首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
滇池蓝藻水华发生频率与气象因子的关系   总被引:6,自引:4,他引:2       下载免费PDF全文
蓝藻水华暴发是在一定的营养、气候、水文条件和生态环境下形成的藻类过度繁殖和聚集的现象,是水体环境因子(如总氮、总磷、pH值、溶解氧)和气象因子综合作用的结果.然而滇池周年性水华暴发标志着滇池蓝藻水华在当前水质条件下,气象因子为关键影响因子.为了进一步探究滇池蓝藻水华发生与气象因子的规律,本文利用2010-2011年滇池蓝藻水华遥感监测资料与周边地面气象站逐月资料,研究滇池蓝藻水华月发生频率与月气象因子的关系.结果显示,滇池蓝藻水华发生频率与平均气温、最低气温、平均风速、累计日照时数和降雨量等气象因子均表现为显著相关,其中与日照时数和风速呈显著负相关.各因子中与风速的相关系数最高,说明滇池各月蓝藻水华发生频率高低与风速关系最为密切,进一步验证了在具备蓝藻水华发生所需营养盐条件下,水体稳定性对蓝藻水华发生的影响更为重要的结论.以上结果可为科学预测蓝藻水华发生,并采取相应措施减少其带来的影响提供理论依据.  相似文献   

2.
引言青海省地处青藏高原北部,是中国大陆强震多发地区之一。这一地区地广人稀,地震台网少,许多地区缺少比较有效的前兆观测手段,但这一地区气象台站的密度远远高于地震台网的密度,而且一些气象要素的变化与地震活动有比较密切的关系,所以充分利用好这些宝贵的气象资料,从中寻找气象异常与强震的关系,对准确预报青海的强震具有一定的意义。本文通过  相似文献   

3.
利用地震活动因子A值,对青海省东部地区(监测能力强)小震活动进行空间扫描,分析了该地区中强以上地震前,地震活动因子A值的空间分布、演化特征及其与目标地震的对应关系,并对该方法的预报效能作出评价。  相似文献   

4.
去年临汾全国地震会议上提出的中期预报意见中指出:我省晋东北地区有发生强震的危险,其依据许多都是气象异常方面的。为了更好地完成危险区的监视预报任务,掌握气象异常是迫切需要解决的问题。今年以来,在批林整风运动的推动下,在北京队的促进下,省气象部门和地震队密切配合积极开展了气象与地震关系的研究工作。 今年四月份,省地震队和忻县地区联合召开了晋东北地区地震工作会议,邀请北京地震队和省气象局派人出席。会议期间北京队耿庆国同志作了旱震关系研究的报告。会后,省地震队又请耿庆国同志在太原作了报告,省气象局的负责同志听了报告后深有感触地说:“你们应当多作宣传,不然,我们既不知道气象与地震关系这样密切,也不知道该怎样支持你们。”  相似文献   

5.
文章通过对香日德地震台1982年1月至1983年4月地倾斜资料的回归分析处理,探讨了香日德台此段时间内地倾斜观测值与气象因子地温、气压、气温及降水量的关系。得出如下结论: 1,气象因子对香日德台地倾斜观测值有影响,但这种影响不是恒定的。在上半年影响小,下半年大;地温影响大,其次是气压,最小的是气温。降水影响是上述三个因子的综合反映。  相似文献   

6.
气象因子是影响湖泊富营养化的重要因素,而湖泊富营养化对人群健康、生态系统和社会经济等均有负面影响.本文基于统计资料及遥感数据,结合Morlet小波分析和BP多层前馈神经网络(BP神经网络)构建了不同时间尺度下的小波—神经网络耦合模型,分析了1986—2011年云南星云湖水华强度变化与月降雨量、月平均气温、月平均风速、月日照时数变化之间的关系,探究了影响湖泊富营养化的主导气象因子.结果表明:气象因子的波动周期是影响湖泊年内水华强度变化的重要因素;小波—神经网络耦合模型能有效提高数据拟合的精度,最优小波—神经网络耦合模型的拟合优度为0.605,高于BP神经网络的拟合优度0.292;小波—神经网络耦合模型能更有效地对星云湖富营养化程度进行分析和描述,其均方误差和相关系数均优于BP神经网络;根据最优小波—神经网络耦合模型下的各气象因子的平均影响值,可知月平均气温是影响星云湖富营养化的主导气象因子,其次是月降水率、月平均风速,最后是月日照时数.综上,小波—神经网络耦合模型相比BP神经网络对样本数据具有更好的适应性,拟合精度更高,能为星云湖的保护与富营养化的治理提供参考依据.  相似文献   

7.
太湖富营养化条件下影响蓝藻水华的主导气象因子   总被引:2,自引:2,他引:0  
罗晓春  杭鑫  曹云  杭蓉蓉  李亚春 《湖泊科学》2019,31(5):1248-1258
利用2004-2018年卫星遥感解译的太湖蓝藻水华信息构建蓝藻综合指数,采用随机森林机器学习算法分析同期气象因子与蓝藻水华综合指数的关系,定量评估影响蓝藻水华的主要气象因子特征变量的重要性度量和贡献率.结果表明,在光、温、水、风等主要气象要素中,气温对蓝藻水华综合指数起着主导的作用,其次是风速和降水,日照时间的影响或可忽略.其中气温条件中重要性度量最大的是年平均气温,其次是冬、春季节的平均气温;风速因子中影响较大的是7月份的平均风速;水分条件中主导因子是9月累计降水量.优选的随机森林模型模拟值与实际蓝藻水华综合指数的变化趋势基本一致,拟合优度为0.91,通过0.01显著性检验,随机森林模型模拟效果较好.用随机森林模型模拟值对太湖蓝藻水华分等级评估,模型模拟精度达到了86.7%,其中5个重度等级年份模型模拟结果完全一致,中度等级的6个年份模型模拟值有5年与之相符,中度以上等级的模拟精度达90.9%,模型能够反映气象因子对蓝藻水华综合指数的综合影响,对中、重度蓝藻水华的模拟效果更好.随机森林模型有助于理解富营养化状态下影响蓝藻水华的主导气象因子,利用气象因子的可预测性可以促进蓝藻水华预测预警能力的提升.  相似文献   

8.
青海省自然灾害灾情与特征分析   总被引:1,自引:0,他引:1  
根据1950-2002年青海省遭受的主要自然灾害的统计数字分析了各类灾害的时空分布、频度等特点,以及对农牧业生产、社会经济发展及人民生命财产安全造成的影响。并对导致青海省各类自然灾害的主要成因机制、致灾因子与孕灾环境、历史演变及地理分布等特征进行了综合分析,为青海省的防灾减灾工作提供科学依据。  相似文献   

9.
城市的植被覆盖对城市区域的气象环境有重要影响. 为了探讨利用区域边界层气象模式来研究这种影响的可行性,本文以北京为例,采用北京地区目前的城市规划资料以及拟议中的绿化方案,初步模拟分析了不同绿化带布局对北京市冬夏气象环境的影响,并进行了讨论. 同时对地气相互作用过程中的各种地面通量进行一些定量分析,以研究其对气象环境的影响. 通过本文工作发现,所用区域边界模式能够较细致地模拟出城市规划中绿化布局对区域气象环境的影响. 结果表明:绿化林和绿化草地的增加会导致地面风速减小,一般减小05m/s;在冬天算例中,北部绿化林和绿化草地会造成白天轻微增温,夜间微弱降温,幅度约为05~1℃, 东南面绿化带对市区内气象环境影响不大;在夏天算例中,北部绿化林使气温降低,最大幅度约为2℃,东南面绿化林降低北京市区南部的气温,有利于缓解北京夏季的高温灾害.  相似文献   

10.
柴达木盆地资源丰富,是青海省重点发展工业循环型经济的核心地区,也是一个自然灾害严重地区,分析了该区的气象与地震灾害,认为开展柴达木防灾减灾的综合研究,提高防灾减灾意识,制定相应的对策和措施已成为经济与社会发展工作的当务之急。  相似文献   

11.
Anders Malmer 《水文研究》2004,18(5):853-864
In 1998 a wild fire struck a paired catchment research area under long‐term monitoring of hydrological and nutrient budgets. Streamwater quality as concentrations of dissolved and suspended particulate matter was monitored during 1·5–2·5 years after the fire in streams from seven different catchments. As the catchments, due to earlier experimental treatments, had different vegetations, varying effects related to different fire intensities were observed. The highest, mean stormflow, suspended sediment concentrations resulted from intensive fire in secondary vegetation that had experienced severe soil disturbance in previous treatments (crawler tractor timber extraction 10 years earlier). Stormflow concentrations were typically still about 400 mg l?1 in 1999 (10–21 months after the fire), which was about the maximum recorded concentration in streams during initial soil disturbance in 1988. Forest fire in natural forest resulted in less than half as high stormflow concentrations. For dissolved elements in streamwater there was a positive relation between fuel load (and fire intensity) and concentration and longevity of effects. Stream baseflow dissolved nutrient concentrations were high in the months following the fire. Mean baseflow K concentrations were 8–15 mg l?1 in streams draining catchments with intensive fire in secondary vegetation with large amounts of fuel. After controlled fire for forest plantation establishment in 1988 corresponding concentrations were 3–5 mg l?1, and after forest fire in natural forest in this study about 2 mg l?1. This study shows differences in response from controlled fire for land management, forest fire in natural forests and wild fires in manmade vegetations. These differences relate to resistance and resilience to fire for the involved ecosystems. There is reason to believe that wild fires and repeated wild fires during or after droughts, in successions caused by human influence, may lead to larger losses of ecosystem nutrient capital from sites compared with forest fires in natural forests. As fire in the humid tropics becomes more common, in an increasingly spatially fragmented landscape, it will be important to be aware of these differences. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

12.
As large, high‐severity forest fires increase and snowpacks become more vulnerable to climate change across the western USA, it is important to understand post‐fire disturbance impacts on snow hydrology. Here, we examine, quantify, parameterize, model, and assess the post‐fire radiative forcing effects on snow to improve hydrologic modelling of snow‐dominated watersheds having experienced severe forest fires. Following a 2011 high‐severity forest fire in the Oregon Cascades, we measured snow albedo, monitored snow, and micrometeorological conditions, sampled snow surface debris, and modelled snowpack energy and mass balance in adjacent burned forest (BF) and unburned forest sites. For three winters following the fire, charred debris in the BF reduced snow albedo, accelerated snow albedo decay, and increased snowmelt rates thereby advancing the date of snow disappearance compared with the unburned forest. We demonstrate a new parameterization of post‐fire snow albedo as a function of days‐since‐snowfall and net snowpack energy balance using an empirically based exponential decay function. Incorporating our new post‐fire snow albedo decay parameterization in a spatially distributed energy and mass balance snow model, we show significantly improved predictions of snow cover duration and spatial variability of snow water equivalent across the BF, particularly during the late snowmelt period. Field measurements, snow model results, and remote sensing data demonstrate that charred forests increase the radiative forcing to snow and advance the timing of snow disappearance for several years following fire. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
使用青海省数字地震台网记录的中小地震波形资料,基于Brune模型计算得到2010年1月至2020年5月青海北部地区ML≥3.0的视应力等震源动力学参数.研究视应力时空变化特征,结合青海北部发生的5级地震探讨视应力异常与中强地震的关系并进行预测效能检验,结果显示:大部分5级地震前出现过视应力高值异常,分析认为青海北部显著...  相似文献   

14.
Aerosol particle size distribution and chemical properties are important in studies related to human health and climate. The present study describes an analysis of aerosol mass loading, Aerosol Optical Depth (AOD), black carbon aerosol mass concentration and carbon monoxide over tropical urban region of Hyderabad, India, during March 2006, coinciding with active forest fires season over India. Aerosol optical depth, particulate matter mass loading and carbon monoxide were observed to be high on days with air mass coming from north of the study area. Spatial occurrence of forest fires was analysed using MODIS daytime data and DMSP-OLS nighttime data sets. Aerosol optical depth measured using Microtops-II sunphotometer correlated well with MODIS derived AOD values. Results of the study suggested that synoptic meteorological conditions play an important role in the observed aerosol properties over the study area during the forest fire season.  相似文献   

15.
张立新 《地震工程学报》2020,42(6):1693-1699
由于双重灾种叠加,地震次生火灾曾经带来过巨大生命财产损失,并始终严重威胁人类社会。梳理历史上几次重大地震次生火灾情况,归纳地震次生火灾的成灾与蔓延研究成果,讨论现有研究成果中常用的分析手段和研究方法;从工程结构和装备设施,以及灾害区划单元两个层面总结分析了地震次生火灾的风险与损失评估研究成果;从民用建筑、油气化工设施、核电站、灾后安置点与林业等多个方面探讨地震次生火灾的预防和控制研究进展。采用文献计量学方法对近二十年以"地震次生火灾"为主题的中文文献进行统计,并分析研究热度与地震事件的联系。  相似文献   

16.
In this paper we present thermal characteristics of coal fires as measured during simulated fires under an experimental setting in Germany in July 2002. It is thus a continuation of the previously published paper “Thermal surface characteristics of coal fire 1: Results of in-situ measurement”, in which we presented temperature measurements of real subsurface coal fires in China [Zhang, J., Kuenzer, C., accepted for publication. Thermal Surface Characteristics of Coal Fires 1: Results of in-situ measurements. Accepted for publication at Journal of Applied Geophysics.]. The focus is on simulated coal fires, which are less complex in nature than fires under natural conditions. In the present study we simulated all the influences usually occurring under natural conditions in a controllable manner (uniform background material of known thermal properties, known ventilation pathways, homogeneous coal substrate), creating two artificial outdoor coal fires under simplified settings. One surface coal fire and one subsurface coal fire were observed over the course of 2 days. The set up of the fires allowed for measurements not always feasible under “real” in-situ conditions: thus compared to the in-situ investigations presented in paper one we could retrieve numerous temperature measurements inside of the fires. Single temperature measurements, diurnal profiles and airborne thermal surveying present the typical temperature patterns of a small surface-and a subsurface fire under undisturbed conditions (easily accessible terrain, 24 hour measurements period, homogeneous materials). We found that the outside air temperature does not influence the fire's surface temperature (up to 900 °C), while fire centre temperatures of up to 1200 °C strongly correlate with surface temperatures of the fire. The fires could heat their surrounding up to a distance of 4.5 m. However, thermal anomalies on the background surface only persist as long as the fire is burning and disappear very fast if the heat source is removed. Furthermore, heat outside of the fires is transported mainly by convection and not by radiation. In spatial thermal line scanner data the diurnal thermal patterns of the coal fire are clearly represented. Our experiments during that data collection also visualize the thermal anomaly differences between covered (underground) and uncovered (surface) coal fires. The latter could not be observed in-situ in a real coal fire area. Sub-surface coal fires express a much weaker signal than open surface fires and contrast only by few degrees against the background. In airborne thermal imaging scanner data the fires are also well represented. Here we could show that the mid-infrared domain (3.8 μm) is more suitable to pick up very hot anomalies, compared to the common thermal (8.8 μm) domain. Our results help to understand coal fires and their thermal patterns as well as the limitations occurring during their analysis. We believe that the results presented here can practicably help for the planning of coal fire thermal mapping campaigns — including remote sensing methods and the thermal data can be included into numerical coal fire modelling as initial or boundary conditions.  相似文献   

17.
Soil water repellency (hydrophobicity) is a naturally occurring phenomenon that can be intensified by soil heating during fires. Fire‐induced water repellency, together with the loss of plant cover, is reportedly the principal source of increased surface runoff and accelerated erosion in burned soils. In this study, the surface water repellency of several soils affected by summer forest fires in northwest Spain was studied and compared with that of adjacent unburned soils. Soil water repellency was determined using the ethanol percentage test (MED). Most of the unburned soil samples exhibited water repellency that ranged from strong to very strong; only four of the unburned soil samples were non‐repellent. Water repellency in the unburned soils was significantly correlated with the organic carbon content (r = 0·64, p < 0·05). Overall, fires increased the surface water repellency in soils with previously low degrees of water repellency and caused little change in that of originally strongly hydrophobic soils. In order to examine in detail the changes in water repellency with temperature, three unburned soil samples were subjected to a controlled heating program. Water repellency increased between 25 and 220 °C, water repellency peaked between 220 and 240 °C and disappeared above 260–280 °C. Extrapolation of the results of the heating tests to field conditions suggested that the intensity of fire (temperature and time of residence) reached by most soils during fires is not too high. Based on the results, the determination of water repellency could be used as a simple test for the indirect estimation of the intensity levels reached on the soil surface during a fire. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

18.
为了弥补现有地铁火灾风险评估方法的不足,并为地铁的消防设计与管理提供量化指标,建立了以层次分析法(AHP)、专家调查法为基础,以可拓法为核心的地铁火灾风险的多级可拓评估方法,并给出了评估流程。对一地铁算例进行了评估,并根据评估结果得到地铁火灾风险的薄弱环节及管理重点。通过对比分析可知,本文方法与模糊评估方法所得的评估结果一致,从而表明:将可拓原理应用到地铁火灾风险性的评估中是合理可行的,很好地解决了地铁火灾风险评估的实际问题,本文方法可应用到相关的风险评估领域中。最后,对地铁火灾安全提出了一些建议。  相似文献   

19.
Fire severity is recognized as a key factor in explaining post‐fire soil erosion. However, the relationship between soil burn severity and soil loss has not been fully established until now. Sediment availability may also affect the extent of post‐fire soil erosion. The objective of this study was to determine whether soil burn severity, estimated by an operational classification system based on visual indicators, can significantly explain soil loss in the first year after wildfire in shrubland and other areas affected by crown fires in northwest (NW) Spain. An additional aim was to establish indicators of sediment availability for use as explanatory variables for post‐fire soil loss. For these purposes, we measured hillslope‐scale sediment production rates and site characteristics during the first year after wildfire in 15 experimental sites using 65 plots. Sediment yields varied from 0.2 Mg ha?1 to 50.1 Mg ha?1 and soil burn severity ranged from low (1.8) to very high (4.5) in the study period. A model that included soil burn severity, annual precipitation and a land use factor (as a surrogate for sediment availability) as explanatory variables reasonably explained the erosion losses measured during the first year after fire. Model validation confirmed the usefulness of this empirical model. The proposed empirical model could be used by forest managers to help evaluate erosion risks and to plan post‐fire stabilization activities. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
Depending on the severity of the fire, forest fires may modify infiltration and soil erosion processes. Rainfall simulations were used to determine the hydrological effects of fire on Andisols in a pine forest burned by a wildfire in 2007. Six burned zones with different fire severities were compared with unburned zones. Infiltration, runoff and soil loss were analysed on slopes of 10% and 30%. Forest floor and soil properties were evaluated. Unburned zones exhibited relatively low infiltration (23 and 16 mm h?1 on 10% and 30% slope angles, respectively) and high average runoff/rainfall ratios (43% and 50% on 10% and 30% slope angles, respectively), which were associated with the extreme water repellency of the forest floor. Nonetheless, this layer seems to provide protection against raindrop impact and soil losses were found to be low (8 and 16 g m?2 h?1 for 10% and 30% slope angles, respectively). Soil cover, soil structure and water repellency were the main properties affected by the fire. The fire reduced forest floor and soil repellency, allowing rapid infiltration. Moreover, a significant decrease was noted in soil aggregate stabilities in the burned zones, which limited the infiltration rates. Consequently, no significant differences in infiltration and runoff were found between the burned and the unburned zones. The decrease in post‐fire soil cover and soil stability resulted in order‐of‐magnitude increases in erosion. Sediment rates were 15 and 31 g m?2 h?1 on the 10% and 30% slope angles, respectively, in zones affected by light fire severity. In the moderate fire severity zones, these values reached 65 and 260 g m?2 h?1 for the 10% and 30% slope angles, respectively. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号