首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
作为全局非线性优化的新方法之一的遗传算法,近年来已从生物工程流行到大地电磁测深资料解释中.然而,大地电磁反演问题具有不适定性,解的非唯一性.通过结合求解不适定问题的Tikhonov正则化方法,本文采用实数编码遗传算法求解大地电磁二维反演问题.此算法在构建目标函数时引入正则化的思想,利用遗传算法求解最优化问题.常规的基于局部线性化的最优化反演方法易使解陷入局部极小值,而且严重的依赖初始模型的选择.与传统线性化的迭代反演方法相比,实数编码遗传算法能够克服传统方法的不足且能获得更好的反演结果.通过对大地电磁测深理论模型进行计算,结果表明:该算法具有收敛速度快、解的精度高和避免出现早熟等优点,可用于大地电磁资料解释.  相似文献   

2.
对于复杂的大自由度系统的反演分析,遗传算法每步计算中包含大量的正演分析,成为限制遗传算法应用的运行速度的瓶颈。减少反演分析中的正演计算次数,是扩大遗传算法适用范围的有效途径。经验遗传-单纯形算法正是解决这一问题的一种有效方法。本文将这一方法应用于不完全模态参数已知条件下的结构物理参数识别研究。结果表明:本文建议的方法有精度和搜索效率高、对初值选取依赖性不强、可以反映"残缺"的高阶模态信息等优点。  相似文献   

3.
ERA方法是基于环境激励的结构振动测试的方法中重要的时域分析方法。主要由ERA算法对齐齐哈尔砌体结构居民房的基本模态参数进行测试。简述了ERA算法的主要思路和计算过程,介绍了相应的模态识别准则MAC,以及ERA算法在MATLAB中的实现。由ERA算法得到的模态参数与有限元建模分析结果分析比较吻合,为砌体结构在环境激励下用ERA方法测试模态参数提供了实验依据。最后,讨论了ERA方法与有限元建模分析结果出现差异的原因,以及ERA方法在环境激励下的限制和不足。  相似文献   

4.
对于时间域航空电磁法二维和三维反演来说,最大的困难在于有效的算法和大的计算量需求.本文利用非线性共轭梯度法实现了时间域航空电磁法2.5维反演方法,着重解决了迭代反演过程中灵敏度矩阵计算、最佳迭代步长计算、初始模型选取等问题.在正演计算中,我们采用有限元法求解拉式傅氏域中的电磁场偏微分方程,再通过逆拉氏和逆傅氏变换高精度数值算法得到时间域电磁响应.在灵敏度矩阵计算中,采用了基于拉式傅氏双变换的伴随方程法,时间消耗只需计算两次正演,从而节约了大量计算时间.对于最佳步长计算,二次插值向后追踪法能够保证反演迭代的稳定性.设计两个理论模型,检验反演算法的有效性,并讨论了选择不同初始模型对反演结果的影响.模型算例表明:非线性共轭梯度方法应用于时间域航空电磁2.5维反演中稳定可靠,反演结果能够有效地反映地下真实电性结构.当选择的初始模型电阻率值与真实背景电阻率值接近时,能得到较好的反演结果,当初始模型电阻率远大于或远小于真实背景电阻率值时反演效果就会变差.  相似文献   

5.
It can be very time consuming to use the conventional numerical methods, such as the finite element method, to solve convection–dispersion equations, especially for solutions of large-scale, long-term solute transport in porous media. In addition, the conventional methods are subject to artificial diffusion and oscillation when used to solve convection-dominant solute transport problems. In this paper, a hybrid method of Laplace transform and finite element method is developed to solve one- and two-dimensional convection–dispersion equations. The method is semi-analytical in time through Laplace transform. Then the transformed partial differential equations are solved numerically in the Laplace domain using the finite element method. Finally the nodal concentration values are obtained through a numerical inversion of the finite element solution, using a highly accurate inversion algorithm. The proposed method eliminates time steps in the computation and allows using relatively large grid sizes, which increases computation efficiency dramatically. Numerical results of several examples show that the hybrid method is of high efficiency and accuracy, and capable of eliminating numerical diffusion and oscillation effectively.  相似文献   

6.
针对较少投影数据图像重建问题,在最小二乘优化的基础上,提出将未知误差引入不等式约束中,并针对其不适定性提出运用LandWeber迭代正则化技术进行迭代求解.数值实验表明相对以往各算法,此迭代算法更加稳定,并且在重建质量以及重建时间上都具有一定的优势.  相似文献   

7.
最大熵时域逆散射层析成像的研究   总被引:2,自引:0,他引:2       下载免费PDF全文
用最大熵求解二维时域逆散射问题的层析成像算法反演井间、VSP和SRP中的二维介质波速分布。首先给出时域散射场与介质扰动的关系式,然后,应用最大熵剑桥算法从所有满足时域散射数据的模型中挑选图像熵最大的模型作为反演结果,并给出了该算法的实现步骤。数值试验的结果表明,本文算法用于反演含噪声,不完全的时域波场数据时,十分有效。  相似文献   

8.
The hyperbolic Radon transform has a long history of applications in seismic data processing because of its ability to focus/sparsify the data in the transform domain. Recently, deconvolutive Radon transform has also been proposed with an improved time resolution which provides improved processing results. The basis functions of the (deconvolutive) Radon transform, however, are time-variant, making the classical Fourier based algorithms ineffective to carry out the required computations. A direct implementation of the associated summations in the time–space domain is also computationally expensive, thus limiting the application of the transform on large data sets. In this paper, we present a new method for fast computation of the hyperbolic (deconvolutive) Radon transform. The method is based on the recently proposed generalized Fourier slice theorem which establishes an analytic expression between the Fourier transforms associated with the data and Radon plane. This allows very fast computations of the forward and inverse transforms simply using fast Fourier transform and interpolation procedures. These canonical transforms are used within an efficient iterative method for sparse solution of (deconvolutive) Radon transform. Numerical examples from synthetic and field seismic data confirm high performance of the proposed fast algorithm for filling in the large gaps in seismic data, separating primaries from multiple reflections, and performing high-quality stretch-free stacking.  相似文献   

9.
Techniques developed for structural identification of a structural model are typically based on information regarding the response and the forcing actions. However, in some situations it can be necessary, or simply useful, to refer only to the measured responses. In this paper we describe a technique suitable for identifying the modal model of a spatial frame in the frequency domain when the seismic input is unknown both in time contents and direction. In some previous theoretical works we established that this identification problem has a unique solution when at least three time‐history responses are known. Here numerical techniques are developed which allow the evaluation of the modal quantities in practice. Numerical applications are carried out on plane and spatial framed structures by using a modal model which may be complete, including all the structure's modes, or incomplete, including only the lowest modes. In most cases the obtained results are satisfactory. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

10.
A new complex modal analysis‐based method is developed in the frequency domain for efficient computation of the earthquake input energy to a highly damped linear elastic passive control structure. The input energy to the structure during an earthquake is an important measure of seismic demand. Because of generality and applicability to non‐linear structures, the earthquake input energy has usually been computed in the time domain. It is shown here that the formulation of the earthquake input energy in the frequency domain is essential for deriving a bound on the earthquake input energy for a class of ground motions and for understanding the robustness of passively controlled structures to disturbances with various frequency contents. From the viewpoint of computational efficiency, a modal analysis‐based method is developed. The importance of overdamped modes in the energy computation of specific non‐proportionally damped models is demonstrated by comparing the energy transfer functions and the displacement transfer functions. Through numerical examinations for four recorded ground motions, it is shown that the modal analysis‐based method in the frequency domain is very efficient in the computation of the earthquake input energy. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

11.
12.
Adaptive hybrid global inversion algorithm   总被引:2,自引:0,他引:2  
Most geophysical inversions can be regarded as multiparameter, nonlinear, and multiminimum discontinuous optimization problems. An adaptive hybrid global inversion algorithm based on simulated annealing, downhill simplex method, uniform design, and adaptive annealing rule is formulated. Numeral test and model computation show that this algorithm has very fast speed and high efficiency in searching for global minimum. Project sponsored by the National Natural Science Foundation of China (Grant No. 49474232) and Special Foundation under the auspices of president of Chinese Academy of Sciences.  相似文献   

13.
The coupled flow-mass transport inverse problem is formulated using the maximum likelihood estimation concept. An evolutionary computational algorithm, the genetic algorithm, is applied to search for a global or near-global solution. The resulting inverse model allows for flow and transport parameter estimation, based on inversion of spatial and temporal distributions of head and concentration measurements. Numerical experiments using a subset of the three-dimensional tracer tests conducted at the Columbus, Mississippi site are presented to test the model's ability to identify a wide range of parameters and parametrization schemes. The results indicate that the model can be applied to identify zoned parameters of hydraulic conductivity, geostatistical parameters of the hydraulic conductivity field, angle of hydraulic conductivity anisotropy, solute hydrodynamic dispersivity, and sorption parameters. The identification criterion, or objective function residual, is shown to decrease significantly as the complexity of the hydraulic conductivity parametrization is increased. Predictive modeling using the estimated parameters indicated that the geostatistical hydraulic conductivity distribution scheme produced good agreement between simulated and observed heads and concentrations. The genetic algorithm, while providing apparently robust solutions, is found to be considerably less efficient computationally than a quasi-Newton algorithm.  相似文献   

14.
地震数据重构问题是一个病态的反演问题. 本文基于地震数据在curvelet域的稀疏性, 将地震数据重构变为一个稀疏优化问题, 构造0范数的逼近函数作为目标函数, 提出了一种投影梯度求解算法. 本文还运用最近提出的分段随机采样方式进行采样, 该采样方式能够有效地控制采样间隔并且保持采样的随机性. 地震数值模拟表明, 基于0范数逼近的投影梯度法计算效率有明显的提高; 分段随机采样方式比随机欠采样有更加稳定的重构结果.  相似文献   

15.
熊登  赵伟  张剑锋 《地球物理学报》2009,52(4):1068-1077
高分辨率Radon变换存在计算效率和分辨率不能兼得的困境.时间域算法可以获得很高的分辨率,但计算效率非常低;频率域算法具有良好计算效率,但分辨率不理想.为此发展了混合域高分辨率抛物Radon变换,即对频率域抛物Radon变换引入时变的稀疏权.本文给出了一种新的混合域高分辨率抛物Radon变换实现方法,并将该算法应用于叠前数据衰减多次波.文中给出了Radon变换和衰减多次波的流程.理论和实际数据算例表明本文方法既有较高的分辨率又有很高的计算效率.  相似文献   

16.
Structural identification is the inverse problem of estimating physical parameters of a structural system from its vibration response measurements. Incomplete instrumentation and ambient vibration testing generally result in incomplete and arbitrarily normalized measured modal information, often leading to an ill‐conditioned inverse problem and non‐unique identification results. The identifiability of any parameter set of interest depends on the amount of independent available information. In this paper, we consider the identifiability of the mass and stiffness parameters of shear‐type systems in output‐only situations with incomplete instrumentation. A mode shape expansion‐cum‐mass normalization approach is presented to obtain the complete mass normalized mode shape matrix, starting from the incomplete non‐normalized modes identified using any operational modal analysis technique. An analysis is presented to determine the minimum independent information carried by any given sensor set‐up. This is used to determine the minimum necessary number and location of sensors from the point of view of minimum necessary information for identification. The different theoretical discussions are illustrated using numerical simulations and shake table experiments. It is shown that the proposed identification algorithm is able to obtain reliably accurate physical parameter estimates under the constraints of minimal instrumentation, minimal a priori information, and unmeasured input. The sensor placement rules can be used in experiment design to determine the necessary number and location of sensors on the monitored system. John Wiley & Sons, Ltd.  相似文献   

17.
A method to calculate the stationary random response of a non-classically damped structure is proposed that features clearly-defined physical meaning and simple expression. The method is developed in the frequency domain, The expression of the proposed method consists of three terms, i.e., modal velocity response, modal displacement response, and coupled (between modal velocity and modal displacement response), Numerical results from the parametric study and three example structures reveal that the modal velocity response term and the coupled term are important to structural response estimates only for a dynamic system with a tuned mass damper. In typical cases, the modal displacement term can provide response estimates with satisfactory accuracy by itself, so that the modal velocity term and coupled term may be ignored without loss of accuracy, This is used to simplify the response computation of non-classically damped structures. For the white noise excitation, three modal correlation coefficients in closed form are derived. To consider the modal velocity response term and the coupled term, a simplified approximation based on white noise excitation is developed for the case when the modal velocity response is important to the structural responses. Numerical results show that the approximate expression based on white noise excitation can provide structural responses with satisfactory accuracy~  相似文献   

18.
Groundwater characterization involves the resolution of unknown system characteristics from observation data, and is often classified as an inverse problem. Inverse problems are difficult to solve due to natural ill-posedness and computational intractability. Here we adopt the use of a simulation–optimization approach that couples a numerical pollutant-transport simulation model with evolutionary search algorithms for solution of the inverse problem. In this approach, the numerical transport model is solved iteratively during the evolutionary search. This process can be computationally intensive since several hundreds to thousands of forward model evaluations are typically required for solution. Given the potential computational intractability of such a simulation–optimization approach, parallel computation is employed to ease and enable the solution of such problems. In this paper, several variations of a groundwater source identification problem is examined in terms of solution quality and computational performance. The computational experiments were performed on the TeraGrid cluster available at the National Center for Supercomputing Applications. The results demonstrate the performance of the parallel simulation–optimization approach in terms of solution quality and computational performance.  相似文献   

19.
Output‐only modal identification is needed when only structural responses are available. As a powerful unsupervised learning algorithm, blind source separation (BSS) technique is able to recover the hidden sources and the unknown mixing process using only the observed mixtures. This paper proposes a new time‐domain output‐only modal identification method based on a novel BSS learning algorithm, complexity pursuit (CP). The proposed concept—independent ‘physical systems’ living on the modal coordinates—connects the targeted constituent sources (and their mixing process) targeted by the CP learning rule and the modal responses (and the mode matrix), which can then be directly extracted by the CP algorithm from the measured free or ambient system responses. Numerical simulation results show that the CP method realizes accurate and robust modal identification even in the closely spaced mode and the highly damped mode cases subject to non‐stationary ambient excitation and provides excellent approximation to the non‐diagonalizable highly damped (complex) modes. Experimental and real‐world seismic‐excited structure examples are also presented to demonstrate its capability of blindly extracting modal information from system responses. The proposed CP is shown to yield clear physical interpretation in modal identification; it is computational efficient, user‐friendly, and automatic, requiring little expertise interactions for implementations. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
弹性波方程正演的粗粒度并行算法   总被引:3,自引:3,他引:0       下载免费PDF全文
波动方程正演在地震资料采集、处理、解释与反演中均能发挥重要作用,但现有的基于求解地震波动方程的正演算法由于受庞大计算量的制约而难于大规模应用于工业生产.本文从二维弹性波动方程出发,研究了利用有限差分法并行求解该方程的基本思路与方法,给出了适于并行求解的计算空间划分方法与通信方案,分析了不同参数条件下并行程序的运行时间、加速比与效率.引入消息传递接口(MPI)实现了弹性波方程的并行求解,极大地提高了数值求解弹性波方程的计算效率.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号