首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 317 毫秒
1.
1303年9月27日的山西洪洞8级地震发生于山西断陷盆地带中的临汾盆地,这是我国自有地震历史记载以来的第一次8级地震,也是一个在活动陆内盆地中发生的大地震. 2003年9月17~18日在山西太原市召开了1303年山西洪洞8级地震700周年暨陆内盆地与强震活动研讨会. 会上交流的论文讨论了我国不同地区发育的不同性质的陆内活动盆地,包括拉张构造区的地堑、半地堑张性盆地,挤压构造区的压陷盆地和前陆盆地及走滑构造带内的拉分盆地与强震活动的关系. 本文对这些问题作了简要的总结,本期刊登的论文是由部分会议论文组成的专辑.   相似文献   

2.
银川地堑地震背景与近期地震活动趋势初步分析   总被引:1,自引:0,他引:1  
地震地质及历史地震资料分析表明,银川地堑存在强震孕育和发生的地质构造背景。现代地震活动、地震能量积累和线性预测研究结果表明,银川地堑尚不存在发生大震的动态背景,5级左右的中强地震仍有可能在吴忠-灵武-带发生。  相似文献   

3.
山西地震带是在一个古老背斜基础上于新生代发育起来的一个活动构造带。是由一系列不同方向的活动断裂组成的断裂带,并由这些活动断裂控制形成一条地堑带,深部构造是上地幔隆起带。山西的许多强震都是在上述背景下发生的。 本文对山西地震带内强震活动特征和发震条件进行了讨论,认为山西地堑系强震在时间上和空间上表现出自北向南的趋势性迁移活动的特点,这个特点与第四纪以来整个地堑系自北向南的掀斜运动的方向相一致。  相似文献   

4.
新生代地堑构造是华北地区最普遍和最有特征的构造。它与强震活动有着十分密切的关系。根据活动构造参数估计地质地震活动性,能克服历史地震记载时间短的局限性。 文中首先计算了三条地堑带的扩展速率,并据此计算了该地堑带上的强震重复间隔。结合强震活动周期和迁移特点,对每个地堑带的强震危险性作出了判断。  相似文献   

5.
山西大同-阳高地震活动背景   总被引:2,自引:1,他引:2  
仇转  刘巍 《山西地震》2005,(2):1-7,10
通过对大同盆地历史地震活动及大同盆地历史地震活动与华北地震区、山西地震带强震活动的关系的研究,得出山西大同-阳高1989年6.1级地震活动是这一地区历史地震的延续,是华北北部中强地震活动的重要组成部分,具有广义前震的重要意义,其后对应发生的河北张北6.2级地震。标志着华北地震区的地震活动期已进入尾声。  相似文献   

6.
汾渭地堑系位于秦岭造山带以北,鄂尔多斯地块以东,是我国东部重要的一个强震活动带,构造活动十分密集.目前关于汾渭地堑的研究主要集中于其成因机制与构造演化历史、活动构造分布及地震统计、有限元数值模拟等方面.其中地震地质相关的研究主要覆盖了沉积层和地表断层层面,地球物理研究则主要关注地球的深部结构问题,整体而言较少涉及到浅部...  相似文献   

7.
山西地震带是我国大陆地区的一条强震活动带,广大地震工作者对山西地震带做了大量的工作,本文简述了山西地震带的地震历史资料及先辈们的工作成果,并对近20年来山西地震研究中所取得的成就做了回顾.  相似文献   

8.
鄂尔多斯块体东界,是山西境内一系列盆地组成的地堑系,是我国著名的地震带之一。根据历史资料,从公元前231年到现在划成七个地震活跃期,强震由北而南迁移,多分布于盆地中部,极震区走向分成两组,相间分布,震源深度均在10-20公里。最后分析了本活跃期来地震活动的几个特点。  相似文献   

9.
李美辉 《高原地震》2007,19(2):12-15
通过研究西部构造运动及强震的相关性分析,结果表明:地震构造对西部的强震活动显示出很强的控制力;大华北强震与西部强震具有同步活动特点,但滞后于西部强震活动,山西地震带在整个华北地震带中起着重要的作用;西部强震第三活跃时段已经开始,对全国和山西地震形势将产生深远的影响。  相似文献   

10.
本文对山西地区地壳形变的历史和现状做了回顾,并从大范围地震活动时空规律出发,收集了现有强震活动的记录及相应的研究成果,对前4个地震活动高潮期中地震的时空分布规律和空间迁移特征进行了论述,并对第5高潮期强震分布的区域提出了新的看法。同时,结合现有的地壳形变资料,讨论了山西地区的地震形势,认为山西临汾地区,仍有7级左右的发震背景,但近期尚无明显的中短期形变、应变前兆存在,故认为近期发生强震的可能性不大  相似文献   

11.
2014年11月22日康定M6.3级地震序列发震构造分析   总被引:18,自引:5,他引:13       下载免费PDF全文
2014年11月22日在NW向鲜水河断裂带中南段四川康定县发生M6.3级地震,11月25日在该地震震中东南约10km处再次发生M5.8级地震.基于中国国家数字地震台网和四川区域数字地震台网资料,采用多阶段定位方法对本次康定M6.3级地震序列进行了重新定位;利用gCAP(generalized Cut And Paste)矩张量反演方法获得了M6.3和M5.8级地震的震源机制解与矩心深度,分析了本次地震序列的发震构造,并结合历史强震破裂时空分布和2001年以来小震重新定位结果,对鲜水河断裂带中段强震危险性进行了初步探讨.获得的主要结果如下:(1)M6.3级主震震中位于101.69°E、30.27°N,震源初始破裂深度约10km,矩心深度9km;M5.8级地震震中位于101.73°E、30.18°N,初始破裂深度约11km,矩心深度9km.gCAP矩张量反演结果揭示这两次地震双力偶分量占主导,M6.3级地震的最佳双力偶解节面Ⅰ走向143°/倾角82°/滑动角-9°,节面Ⅱ走向234°/倾角81°/滑动角-172°.M5.8级地震最佳双力偶解节面Ⅰ走向151°/倾角83°/滑动角-6°,节面Ⅱ走向242°/倾角84°/滑动角-173°.依据余震分布长轴展布与断裂走向,判定节面Ⅰ为发震断层面,M6.3和M5.8级地震均为带有微小正断分量的左旋走滑型地震.(2)序列中重新定位的459个地震平均震源深度约9km,地震主要集中分布在6~11km深度区间,余震基本发生在M6.3和M5.8级地震震源上部.依据余震密集区展布范围,推测本次康定地震的震源体尺度长约30km、宽约4km、深度范围约6km.M6.3级主震震源附近的余震稀疏区可能是一个较大的凹凸体(asperity),在主震中能量得以充分释放.(3)最初3天的余震主要分布在M6.3级地震NW侧;而M5.8级地震之后的余震主要集中在其震中附近.M6.3级地震以及最初3天的绝大部分余震发生在倾角约82°近直立的NW走向色拉哈断裂上;M5.8级地震与其后的多数余震发生在倾角约83°近直立的NW走向折多塘断裂北端走向向北偏转部位,M5.8级地震可能是M6.3级地震触发相邻的折多塘断裂活动所致.(4)康定M6.3与M5.8级地震发生在鲜水河断裂带乾宁与康定之间的色拉哈强震破裂空段,本次地震破裂尺度较小,尚不足以填补该强震空段.色拉哈段以及相邻的乾宁段7级地震平静时间均已超过其平均复发周期估值,未来几年存在发生7级地震的危险.康定M6.3级地震序列基本填补了震前存在于塔公与康定之间的深部小震空区,未来强震发生在塔公至松林口段深部小震稀疏区内的可能性很大.  相似文献   

12.
以东经108°线为界,把中国大陆分为东、西两部,东部取震级M≥6的地震、西部取M≥7的地震为强地震.利用有史以来全部地震资料,针对不同情况和不同时期,系统地研究了相继两次强地震之间的时间间隔,目的在于讨论一次强地震发生之后,下一次强地震何时发生.在所有情况下地震间隔数目都随时间间隔值的增大呈明显的趋势性减小.给出了8种情况下的间隔数目统计和相应的模拟函数,以及间隔值的经验概率和相应的函数模拟概率.由此可估计时间间隔为某个值的概率,也可估计时间间隔处于某个区间的概率.反之,对于给定的概率,可估计时间间隔的值或它所处的区间.  相似文献   

13.
Yuichiro  Tanioka  Larry  Ruff Kenji  Satake 《Island Arc》1997,6(3):261-266
Abstract The lateral (along trench axis) variation in the mode of large earthquake occurrence near the northern Japan Trench is explained by the variation in surface roughness of the subducting plate. The surface roughness of the ocean bottom near the trench is well correlated with the large-earthquake occurrence. The region where the ocean bottom is smooth is correlated with'typical'large underthrust earthquakes (e.g. the 1968 Tokachioki event) in the deeper part of the seismogenic plate interface, and there are no earthquakes in the shallow part (aseismic zone). The region where the ocean bottom is rough (well-developed horst and graben structure) is correlated with large normal faulting earthquakes (e.g. the 1933 Sanriku event) in the outer-rise region, and large tsunami earthquakes (e.g. the 1896 Sanriku event) in the shallow region of the plate interface zone. In the smooth surface region, the coherent metamorphosed sediments form a homogeneous, large and strong contact zone between the plates. The rupture of this large strong contact causes great under-thrust earthquakes. In the rough surface region, large outer-rise earthquakes enhance the well-developed horst and grabens. As these structure are subducted with sediments in the graben part, the horsts create enough contact with the overriding block to cause an earthquake in the shallow part of the interface zone, and this earthquake is likely to be a tsunami earthquake. When the horst and graben structure is further subducted, many small strong contacts between the plates are formed, and they can cause only small underthrust earthquakes.  相似文献   

14.
亚洲大地震的时间有序性与沙罗周期   总被引:6,自引:0,他引:6  
根据作者在1997年提出的“信息有序系列”的概念和方法,研究了一些亚洲大地震的时间有序性,本文列举1934-1970年期间亚洲M≥8级大地震,中国历史M≥8级大地震,兴都库什地区中深震(Ms≥7),结果表明,这些地震的一些时间有序性与反映日食序列变化的沙罗周期关系较密切。亚洲6个8级大地震时间间隔的数值在2130-2210d的范围内,这是地震时间有序性的一个好例子。这表明,时间有序性具有周期性不能描述的特性,它和新兴的复杂性科学有密切联系。  相似文献   

15.
1976年8月16日四川省松潘7.2级地震,震前曾作了预报。本文介绍了这次地震预报的主要依据和地震前兆异常的主要特点。  相似文献   

16.
华北7级以上大地震的等距有序性   总被引:1,自引:0,他引:1       下载免费PDF全文
定量研究华北7级以上大地震的震中空间有序性。震中图象可用简单几何形式,如等腰三角形、等边三角形、平行四边形来描述。对于等腰三角形的两边相等的边长进行统计,边长在240~650km范围内。大地震之间的等距使我们重新考虑大地震与地表地质构造的关系。因而提出大地震形成与地壳深处的构造关系较为密切,而地表断裂仅是其间接效应和反映  相似文献   

17.
依据历史地震资料,提出了具有中长期预报意义的中强地震活动特定区的震兆性概念通过分析可知,淄川-临沂和深县-河间特定区内的中强地震活动是华北东部地震块体M≥7级地震的震兆;东川-巧家特定区内的中强地震活动是南北地震带南段发生M≥7级地震的震兆.1995年9月20日苍山5.2级地震发生在淄川-临沂区内,认为该次地震可能是未来较大地震的震兆  相似文献   

18.
Nine earthquakes with M≥6 have stricken the northern segment of the Red River fault zone since the historical records, including the 1652 Midu M7 earthquake and the 1925 Dali M7 earthquake. However, there have been no earthquake records of M≥6 on the middle and southern segments of the Red River Fault, since 886 AD. Is the Red River fault zone, as a boundary fault, a fault zone where there will be not big earthquake in the future or a seismogenic structure for large earthquake with long recurrence intervals?This problem puzzles the geologists for a long time. Through indoor careful interpretation of high resolution remote sensing images, and in combination with detailed field geological and geomorphic survey, we found a series of fault troughs along the section of Gasha-Yaojie on the southern segment of the Red River fault zone, the length of the Gasha-Yaojie section is over ten kilometers. At the same time, paleoseismic information and radiocarbon dating result analysis on the multiple trenches show that there exists geological evidence of seismic activity during the Holocene in the southern segment of the Red River fault zone.  相似文献   

19.
More than 80 percent of strong earthquakes(M≥7.0)occur in active-tectonic block boundaries in mainland China, and 95 percent of strong earthquake disasters also occur in these boundaries. In recent years, all strong earthquakes(M≥7.0)happened in active-tectonic block boundaries. For instance, 8 strong earthquakes(M≥7.0)occurred on the eastern, western, southern and northern boundaries of the Bayan Har block since 1997. In order to carry out the earthquake prediction research better, especially for the long-term earthquake prediction, the active-tectonic block boundaries have gradually become the key research objects of seismo-geology, geophysics, geodesy and other disciplines. This paper reviews the research results related to seismic activities in mainland China, as well as the main existing recognitions and problems as follows: 1)Most studies on seismic activities in active-tectonic block boundaries still remain at the statistical analysis level at present. However, the analysis of their working foundations or actual working conditions can help investigate deeply the seismic activities in the active-tectonic block boundaries; 2)Seismic strain release rates are determined by tectonic movement rates in active-tectonic block boundaries. Analysis of relations between seismic strain release rates and tectonic movement rates in mainland China shows that the tectonic movement rates in active-tectonic block boundaries of the eastern region are relatively slow, and the seismic strain release rates are with the smaller values too; the tectonic movement rates in active-tectonic block boundaries of the western region reveal higher values, and their seismic strain rates are larger than that of the eastern region. Earthquake recurrence periods of all 26 active-tectonic block boundaries are presented, and the reciprocals of recurrence periods represent high and low frequency of seismic activities. The research results point out that the tectonic movement rates and the reciprocals of recurrence periods for most faults in active-tectonic block boundaries exhibit linear relations. But due to the complexities of fault systems in active tectonic block boundaries, several faults obviously deviate from the linear relationship, and the relations between average earthquake recurrence periods and tectonic movement rates show larger uncertainties. The major reason is attributed to the differences existing in the results of the current earthquake recurrence studies. Furthermore, faults in active-tectonic boundaries exhibit complexities in many aspects, including different movement rates among various segments of the same fault and a certain active-tectonic block boundary contains some parallel faults with the same earthquake magnitude level. Consequently, complexities of these fault systems need to be further explored; 3)seismic activity processes in active-tectonic block boundaries present obvious regional characteristics. Active-tectonic block boundaries of the eastern mainland China except the western edge of Ordos block possess clustering features which indicate that due to the relatively low rate of crustal deformation in these areas, a long-time span is needed for fault stress-strain accumulation to show earthquake cluster activities. In addition, active-tectonic block boundaries in specific areas with low fault stress-strain accumulation rates also show seismic clustering properties, such as the clustering characteristics of strong seismic activities in Longmenshan fault zone, where a series of strong earthquakes have occurred successively, including the 2008 M8.0 Wenchuan, the 2013 M7.0 Lushan and the 2017 M7.0 Jiuzhaigou earthquakes. The north central regions of Qinghai-Tibet Plateau, regarded as the second-grade active-tectonic block boundaries, are the concentration areas of large-scale strike-slip faults in mainland China, and most of seismicity sequences show quasi-period features. Besides, most regions around the first-grade active-tectonic block boundary of Qinghai-Tibet Plateau display Poisson seismic processes. On one hand, it is still necessary to investigate the physical mechanisms and dynamics of regional structures, on the other hand, most of the active-tectonic block boundaries can be considered as fault systems. However, seismic activities involved in fault systems have the characteristic of in situ recurrence of strong earthquakes in main fault segments, the possibilities of cascading rupturing for adjacent fault segments, and space-time evolution characteristics of strong earthquakes in fault systems. 4)The dynamic environment of strong earthquakes in mainland China is characterized by “layering vertically and blocking horizontally”. With the progresses in the studies of geophysics, geochemistry, geodesy, seismology and geology, the physical models of different time/space scales have guiding significance for the interpretations of preparation and occurrence of continental strong earthquakes under the active-tectonic block frame. However, since the movement and deformation of the active-tectonic blocks contain not only the rigid motion and the horizontal differences of physical properties of crust-mantle medium are universal, there is still need for improving the understanding of the dynamic processes of continental strong earthquakes. So it is necessary to conduct in-depth studies on the physical mechanism of strong earthquake preparation process under the framework of active-tectonic block theory and establish various foundation models which are similar to seismic source physical models in California of the United States, and then provide technological scientific support for earthquake prevention and disaster mitigation. Through all kinds of studies of the physical mechanisms for space-time evolution of continental strong earthquakes, it can not only promote the transition of the study of seismic activities from statistics to physics, but also persistently push the development of active-tectonic block theory.  相似文献   

20.
Due to the interaction between the Tibetan plateau, the Alxa block and the Ordos block, the western margin of Ordos(33.5°~39°N, 104°~108°E)has complex tectonic features and deformation patterns with strong tectonic activities and active faults. Active faults with different strikes and characteristics have been developed, including the Haiyuan Fault, the Xiangshan-Tianjingshan Fault, the Liupanshan Fault, the Yunwushan Fault, the Yantongshan Fault, the eastern Luoshan Fault, the Sanguankou-Niushoushan Fault, the Yellow River Fault, the west Qinling Fault, and the Xiaoguanshan Fault. In this study, 7 845 earthquakes(M≥1.0)from January 1st, 1990 to June 30th, 2018 were relocated using the double-difference location algorithm, and finally, we got valid locations for 4 417 earthquakes. Meanwhile, we determined focal mechanism solutions for 54 earthquakes(M≥3.5)from February 28th, 2009 to September 2nd, 2017 by the Cut and Paste(CAP)method and collected 15 focal mechanism solutions from previous studies. The spatial distribution law of the earthquake, the main active fault geometry and the regional tectonic stress field characteristics are studied comprehensively. We found that the earthquakes are more spatially concentrated after the relocation, and the epicenters of larger earthquakes(M≥3.5) are located at the edge of main active faults. The average hypocenter depth is about 8km and the seismogenic layer ranges from 0 to 20km. The spatial distributions and geometry structures of the faults and the regional deformation feature are clearly mapped with the relocated earthquakes and vertical profiles. The complex focal mechanism solutions indicate that the arc-shaped tectonic belt consisting of Haiyuan Fault, Xiangshan-Tianjingshan Fault and Yantongshan Fault is dominated by compression and torsion; the Yellow River Fault is mainly by stretching; the west Qinling Fault is characterized by shear and compression. The structural properties of the fault structure are dominated by strike-slip and thrust, with a larger strike-slip component. The near-north-south Yellow River Fault is characterized by high angle NW dipping and normal fault motion. Based on small earthquake relocation and focal mechanism solution results, and in combination with published active structures and geophysical data in the study area, it is confirmed that the western margin of Ordos is affected by the three blocks of the Tibetan plateau, the Alax and the Ordos, presenting different tectonic deformation modes, and there are also obvious differences in motion among the secondary blocks between the active faults. The area south of the Xiangshan-Tianjingshan Fault has moved southeastward since the early Quaternary; the Yinchuan Basin and the block in the eastern margin of the Yellow River Fault move toward the SE direction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号