首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 254 毫秒
1.
快速、准确地获得土壤含水量信息对农业、水文地质、工程地质和环境科学都具有十分重要的意义.作为中尺度的非侵入型的探测土壤含水量的方法,探地雷达方法受到越来越多的重视,具有广阔的应用前景.本文基于速度分析原理和混合介质介电模型,建立了一套计算土壤含水量的探地雷达数据处理和分析流程.利用提出的数据处理和分析流程对多层水平介质模型的正演模拟数据进行了处理和分析,获得的结果说明了应用此套流程对探地雷达共中心点(CMP)数据估计土壤含水量是适用可行的.然后应用此流程对蒙古国乌兰巴托市水源区域采集的CMP数据进行了处理和分析,并与观测井的信息进行对比,获得了该区域准确的地下水位和土壤含水量信息.正演模拟数据和实测数据处理分析结果验证了探地雷达方法测量土壤含水量的有效性和可靠性.  相似文献   

2.
描述和估计介质含水量、介电常数等属性参数分布是探地雷达探测技术的重要研究内容。雷达波的旅行时间和反射振幅系数与介质含水量、孔隙度与介电常数密切相关。常规通过旅行时间计算波速以估计介质参数的方法,例如透射波法,共中心点速度分析等,对于复杂介质分辨率有限。基于反射振幅的阻抗反演方法可以直接根据反射系数计算雷达波阻抗以估计介质属性参数,从而有效地避开常规方法在计算波速时精度低的问题。本文首先建立了基于高斯型和指数型混合自相关函数的三维多尺度等效随机介质模型刻画地下随机介质参数分布,并在局部加入高斯椭圆方程描述局部随机异常目标体。其次,通过引入锥形函数以降低随机介质模型在离散网格数值计算方法误差。在此基础上,推导了探地雷达递推阻抗反演的基本流程并结合随机介质模型测试了该方法在复杂介质参数估计中的计算精度。最后,对内蒙地区的实测探地雷达数据利用递推阻抗反演方法来估计地下污染物参数,估计介电常数、含水量结果与钻孔实测数据和同期开展的电阻率成像结果有很好的吻合。说明基于递推阻抗反演方法在探地雷达复杂介质属性参数估计中具有很好的应用前景。  相似文献   

3.
探地雷达测定土壤含水量的研究进展   总被引:3,自引:5,他引:3       下载免费PDF全文
结合国内外关于探地雷达测定土壤含水量的最新研究成果,阐述了探地雷达测定土壤含水量的基本原理和计算方法,总结和评价了土壤含水量与土壤介电常数的不同计算模型,针对在实际应用中存在的不足,提出了相关改进措施,并展望发展方向.  相似文献   

4.
一种基于神经网络的探地雷达信号解释研究   总被引:8,自引:7,他引:1  
运用人工神经网络理论和方法,建立了用于隧道衬砌厚度探地雷达探测信号解释的BP神经网络模型,对某公路隧道衬砌检测厚度进行了分析应用,并与钻孔取芯结果进行比较,实践证明,该方法可提高探地雷达信号解释精度和工作效率.  相似文献   

5.
探地雷达技术在金属矿区得到广泛应用.由于金属矿区地质构造复杂,使用于探测层状介质的反射波探地雷达勘探方法在金属矿探查中受到限制.为提高接收信号能量强度以提高探测结果分辨率,实现探测复杂地质构造及隐伏岩体,将层析成像方法用于探地雷达对金属矿区的勘查中.建立了典型的金属矿区速度模型,并选取了代表性的切片,采用LSQR算法反演计算.仿真结果误差都在1‰的数量级,证明了雷达层析成像技术应用于金属矿区勘察的有效性.  相似文献   

6.
高频电磁波传播速度在水及淤积砂土中影响因素实验研究   总被引:2,自引:1,他引:1  
水及淤积土中电磁波传播速度是实现水上探地雷达(GPR)探测数据准确时深转换的关键因素.论文基于探地雷达实测结果分析了水温、盐度、浊度对水中电磁波速的影响和粒径组成、含水量变化对砂土介电常数(电磁波速)的影响,建立了淤积砂土介电常数模型并给出了相应速度计算方法.研究表明水中电磁波速主要受水体盐度影响,随盐度增大而指数减小.淤积砂土介电常数符合Looyenga模型,现场探测时可根据土样三相体积比确定土体介电常数,进而确定土体电磁波速,实现GPR数据时深准确转换.  相似文献   

7.
在城市道路塌陷隐患探测中,相邻车道地下介质差异性较小,其探地雷达剖面之间具有较高的一致性和关联性,为了提高探地雷达资料解释的准确性和速度,综合对比分析相邻车道探地雷达剖面之间的相关性,提出了探地雷达多剖面联合解释方法,首先同时对多个相邻车道探地雷达剖面中的塌陷隐患病害同步进行分类和分级判释,然后将每个病害异常输出为单体病害文件至单体病害文件库,并基于人机交互方式对单向或双向多车道探地雷达剖面中的任意病害类型或病害等级进行综合统计、自动排序,可用于生成严重病害的现场加密复测验证单和最终的检测报告.结果表明:探地雷达多剖面联合解释方法能够同时对多个相邻车道探地雷达剖面同步进行对比分析、相互验证,能有效克服单剖面信息量不足的局限性,不仅可以快速辨别和剔除外界干扰形成的虚假异常,减少多解性,而且可以估算地下病害异常的面积范围和空间展布,有效提高解释的自动化、准确性和可信度,明显加快解释速度.  相似文献   

8.
地下管线实际形状与准确位置的确定是探地雷达图谱解释的主要内容之一.制约管线探地雷达反射归位精度最主要的因素是电磁波在地层中的传播速度,如何准确确定电磁波传播速度是探地雷达偏移处理能否成功的关键.为便于对探地雷达图谱特征进行定量解释,开展了不同大小、埋深与重叠等情况管线的正演模拟与模型实验.结合小波熵理论与频率波数偏移成像方法,提出了一种基于小波熵的探地雷达频率波数偏移成像方法,将其应用于地下管线正演模拟与模型实验探地雷达信号偏移处理.研究结果表明:探地雷达图像经基于小波熵的频率波数偏移处理后,电磁波速度的估计值与真实值误差可控制在2%以内;随着管线管径大小与埋置深度的增加,绕射双曲线的开口弧度不断增大,管与管之间绕射波交叉干扰越严重;探地雷达信号经基于小波熵的频率波数偏移处理后可大大提高图像的分辨率,压制了多次波的干扰,使绕射双曲线更收敛,能量更聚焦,从而有利于地下管线实际形状与具体位置的准确提取.研究结果对城市地下管线探地雷达图谱解译工作提供技术支持.  相似文献   

9.
探地雷达GPR正演模拟的时域有限差分实现   总被引:1,自引:13,他引:1  
近年来,随着数字处理技术和电子技术的飞速发展,探地雷达(GPR)的实际应用范围迅速扩大,现已覆盖考古、矿产资源勘探、水文地质调查、岩土勘查、无损检测、工程建筑物结构调查、军事等众多领域,解决了很多工程实际问题,成为浅层勘探的有力工具.而探地雷达的理论研究与实际的应用相比,具有明显的滞后性.但是解释人员要达到精确地对探地雷达实际资料的进行解析,必须事先了解地质体的雷达反射剖面的特征,所以作为反演与解释基础的复杂地电模型的探地雷达正演模拟技术,就成了探地雷达理论研究的主要内容之一.本文以麦克斯韦两个旋度方程为基本出发点,运用K.S.Yee的空间网格模型理论和时域有限差分法的基本原理,推导出二维空间的探地雷达正演方程组,并详细地分析了差分格式中半空间步长与半时间步长的实现方法,及其雷达波电场与磁场分量在计算机上相互关系的C程序实现.然后讨论了数值频散关系及其产生原因,通过同时考虑时域有限差分法及Yee氏网格的特点,推导出了符合探地雷达实际传播规律的理想频散关系,作者自制了探地雷达正演程序,并分别计算了Mur超吸收边界条件及无边界条件下的雷达地电模型,通过对比可知,超吸收边界条件可利用,大大地减少截断边界处的干扰波,达到用有限区域达到在无限空间传播的效果.最后作者利用自制程序,对“V”字形和同一斜面上的五个圆的两个典型的探地雷达地电模型进行了正演模拟,得到了正演剖面图,消除了边界反射后的雷达剖面能很好地指导工作人员对雷达实测剖面的地质解释,同时使正演研究更符合实际的地质情况.  相似文献   

10.
机载探地雷达可能解决危险环境或广域条件下的近地表探测问题,用于解决环境、生态或军事方面的问题.然而由于种种原因,该技术的发展却显得比较慢.为了推进该技术的发展,本文介绍了目前世界范围内机载探地雷达的进展,并利用时间域有限差分法对一些典型模型进行数值模拟,并用特定的偏移成像方法对模拟结果进行成像.目前存在的机载探地雷达主要有三种类型:第一种为将常规探地雷达天线悬挂在直升飞机上,第二种为针对机载探地雷达开发的雷达系统,第三种为具有探地能力的合成孔径雷达.数值模拟结果表明,不管是水平地面的情况下,还是起伏界面的情况下,机载探地雷达都能清楚探测一定深度范围内的地下目标.可见,机载探地雷达是存满希望的一种方法.  相似文献   

11.
GPR study of pore water content and salinity in sand   总被引:5,自引:0,他引:5  
High‐resolution studies of hydrological problems of the near‐surface zone can be better accomplished by applying ground‐probing radar (GPR) and geoelectrical techniques. We report on GPR measurements (500 and 900 MHz antennae) which were carried out on a sorted, clean sand, both in the laboratory and at outdoor experimental sites. The outdoor sites include a full‐scale model measuring 5 × 3 × 2.4 m3 and a salinity site measuring 7.0 × 1.0 × 0.9 m3 with three buried sand bodies saturated with water of various salinities. Our studies investigate the capability of GPR to determine the pore water content and to estimate the salinity. These parameters are important for quantifying and evaluating the water quality of vadose zones and aquifers. The radar technique is increasingly applied in quantifying soil moisture but is still rarely used in studying the problems of water salinity and quality. The reflection coefficient at interfaces is obtained from the amplitude spectrum in the frequency and time domains and is confirmed by 1D wavelet modelling. In addition, the GPR velocity to a target at a known depth is determined using techniques of two‐way traveltime, CMP semblance analysis and fitting an asymptotic diffraction curve. The results demonstrate that the reflection coefficient increases with increasing salinity of the moisture. These results may open up a new approach for applications in environmental problems and groundwater prospecting, e.g. mapping and monitoring of contamination and evaluating of aquifer salinity, especially in coastal areas with a time‐varying fresh‐water lens. In addition, the relationship between GPR velocity and water content is established for the sand. Using this relationship, a subsurface velocity distribution for a full‐scale model of this sand is deduced and applied for migrated radargrams. Well‐focused diffractions separate single small targets (diameter of 2–3 cm, at a depth of 20–180 cm and a vertical interval of 20 cm). The results underscore the high potential of GPR for determining moisture content and its variation, flow processes and water quality, and even very small bodies inside the sand or soil.  相似文献   

12.
Ground-penetrating radar (GPR) is an effective tool for imaging the spatial distribution of water content. An artificial groundwater recharge test was conducted in Nagaoka City in Japan, and time-lapse crosshole GPR data were collected to monitor the infiltration process in the vadose zone. Since electromagnetic wave velocities in the vadose zone are largely controlled by variations in water content, an increase in traveltime is interpreted as an increase in saturation. In the test zone, the infiltrated water penetrated downward with an average velocity of about 2.7 m/h. A finite-difference time-domain method using two-dimensional cylindrical coordinates is applied to simulate radargrams associated with the advancing wetting front and to quantify the effects of critical refraction. Standard zero-offset profiling for which all first-arrivals are assumed to be direct waves results in an underestimation of water content in the transition zone above the wetting front. As a result, correct velocity analysis requires identification of first-arriving critically refracted waves from the traveltime profile to accurately determine a water content profile.  相似文献   

13.
The integration of geophysical data into the subsurface characterization problem has been shown in many cases to significantly improve hydrological knowledge by providing information at spatial scales and locations that is unattainable using conventional hydrological measurement techniques. In particular, crosshole ground-penetrating radar (GPR) tomography has shown much promise in hydrology because of its ability to provide highly detailed images of subsurface radar wave velocity, which is strongly linked to soil water content. Here, we develop and demonstrate a procedure for inverting together multiple crosshole GPR data sets in order to characterize the spatial distribution of radar wave velocity below the water table at the Boise Hydrogeophysical Research Site (BHRS) near Boise, Idaho, USA. Specifically, we jointly invert 31 intersecting crosshole GPR profiles to obtain a highly resolved and consistent radar velocity model along the various profile directions. The model is found to be strongly correlated with complementary neutron porosity-log data and is further corroborated by larger-scale structural information at the BHRS. This work is an important prerequisite to using crosshole GPR data together with existing hydrological measurements for improved groundwater flow and contaminant transport modeling.  相似文献   

14.
The travel time and amplitude of ground-penetrating radar (GPR) waves are closely related to medium parameters such as water content, porosity, and dielectric permittivity. However, conventional estimation methods, which are mostly based on wave velocity, are not suitable for real complex media because of limited resolution. Impedance inversion uses the reflection coefficient of radar waves to directly calculate GPR impedance and other parameters of subsurface media. We construct a 3D multiscale stochastic medium model and use the mixed Gaussian and exponential autocorrelation function to describe the distribution of parameters in real subsurface media. We introduce an elliptical Gaussian function to describe local random anomalies. The tapering function is also introduced to reduce calculation errors caused by the numerical simulation of discrete grids. We derive the impedance inversion workflow and test the calculation precision in complex media. Finally, we use impedance inversion to process GPR field data in a polluted site in Mongolia. The inversion results were constrained using borehole data and validated by resistivity data.  相似文献   

15.
Air flows from the atmosphere into an unconfined aquifer when the water table falls during pumping tests. Pumping test results in unconfined aquifers may be significantly affected by low‐permeability zones (LPZs) near the initial water table position, because they restrict the downward movement of air. A transient, three‐dimensional air–water two‐phase flow model is employed to investigate numerically the effects of local heterogeneity on pumping test results in unconfined aquifers. Two cases of local heterogeneities are considered herein: a LPZ around the pumping well and on one side of the pumping well. Results show that the drawdown with the LPZ is significantly greater than that of the homogeneous aquifer. The differences in drawdown are the most significant at intermediate times and gradually diminish at later times. The LPZ significantly reduces air flow from the atmosphere to the aquifer. The pore air velocity in the LPZ is very low. The air pressure at the observation point under the LPZ when air begins to enter is significantly lower than the air pressure of the homogeneous aquifer at the same point. After that, the air pressure increases quickly and then increases slowly. The time for the air pressure to reach the atmospheric pressure is significantly longer. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
Magnetic resonance sounding (MRS) is a noninvasive geophysical method that allows estimating the free water content and transmissivity of aquifers. In this article, the ability of MRS to improve the reliability of a numerical groundwater model is assessed. Thirty-five sites were investigated by MRS over a ~5000 km(2) domain of the sedimentary Continental Terminal aquifer in SW Niger. Time domain electromagnetic soundings were jointly carried out to estimate the aquifer thickness. A groundwater model was previously built for this section of the aquifer and forced by the outputs from a distributed surface hydrology model, to simulate the observed long-term (1992 to 2003) rise in the water table. Uncertainty analysis had shown that independent estimates of the free water content and transmissivity values of the aquifer would facilitate cross-evaluation of the surface-water and groundwater models. MRS results indicate ranges for permeability (K = 1 × 10(-5) to 3 × 10(-4) m/s) and for free water content (w = 5% to 23% m(3) /m(3) ) narrowed by two orders of magnitude (K) and by ~50% (w), respectively, compared to the ranges of permeability and specific yield values previously considered. These shorter parameter ranges result in a reduction in the model's equifinality (whereby multiple combinations of model's parameters are able to represent the same observed piezometric levels), allowing a better constrained estimate to be derived for net aquifer recharge (~22 mm/year).  相似文献   

17.
The attenuation of ground‐penetrating radar (GPR) energy in the subsurface decreases and shifts the amplitude spectrum of the radar pulse to lower frequencies (absorption) with increasing traveltime and causes also a distortion of wavelet phase (dispersion). The attenuation is often expressed by the quality factor Q. For GPR studies, Q can be estimated from the ratio of the real part to the imaginary part of the dielectric permittivity. We consider a complex power function of frequency for the dielectric permittivity, and show that this dielectric response corresponds to a frequency‐independent‐Q or simply a constant‐Q model. The phase velocity (dispersion relationship) and the absorption coefficient of electromagnetic waves also obey a frequency power law. This approach is easy to use in the frequency domain and the wave propagation can be described by two parameters only, for example Q and the phase velocity at an arbitrary reference frequency. This simplicity makes it practical for any inversion technique. Furthermore, by using the Hilbert transform relating the velocity and the absorption coefficient (which obeys a frequency power law), we find the same dispersion relationship for the phase velocity. Both approaches are valid for a constant value of Q over a restricted frequency‐bandwidth, and are applicable in a material that is assumed to have no instantaneous dielectric response. Many GPR profiles acquired in a dry aeolian environment have shown a strong reflectivity inside dunes. Changes in water content are believed to be the origin of this reflectivity. We model the radar reflections from the bottom of a dry aeolian dune using the 1D wavelet modelling method. We discuss the choice of the reference wavelet in this modelling approach. A trial‐and‐error match of modelled and observed data was performed to estimate the optimum set of parameters characterizing the materials composing the site. Additionally, by combining the complex refractive index method (CRIM) and/or Topp equations for the bulk permittivity (dielectric constant) of moist sandy soils with a frequency power law for the dielectric response, we introduce them into the expression for the reflection coefficient. Using this method, we can estimate the water content and explain its effect on the reflection coefficient and on wavelet modelling.  相似文献   

18.
Two ground penetrating radar (GPR) techniques were used to estimate the shallow soil water content at the field scale. The first technique is based on the ground wave velocity measured with a bistatic impulse radar connected to 450 MHz ground-coupled antennas. The second technique is based on inverse modeling of an off-ground monostatic TEM horn antenna in the 0.8–1.6 GHz frequency range. Data were collected on a 8 by 9 m partially irrigated intensive research plot and along four 148.5 m transects. Time domain reflectometry, capacitance sensors, and volumetric soil samples were used as reference measurements. The aim of the study was to test the applicability of the ground wave method and the off-ground inverse modeling approach at the field scale for a soil with a silt loam texture. The results for the ground wave technique were difficult to interpret due to the strong attenuation of the GPR signal, which is related to the silt loam texture at the test site. The root mean square error of the ground wave technique was 0.076 m3 m−3 when compared to the TDR measurements and 0.102 m3 m−3 when compared with the volumetric soil samples. The off-ground monostatic GPR measured less within-field soil water content variability than the reference measurements, resulting in a root mean square error of 0.053 m3 m−3 when compared with the TDR measurements and an error of 0.051 m3 m−3 when compared with the volumetric soil samples. The variability between the two GPR measurements was even larger with a RSME of 0.115 m3 m−3. In summary, both GPR methods did not provide adequate spatial information on soil water content variation at the field scale. The main reason for the deviating results of the ground wave method was the poor data quality due to high silt and clay content at the test site. Additional reasons were shallow reflections and the dry upper soil layer that cannot be detected by the ground wave method. In the case of off-ground GPR, the high sensitivity to the dry surface layer is the most likely reason for the observed deviations. The off-ground GPR results might be improved by using a different antenna that allows data acquisition in a lower frequency range.  相似文献   

19.
The concentrations of chlorofluorocarbons (CFC‐11, CFC‐12 and CFC‐113) and tritium (3H) content in groundwater were used to date groundwater age, delineate groundwater flow systems and estimate flow velocity in the Hohhot basin. The estimated young groundwater age is fallen in the bracket of 21 ~ 50 a and indicates the presence of two different age profiles and flow systems in the shallow groundwater system. Older age waters occur under the topographically low areas, where the aquifer is double‐layer aquifer system consisting of shallow unconfined‐semi‐confined aquifer and deep confined aquifer. This reflects long flow paths associated with regional flow. Groundwater (range from 21 to 34 years) in the north piedmont and east hilly areas, where the aquifer is a single‐layer aquifer consisting of alluvial fans, are typically younger than those in the low areas. The combination of CFCs dating with hydrogeological information indicates that both local and regional flow systems are present at the basin. The regional groundwater flow mainly flows from the north and east to the southwest, the local groundwater flow system occurs nearby the Hohhot city. The mean regional groundwater flow velocity of the shallow groundwater is estimated about 0.73 km/a. These findings can aid in refining hydrogeological conceptual model of the study area. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号