首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Long-term ecosystem studies are valuable for understanding integrated ecosystem response to global changes in atmospheric deposition and climate. We examined trends for a 35-year period (1982/83–2017/18) in concentrations of a range of solutes in precipitation and stream water from nine headwater catchments spanning elevation and surficial geology gradients at the Turkey Lakes watershed (TLW) in northeastern Ontario, Canada. Average annual water year (WY, October to September) concentrations in precipitation significantly declined over the period for sulphate (SO42−), nitrate (NO3) and chloride (Cl), while calcium (Ca2+) and potassium (K+) concentrations increased, resulting in a significant pH increase from 4.2 to 5.7. Trends in stream chemistry through time are generally consistent with expectations associated with acidification recovery. Concentration of many stream water solutes (SO42−, Cl, calcium [Ca2+], magnesium [Mg2+] and NH4+ generally decreased, while others (silica [SiO2] and dissolved organic carbon [DOC]) generally increased. Increases were also observed for alkalinity (six of nine catchments), acid neutralizing capacity ([ANC]; six of nine catchments) and pH (eight of nine catchments), while conductivity declined (six of nine catchments). Variability in trends among catchments are associated with differences in surficial geology and wetland cover. While absolute solute concentrations were generally lower at bedrock dominated high-elevation catchments compared to till dominated lower elevation catchments, the rate of change of concentration was often greater for high elevation catchments. This study confirms continued, but non-linear stream chemistry recovery from acidification, particularly at the less buffered high and moderate elevation sites. The heterogeneity of responses among catchments highlights our incomplete understanding of the relative importance of different mechanisms influencing stream chemistry and the consequences for downstream ecosystems.  相似文献   

2.
Water sources and flow paths contributing to stream chemistry were evaluated in four Japanese forested watersheds with steep topography (slopes ≥30°). Stream chemistry during periods without rainfall and during events with less than 100 mm of precipitation was similar to seepage water chemistry, but markedly different from that of soil water which had higher concentrations of NO3 and Ca2+ and lower concentrations of Na+ and HCO3. Also, stream Cl concentrations in a Cl‐treated watershed did not increase either during events with less than 100 mm of total rainfall or at baseflow conditions, even three years after the Cl treatment. These results suggest that groundwater within bedrock fissures of Paleozoic strata had a long residence time and was a major contributor to steam water under baseflow conditions and even during small precipitation events (≤100 mm). In contrast, for large precipitation events (≥100 mm), stream chemistry became more similar to soil water chemistry, especially within the steepest watershed. Also, for large precipitation events, stream Cl concentrations in the Cl‐treated watershed increased markedly. These results suggest that soil water was a major contributor to stream waters only during these large events. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

3.
Abstract

The chemistry of streamwater, bulk precipitation, throughfall and soil waters has been studied for three years in two plantation forest and two moorland catchments in mid-Wales. Na and CI are the major ions in streamwater reflecting the maritime influence on atmospheric inputs. In all streams, baseflow is characterised by high pH waters enriched in Ca, Mg, Si and HCO3. Differences in baseflow chemistry between streams reflect the varying extent of calcite and base metal sulphide mineralization within the catchments. Except for K, mean stream solute concentrations are higher in the unmineralized and mineralized forest catchments compared with their respective grassland counterparts. In the forest streams, storm flow concentrations of H+ are approximately 1.5 times and Al four times higher than in the moorland streams. Annual catchment losses of Na, Cl, SO4, NO3, Al and Si are greatest in the forest streams. In both grassland and forest systems, variations in stream chemistry be explained by mixing waters from different parts of the catchment, although NO3 concentrations may additionally be controlled by N transformations occurring between soils and streams. Differences in stream chemistry and solute budgets between forest and moorland catchments are related to greater atmospheric scavenging by the trees and changes in catchment hydrology consequent on afforestation. Mineral veins within the catchment bedrock can significantly modify the stream chemical response to afforestation.  相似文献   

4.
The relationship between stream water mean transit time (MTT), catchment geology, and landscape structure is still poorly characterized. Here, we present a new simple index that builds on the Jackson, Bitew, and Du (2014) index that focuses specifically on permeability contrasts at the soil–bedrock interface and digital elevation model-based physical flow path measurements to identify broad landscape trends of moisture redistribution in the subsurface of steep wet headwater catchments. We use this index to explore the relationship between geology, landscape structure, and water transit time through the lens of landscape anisotropy. We hypothesize that catchments with a greater tendency to shed water laterally will correlate with younger stream water MTT and catchments with a greater tendency to infiltrate water vertically will correlate with older stream water MTT. We tested the new index at eight geologically diverse Pacific Rim catchments in Oregon, Japan, and New Zealand. The new index explained 77% of the variability in measured stream water MTT across these varied sites. These findings suggest that critical zone anisotropy and catchment form are first-order controls on the time scales over which catchments store and release their water and that a simple index may usefully capture this relationship.  相似文献   

5.
Expansion of impervious surface cover results in “flashy” hydrologic response, elevated flood risk, and degraded water quality in urban watersheds. Stormwater management ponds (SWMPs) are often engineered into stream networks to mitigate these issues. A clearer understanding of how water is stored and released from SWMPs and SWMP-treated catchments is required to better represent these engineered systems in hydrological and water quality models of urban and urbanizing watersheds. Stable water isotopes were used to compare water age in SWMPs and SWMP-treated catchments in an urbanizing watershed. We sampled water biweekly from two SWMPs and five stream sites with varying land cover and stormwater control in their catchments. Two inverse transit time proxies (damping ratio and young water fraction) were computed along with the mean transit time (MTT) by sine–wave fitting for each SWMP and stream site using the δ18O and δ2H data. Water entering the SWMPs was consistently older (224 and 177 days) than water in or exiting the ponds (ranging from 46 to 91 days and 39 to 67 days, respectively). This finding is likely due to a combination of groundwater infiltration into broken sewer pipes that transport water into the ponds and a bias toward baseflow sampling. At the catchment scale, detention provided by SWMPs was not found to be more significant than the interactive effects of impervious cover, surficial geology, land use proportions, and catchment size in determining MTT. Overall, surficial geology explained the most variation in MTT among the seven sites. This study illustrates the potential for isotope-based approaches of water age to provide information on individual SWMP functioning and the influence of SWMPs on catchment-scale water movement.  相似文献   

6.
Abstract

Knowledge of the hydrochemical dynamics of the trace metal manganese (Mn) in upland catchments is required for water quality management. Stream water Mn and other solutes and flow were monitored in two upland catchments in northern England with different soils: one dominated by peat (HS7), the other by mineral soils (HS4). Maximum Mn concentrations occurred at different times in the two catchments: in summer baseflow at HS4 and during late summer storm events at HS7. A two-component chemical mixing model was used to identify the hydrological processes controlling Mn concentrations in stream water. This approach was more successful for HS4 than HS7, probably because of different processes of Mn release in the two catchments and also difficulties in selecting conservative solutes. Factor analysis of the stream water chemistry data set for each catchment was more useful in identifying the controls on Mn release into runoff. The factors indicate that the main source of Mn at HS4 is the hydrological pathway supplying summer baseflow, whereas at HS7 Mn is released during the rewetting of dried peat soils. Manganese concentrations in stream water in upland catchments appear to depend on soil type and antecedent moisture conditions. This has implications for the design of sampling strategies in upland catchments and also for managing the quality of water supplies from such areas.  相似文献   

7.
8.
Relationships between stream chemistry and elevation, area, Anakeesta geology, soil properties, and dominant vegetation were evaluated to identify the influence of basin characteristics on baseflow and stormflow chemistry in eight streams of the Great Smoky Mountains National Park. Statistical analyses were employed to determine differences between baseflow and stormflow chemistry, and relate basin‐scale factors governing local chemical processes to stream chemistry. Following precipitation events, stream pH was reduced and aluminium concentrations increased, while the response of acid neutralizing capacity (ANC), nitrate, sulfate, and base cations varied. Several basin characteristics were highly correlated with each other, demonstrating the interrelatedness of topographical, geological, soil, and vegetative parameters. These interrelated basin factors uniquely influenced acidification response in these streams. Streams in higher‐elevation basins (>975 m) had significantly lower pH, ANC, sodium, and silicon and higher nitrate concentrations (p < 0.05). Streams in smaller basins (<10 km2) had significantly lower nitrate, sodium, magnesium, silicon, and base cation concentrations. In stormflow, streams in basins with Anakeesta geology (>10%) had significantly lower pH and sodium concentrations, and higher aluminium concentrations. Chemical and physical soil characteristics and dominant overstory vegetation in basins were more strongly correlated with baseflow and stormflow chemical constituents than topographical and geological basin factors. Saturated hydraulic conductivity, of all the soil parameters, was most related to concentrations of stormflow constituents. Basins with higher average hydraulic conductivities were associated with lower stream pH, ANC, and base cation concentrations, and higher nitrate and sulfate concentrations. These results emphasize the importance of soil and geological properties influencing stream chemistry and promote the prioritization of management strategies for aquatic resources. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
Determining the impact of urbanisation on baseflow is complex because of the multiplicity of factors that govern subsurface flows. Although many metrics are available to quantify the baseflow regime, the lack of consensus on which metrics need to be used for baseflow characterisation limit their practical application for stormwater management. We performed principal component and correlation analyses on a set of 32 baseflow metrics to identify a subset of non‐redundant metrics for baseflow characterisation. We compared the results for streamflow time series from natural and urban catchments. We found that a subset of five metrics, including at least one metric from each of the four ecologically significant flow characteristic groups (i.e. magnitude, duration, frequency, and timing), explained most of the variability in baseflow regime for both natural and urban catchments. In addition, we analysed the relationship between this set of metrics and some low flow percentiles obtained from flow duration curves. Flow percentiles were only highly correlated to the magnitude and duration metrics, confirming that flow duration curves could be satisfactorily used for baseflow characterisation, but in combination with metrics representing frequency and timing. Metrics based on integration of the flow duration curve, however, cannot simply substitute the consideration of a suite of metrics. We discuss the practicality of our results with a regional regression study; the analyses show how the metrics can be used to quantify the alterations to baseflow caused by urbanisation, and to determine baseflow restoration objectives for urbanised catchments based on pre‐development baseflow regime. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
Determining mean transit times in headwater catchments is critical for understanding catchment functioning and understanding their responses to changes in landuse or climate. Determining whether mean transit times (MTTs) correlate with drainage density, slope angle, area, or land cover permits a better understanding of the controls on water flow through catchments and allows first-order predictions of MTTs in other catchments to be made. This study assesses whether there are identifiable controls on MTTs determined using 3H in headwater catchments of southeast Australia. Despite MTTs at baseflow varying from a few years to >100 years, it was difficult to predict MTTs using single or groups of readily-measured catchment attributes. The lack of readily-identifiable correlations hampers the prediction of MTTs in adjacent catchments even where these have similar geology, land use, and topography. The long MTTs of the Australian headwater catchments are probably in part due to the catchments having high storage volumes in deeply-weathered regolith, combined with low recharge rates due to high evapotranspiration. However, the difficulty in estimating storage volumes at the catchment scale hampers the use of this parameter to estimate MTTs. The runoff coefficient (the fraction of rainfall exported via the stream) is probably also controlled by evapotranspiration and recharge rates. Correlations between the runoff coefficient and MTTs in individual catchments allow predictions of MTTs in nearby catchments to be made. MTTs are shorter in high rainfall periods as the catchments wet up and shallow water stores are mobilized. Despite the contribution of younger water, the major ion geochemistry in individual catchments commonly does not correlate with MTTs, probably reflecting heterogeneous reactions and varying degrees of evapotranspiration. Documenting MTTs in catchments with high storage volumes and/or low recharge rates elsewhere is important for understanding MTTs in diverse environments.  相似文献   

11.
Though high rates of nitrate (NO3) leaching from forests are undesirable, the factors significantly regulating stream NO3 concentration is not clarified yet. In Japan, not only near metropolitan areas but also the Japan Sea-side area with heavy snowfall is well known for receiving more than 10 kg-N ha−1 year−1 of nitrogen (N) deposition. However, NO3 concentration in stream water is relatively low in the Japan Sea-side area compared with its concentration in other areas. We examined important environmental factors regulating stream NO3 concentrations at baseflow condition in a large region of Japan, the Kinki region (KIN) including a part of Japan Sea-side (JSK) using Random Forest regression. The amounts of N deposition and precipitation were common regulating factors for stream NO3 concentration at baseflow condition. Random forest showed the significant correlation between the factors related to ecosystem N retention and stream NO3 concentration at baseflow condition, and it suggests that large N deposited during the growing season was incorporated into the ecosystem in the entire KIN. Heavy rain and snow flush N and wash out N accumulated in the surface soil, causing small N accumulation in forests. Also, large precipitation dilute NO3 concentration in baseflows. These things lowered stream NO3 concentration at baseflow condition. Especially in JSK, most of N deposed with the heavy snow flushed out during the snowmelt period. We provided the first statistical confirmation using Random Forest regression that N accumulation and cycling in forest ecosystems were related to NO3 leaching from forests into streams.  相似文献   

12.
Catchments with minimal disturbance usually have low dissolved inorganic nitrogen (DIN) export, but disturbances and anthropogenic inputs result in elevated DIN concentration and export and eutrophication of downstream ecosystems. We studied streams in the southern Appalachian Mountains, USA, an area dominated by hardwood deciduous forest but with areas of valley agriculture and increasing residential development. We collected weekly grab samples and storm samples from nine small catchments and three river sites. Most discharge occurred at baseflow, with baseflow indices ranging from 69% to 95%. We identified three seasonal patterns of baseflow DIN concentration. Streams in mostly forested catchments had low DIN with bimodal peaks, and summer peaks were greater than winter peaks. Streams with more agriculture and development also had bimodal peaks; however, winter peaks were the highest. In streams draining catchments with more residential development, DIN concentration had a single peak, greatest in winter and lowest in summer. Three methods for estimating DIN export produced consistent results. Annual DIN export ranged from less than 200 g ha?1 year?1 for the less disturbed catchments to over 2,000 g ha?1 year?1 in the catchments with the least forest area. Land cover was a strong predictor of DIN concentration but less significant for predicting DIN export. The two forested reference catchments appeared supply limited, the most residential catchment appeared transport limited, and export for the other catchments was significantly related to discharge. In all streams, baseflow DIN export exceeded stormflow export. Morphological and climatological variation among watersheds created complexities unexplainable by land cover. Nevertheless, regression models developed using land cover data from the small catchments reasonably predicted concentration and export for receiving rivers. Our results illustrate the complexity of mechanisms involved in DIN export in a region with a mosaic of climate, geology, topography, soils, vegetation, and past and present land use.  相似文献   

13.
We examined the contributions of bedrock groundwater to the upscaling of storm‐runoff generation processes in weathered granitic headwater catchments by conducting detailed hydrochemical observations in five catchments that ranged from zero to second order. End‐member mixing analysis (EMMA) was performed to identify the geographical sources of stream water. Throughfall, hillslope groundwater, shallow bedrock groundwater, and deep bedrock groundwater were identified as end members. The contribution of each end member to storm runoff differed among the catchments because of the differing quantities of riparian groundwater, which was recharged by the bedrock groundwater prior to rainfall events. Among the five catchments, the contribution of throughfall was highest during both baseflow and storm flow in a zero‐order catchment with little contribution from the bedrock groundwater to the riparian reservoir. In zero‐order catchments with some contribution from bedrock groundwater, stream water was dominated by shallow bedrock groundwater during baseflow, but it was significantly influenced by hillslope groundwater during storms. In the first‐order catchment, stream water was dominated by shallow bedrock groundwater during storms as well as baseflow periods. In the second‐order catchment, deeper bedrock groundwater than that found in the zero‐order and first‐order catchments contributed to stream water in all periods, except during large storm events. These results suggest that bedrock groundwater influences the upscaling of storm‐runoff generation processes by affecting the linkages of geomorphic units such as hillslopes, riparian zones, and stream channels. Our results highlight the need for a three‐dimensional approach that considers bedrock groundwater flow when studying the upscaling of storm‐runoff generation processes. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
The 2085 km2 Jordan River Basin, and its seven sub-catchments draining the Central Wasatch Range immediately east of Salt Lake City, UT, are home to an array of hydrologic, atmospheric, climatic and chemical research infrastructure that collectively forms the Wasatch Environmental Observatory (WEO). WEO is geographically nested within a wildland to urban land-use gradient and built upon a strong foundation of over a century of discharge and climate records. A 2200 m gradient in elevation results in variable precipitation, temperature and vegetation patterns. Soil and subsurface structure reflect systematic variation in geology from granitic, intrusive to mixed sedimentary clastic across headwater catchments, all draining to the alluvial or colluvial sediments of the former Lake Bonneville. Winter snowfall and spring snowmelt control annual hydroclimate, rapid population growth dominates geographic change in lower elevations and urban gas and particle emissions contribute to episodes of severe air pollution in this closed-basin. Long-term hydroclimate observations across this diverse landscape provide the foundation for an expanding network of infrastructure in both montane and urban landscapes. Current infrastructure supports both basic and applied research in atmospheric chemistry, biogeochemistry, climate, ecology, hydrology, meteorology, resource management and urban redesign that is augmented through strong partnerships with cooperating agencies. These features allow WEO to serve as a unique natural laboratory for addressing research questions facing seasonally snow-covered, semi-arid regions in a rapidly changing world and an excellent facility for providing student education and research training.  相似文献   

15.
Understanding anthropogenic impacts on water storage and water flow pathways in catchments is an ongoing challenge in hydrology. Here, we study the dynamics of subsurface storage and residence time of water in a catchment in Berkeley, California, that is within a regional park but contains diverse land use within its perimeter, including a periodically irrigated golf course. Our study combines several isotopic tracers with water budget data to examine sources of water in a stream draining the site. Irrigation water, applied to a small area of the watershed, is a minor component of the water budget. However, geochemical tracers reveal that irrigation water is a significant fraction of stream flow downstream of the golf course during baseflow and during precipitation events. Isotopic tracers indicate that the watershed has a preference to release young water for stream flow generation, resulting in contrasting tritium ages for stream water and groundwater of 1.3 ± 0.5 year and 8.2 ± 1.7 year, respectively. We determined that the older water is a very small component (0.7%) of the stream water in the tail of an assumed exponential distribution. We used the seasonal variation of stable water isotopes in precipitation and stream water over two water years to explain the damping of the isotopic signature of stream water, which yields information about the catchment's response to the input signal. The methods described here may be applicable to other urban or suburban headwater catchments in areas with a component of non-natural recharge from, for example, leaky infrastructure, storm water routing or dry season irrigation.  相似文献   

16.
This study uses long‐term records of stream chemistry, discharge and air temperature from two neighbouring forested catchments in the southern Appalachians in order to calculate production of dissolved CO2 and dissolved inorganic carbon (DIC). One of the pair of catchments was clear‐felled during the period of the study. The study shows that: (1) areal production rates of both dissolved CO2 and DIC are similar between the two catchments even during and immediately after the period of clear‐felling; (2) flux of total inorganic carbon (dissolved CO2+ DIC) rises dramatically in response to a catchment‐wide acidification event; (3) DIC and dissolved CO2 are dominantly released on the old water portion of the discharge and concentrations peak in the early autumn when flows in the study catchments are at their lowest; (4) total fluvial carbon flux from the clear‐felled catchment is 11·6 t km−2 year−1 and for the control catchment is 11·4 t km−2 year−1. The total inorganic carbon flux represents 69% of the total fluvial carbon flux. The method presented in the study provides a useful way of estimating inorganic carbon flux from a catchment without detailed gas monitoring. The time series of dissolved CO2 at emergence to the stream can also be a proxy for the soil flux of CO2. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

17.
The source and hydrochemical makeup of a stream reflects the connectivity between rainfall, groundwater, the stream, and is reflected to water quantity and quality of the catchment. However, in a semi-arid, thick, loess covered catchment, temporal variation of stream source and event associated behaviours are lesser known. Thus, the isotopic and chemical hydrographs in a widely distributed, deep loess, semi-arid catchment of the northern Chinese Loess Plateau were characterized to determine the source and hydrochemical behaviours of the stream during intra-rainfall events. Rainfall and streamflow were sampled during six hydrologic events coupled with measurements of stream baseflow and groundwater. The deuterium isotope (2H), major ions (Cl, SO42−, NO3, Ca2+, K+, Mg2+, and Na+) were evaluated in water samples obtained during rainfall events. Temporal variation of 2H and Cl measured in the groundwater and stream baseflow prior to rainfall was similar; however, the isotope compositions of the streamflow fluctuated significantly and responded quickly to rainfall events, likely due to an infiltration excess, overland dominated surface runoff during torrential rainfall events. Time source separation using 2H demonstrated greater than 72% on average, the stream composition was event water during torrential rainfall events, with the proportion increasing with rainfall intensity. Solutes concentrations in the stream had loglinear relationships with stream discharge, with an outling anomaly with an example of an intra-rainfall event on Oct. 24, 2015. Stream Cl behaved nonconservative during rainfall events, temporal variation of Cl indicated a flush and washout at the onset of small rainfall events, a dilution but still high concentration pattern in high discharge and old water dominated in regression flow period. This study indicates rainfall intensity affects runoff responses in a semi-arid catchment, and the stored water in the thick, loess covered areas was less connected with stream runoff. Solute transport may threaten water quality in the area, requiring further analysis of the performance of the eco-restoration project.  相似文献   

18.
Anthropogenic modifications to the landscape, with agricultural activities being a primary driver, have resulted in significant alterations to the hydrologic cycle. Artificial drainage, including surface and subsurface drainage (tile drains), is one of the most extensive manipulations in agricultural landscapes and thus is expected to provide a distinct signature of anthropogenic modification. This study adopts a data synthesis approach in an effort to characterize the signature of artificial subsurface drainage. Daily discharge data from 24 basins across the state of Iowa, which encapsulate a range of anthropogenic modifications, are assessed using a variety of flow metrics. Results indicate that the presence of artificial subsurface drainage leads to a homogenization of landscape hydrologic response. Non‐tiled watersheds exhibit a decrease in the area‐normalized peak discharge and an increase in the baseflow ratio (baseflow/streamflow) with increases in the spatial scale, while scale invariance is apparent in tiled basins. Within‐basin variability in hydrograph recession coefficients also appears to decrease with increases in the proportion of the catchment that is artificially drained. Finally, the differences between tiled and non‐tiled landscapes disappear at scales greater than approximately 2200 km2, indicating that this may be a threshold scale for studying the effects of tile drainage. This decrease in within‐basin variability and the scale invariance of hydrologic metrics in artificially drained watersheds are attributed to the creation of a bypass flow hydrologic pathway that bypasses the complexity of the catchment travel paths. Spatial homogeneity in responses implies that it may be possible to develop more parsimonious hydrologic models for these regions. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
Spatial and temporal variability in surface water chemistry, organic soil chemistry and hydrologic indicators were investigated at three poor‐fen complexes in two boreal catchments in Northern Alberta to provide insight into the dominant controls on surface water chemistry. Improved understanding of these controls is required to enable prediction of runoff chemistry in the region under changing atmospheric deposition conditions. Surface water chemistry exhibited considerable variability; within each fen conductivity, dissolved organic carbon (DOC), and Cl tended to decrease and pH tended to increase with increasing distance from the lake edge. Variations in evaporative isotopic enrichment in 2H and 18O, expressed as deuterium excess, were used to distinguish between throughflow waters and those that were more evaporatively enriched. Throughflow surface waters were more acidic primarily due to higher concentrations of DOC and NO3. Exchangeable base saturation and pH of organic soils were strongly related to surface water chemistry at two of the fen complexes, demonstrating the capacity for cation exchange to influence surface water chemistry. Fen surface water concentrations of most elements and DOC increased during the summer period (between June and August), while pH of water decreased. Evaporative concentration of the surface waters was a dominant driver, with surface water temperature increasing at both catchments. Localized groundwater discharge was an important contributor of base cations to the fens, while the organic soils are sinks for atmospherically deposited SO42−, N and Cl. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
In this paper, we examined the role of bedrock groundwater discharge and recharge on the water balance and runoff characteristics in forested headwater catchments. Using rigorous observations of catchment precipitation, discharge and streamwater chemistry, we quantified net bedrock flow rates and contributions to streamwater runoff and the water balance in three forested catchments (second‐order to third‐order catchments) underlain by uniform bedrock in Japan. We found that annual rainfall in 2010 was 3130 mm. In the same period, annual discharge in the three catchments varied from 1800 to 3900 mm/year. Annual net bedrock flow rates estimated by the chloride mass balance method at each catchment ranged from ?1600 to 700 mm/year. The net bedrock flow rates were substantially different in the second‐order and third‐order catchments. During baseflow, discharge from the three catchments was significantly different; conversely, peak flows during large storm events and direct runoff ratios were not significantly different. These results suggest that differences in baseflow discharge rates, which are affected by bedrock flow and intercatchment groundwater transfer, result in the differences in water balance among the catchments. This study also suggests that in these second‐order to third‐order catchments, the drainage area during baseflow varies because of differences between the bedrock drainage area and surface drainage area, but that the effective drainage area during storm flow approaches the surface drainage area. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号