N concentrations were higher in soil water than stream water, whereas K+, Ca2+, and Mg2+ concentrations were lower in the former than the latter. Annual nutrient fluxes decreased with soil depth following the pattern of water flux. Annual losses of most nutrient elements via stream flow were less than the corresponding inputs via throughfall and stemflow, except for calcium, for which solute loss was greater than the inputs via precipitation. Leaching losses of that element may be compensated by weathering. Losses of nitrogen, phosphorus, potassium, magnesium, sodium, and sulphur could be replaced through atmospheric inputs. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

16.
In order to harvest runoff to palliate water disaster as well as effectively manage irrigation and fertilizer application in the studied region, it is necessary to better understand the runoff processes. A newly designed runoff collection system for a plot scale was used to partition runoff under contrasting rainfall events into surface flow and subsurface flow to obtain characteristics of surface runoff and throughflow in a purple soil (Regosols in FAO taxonomy, Entisol in USDA taxonomy) of Sichuan, China. Under small rainfall (shower and drizzle), only surface runoff was observed. It is noted that, under shower, particularly with antecedent dry soil conditions, the highest peak surface runoff significantly lagged behind that of rainfall, because air‐locked soil pores of the top layer appeared temporally. Under rainstorm and downpour, surface runoff and throughflow both commenced and showed hysteresis. The hydrograph of surface runoff better resembled that of rainfall than throughflow did. The durations of throughflow discharge of post‐rainfall‐end were near the same (within 24 h) under various rainfalls and rather dependent upon the soil properties than the rainfall characteristics. Throughflow is about 60–90% of total runoff, and especially significant in a ploughed layer under downpour. The chloride concentration of throughflow was over twice that of surface runoff and rainfall, implying that throughflow contains more nutrients than surface runoff. Presumably, surface runoff was primarily governed by an infiltration‐excess or saturated excess‐infiltration mechanism under unsaturated or saturated soil conditions. Therefore, the management of water and fertilizer, and the harvesting of water flow in the ploughed soil layer, should be emphasized in this region. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

17.
In this study, we investigate the surface flow time of rise in response to rainfall and snowmelt events at different spatial scales and the main sources originating channel runoff and spring water in a steep nested headwater catchment (Rio Vauz, Italian Dolomites), characterized by a marked elevation gradient. We monitored precipitation at different elevations and measured water stage/streamflow at the outlet of two rocky subcatchments of the same size, representative of the upper part of the catchment dominated by outcropping bedrock, at the outlet of a soil‐mantled and vegetated subcatchment of similar size but different morphology, and at the outlet of the main catchment. Hydrometric data are coupled with stable isotopes and electrical conductivity sampled from different water sources during five years, and used as tracers in end‐member mixing analysis, application of two component mixing models and analysis of the slope of the dual‐isotope regression line. Results reveal that times of rise are slightly shorter for the two rocky subcatchments, particularly for snowmelt and mixed rainfall/snowmelt events, compared to the soil‐mantled catchment and the entire Rio Vauz Catchment. The highly‐variable tracer signature of the different water sources reflects the geomorphological and geological complexity of the study area. The principal end‐members for channel runoff and spring water are identified in rainfall and snowmelt, which are the dominant water sources in the rocky upper part of the study catchment, and soil water and shallow groundwater, which play a relevant role in originating baseflow and spring water in the soil‐mantled and vegetated lower part of the catchment. Particularly, snowmelt contributes up to 64 ± 8% to spring water in the concave upper parts of the catchment and up to 62 ± 11% to channel runoff in the lower part of the catchment. These results offer new experimental evidences on how Dolomitic catchments capture and store rain water and meltwater, releasing it through a complex network of surface and subsurface flow pathways, and allow for the construction of a preliminary conceptual model on water transmission in snowmelt‐dominated catchments featuring marked elevation gradients.  相似文献   

18.
A 40 m × 20 m mowed, grass hillslope adjacent to a headwater stream within a 26‐ha watershed in east‐central Pennsylvania, USA, was instrumented to identify and map the extent and dynamics of surface saturation (areas with the water table at the surface) and surface runoff source areas. Rainfall, stream flow and surface runoff from the hillslope were recorded at 5‐min intervals from 11 August to 22 November 1998, and 13 April to 12 November 1999. The dynamics of the water table (0 to 45 cm depth from the soil surface) and the occurrence of surface runoff source areas across the hillslope were recorded using specially designed subsurface saturation and surface runoff sensors, respectively. Detailed data analyses for two rainfall events that occurred in August (57·7 mm in 150 min) and September (83·6 mm in 1265 min) 1999, illustrated the spatial and temporal dynamics of surface saturation and surface runoff source areas. Temporal data analyses showed the necessity to measure the hillslope dynamics at time intervals comparable to that of rainfall measurements. Both infiltration excess surface runoff (runoff caused when rainfall intensity exceeds soil infiltration capacity) and saturation excess surface runoff (runoff caused when soil moisture storage capacity is exceeded) source areas were recorded during these rainfall events. The August rainfall event was primarily an infiltration excess surface runoff event, whereas the September rainfall event produced both infiltration excess and saturation excess surface runoff. Occurrence and disappearance of infiltration excess surface runoff source areas during the rainfall events appeared scattered across the hillslope. Analysis of surface saturation and surface runoff data showed that not all surface saturation areas produced surface runoff that reached the stream. Emergence of subsurface flow to the surface during the post‐rainfall periods appeared to be a major flow process dominating the hillslope after the August rainfall event. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

19.
The hydrology and contrasting erosional responses of two snowmelt events on arable farmland in Fife, Scotland, are compared. Snowmelt-generated runoff in January 1993 caused widespread soil erosion across eastern Scotland. Gullying was exemplified by three sites in Fife, where thaw of a drifted snowpack was augmented by rainfall to produce a larger erosive response than meteorological data alone would have predicted. Up to 127 m3 of soil was lost from individual gullies in fields sown to winter cereals. In February 1996 snowfall of comparable depth again covered the field area, but a more uniform snowpack, slower thaw, greater crop cover and lower rainfall during the thaw phase combined to lessen the impact of erosion. These case studies demonstrate the complexity of the erosion/runoff relationship for rain on snow events, in which erosional severity depends not just on snow depth but on snow distribution, thaw rate and the amount and timing of rainfall during the thaw phase. © 1998 John Wiley & Sons, Ltd.  相似文献   

20.
Modelling nutrient transport during snowmelt in cold regions remains a major scientific challenge. A key limitation of existing nutrient models for application in cold regions is the inadequate representation of snowmelt, including hydrological and biogeochemical processes. This brief period can account for more than 80% of the total annual surface runoff in the Canadian Prairies and Northern Canada and processes such as atmospheric deposition, overwinter redistribution of snow, ion exclusion from snow crystals, frozen soils, and snow‐covered area depletion during melt influence the distribution and release of snow and soil nutrients, thus affecting the timing and magnitude of snowmelt runoff nutrient concentrations. Research in cold regions suggests that nitrate (NO3) runoff at the field‐scale can be divided into 5 phases during snowmelt. In the first phase, water and ions originating from ion‐rich snow layers travel and diffuse through the snowpack. This process causes ion concentrations in runoff to gradually increase. The second phase occurs when this snow ion meltwater front has reached the bottom of the snowpack and forms runoff to the edge‐of‐the‐field. During the third and fourth phases, the main source of NO3 transitions from the snowpack to the soil. Finally, the fifth and last phase occurs when the snow has completely melted, and the thawing soil becomes the main source of NO3 to the stream. In this research, a process‐based model was developed to simulate hourly export based on this 5‐phase approach. Results from an application in the Red River Basin of southern Manitoba, Canada, shows that the model can adequately capture the dynamics and rapid changes of NO3 concentrations during this period at relevant temporal resolutions. This is a significant achievement to advance the current nutrient modelling paradigm in cold climates, which is generally limited to satisfactory results at monthly or annual resolutions. The approach can inform catchment‐scale nutrient models to improve simulation of this critical snowmelt period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号