首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Amacrine cells are a heterogeneous group of interneurons that form microcircuits with bipolar, amacrine and ganglion cells to process visual information in the inner retina. This study has characterized the morphology, neurochemistry and major cell types of a VIP-ires-Cre amacrine cell population. VIP-tdTomato and -Confetti (Brainbow2.1) mouse lines were generated by crossing a VIP-ires-Cre line with either a Cre-dependent tdTomato or Brainbow2.1 reporter line. Retinal sections and whole-mounts were evaluated by quantitative, immunohistochemical, and intracellular labeling approaches. The majority of tdTomato and Confetti fluorescent cell bodies were in the inner nuclear layer (INL) and a few cell bodies were in the ganglion cell layer (GCL). Fluorescent processes ramified in strata 1, 3, 4, and 5 of the inner plexiform layer (IPL). All tdTomato fluorescent cells expressed syntaxin 1A and GABA-immunoreactivity indicating they were amacrine cells. The average VIP-tdTomato fluorescent cell density in the INL and GCL was 535 and 24 cells/mm2, respectively. TdTomato fluorescent cells in the INL and GCL contained VIP-immunoreactivity. The VIP-ires-Cre amacrine cell types were identified in VIP-Brainbow2.1 retinas or by intracellular labeling in VIP-tdTomato retinas. VIP-1 amacrine cells are bistratified, wide-field cells that ramify in strata 1, 4, and 5, VIP-2A and 2B amacrine cells are medium-field cells that mainly ramify in strata 3 and 4, and VIP-3 displaced amacrine cells are medium-field cells that ramify in strata 4 and 5 of the IPL. VIP-ires-Cre amacrine cells form a neuropeptide-expressing cell population with multiple cell types, which are likely to have distinct roles in visual processing.  相似文献   

2.
Neuropeptide Y (NPY) is a peptide neurotransmitter abundantly expressed in the mammalian retina. Since its discovery, NPY has been studied in retinas of several species, but detailed characterization of morphology, cell‐type, and connectivity has never been conducted in larger mammals including humans and pigs. As the pig due to size and cellular composition is a well‐suited animal for retinal research, we chose to compare the endogenous NPY system of the human retina to that of pigs to support future research in this field. In the present study, using immunohistochemistry, confocal microscopy and 3D reconstructions, we found NPY to be expressed in GABAergic and calretinin‐immunoreactive (‐ir) amacrine cells of both species as well as parvalbumin‐ir amacrine cells of humans. Furthermore, we identified at least two different types of medium‐ to wide‐field NPY‐ir amacrine cells. Finally, we detected likely synaptic appositions between the NPY‐ir amacrine cells and melanopsin‐ and nonmelanopsin‐ir ganglion cells, GABAergic and dopaminergic amacrine cells, rod bipolar cells, and horizontal cells, suggesting that NPY‐ir cells play diverse roles in modulation of both image and non‐image forming retinal signaling. These findings extend existing knowledge on NPY and NPY‐expressing cells in the human and porcine retina showing a high degree of comparability. The extensive distribution and connectivity of NPY‐ir cells described in the present study further highlights the potential importance of NPY signaling in retinal function.  相似文献   

3.
The mammalian retina encodes visual information in dim light using rod photoreceptors and a specialized circuit: rods→rod bipolar cells→AII amacrine cell. The AII amacrine cell uses sign-conserving electrical synapses to modulate ON cone bipolar cell terminals and sign-inverting chemical (glycinergic) synapses to modulate OFF cone cell bipolar terminals; these ON and OFF cone bipolar terminals then drive the output neurons, retinal ganglion cells (RGCs), following light increments and decrements, respectively. The AII amacrine cell also makes direct glycinergic synapses with certain RGCs, but it is not well established how many types receive this direct AII input. Here, we investigated functional AII amacrine→RGC synaptic connections in the retina of the guinea pig (Cavia porcellus) by recording inhibitory currents from RGCs in the presence of ionotropic glutamate receptor (iGluR) antagonists. This condition isolates a specific pathway through the AII amacrine cell that does not require iGluRs: cone→ON cone bipolar cell→AII amacrine cell→RGC. These recordings show that AII amacrine cells make direct synapses with OFF Alpha, OFF Delta and a smaller OFF transient RGC type that co-stratifies with OFF Alpha cells. However, AII amacrine cells avoid making synapses with numerous RGC types that co-stratify with the connected RGCs. Selective AII connections ensure that a privileged minority of RGC types receives direct input from the night-vision pathway, independent from OFF bipolar cell activity. Furthermore, these results illustrate the specificity of retinal connections, which cannot be predicted solely by co-stratification of dendrites and axons within the inner plexiform layer.  相似文献   

4.
5.
The vertebrate retina has about 30 subtypes of ganglion cells. Each ganglion cell receives synaptic inputs from specific types of bipolar and amacrine cells ramifying at the same depth of the inner plexiform layer (IPL), each of which is thought to process a specific aspect of visual information. Here, we identified one type of displaced ganglion cell in the goldfish retina which had a large and elongated dendritic field. As a population, all of these ganglion cells were oriented in the horizontal axis and perpendicular to the dorsal–ventral axis of the goldfish eye in the central part of retina. This ganglion cell has previously been classified as Type 1.2. However, the circuit elements which synapse with this ganglion cell are not yet characterized. We found that this displaced ganglion cell was directly tracer‐coupled only with homologous ganglion cells at sites containing Cx35/36 puncta. We further illustrated that the processes of dopaminergic neurons often terminated next to intersections between processes of ganglion cells, close to where dopamine D1 receptors were localized. Finally, we showed that Mb1 ON bipolar cells had ribbon synapses in the axonal processes passing through the IPL and made ectopic synapses with this displaced ganglion cell that stratified into stratum 1 of the IPL. These results suggest that the displaced ganglion cell may synapse with both Mb1 cells using ectopic ribbon synapses and OFF cone bipolar cells with regular ribbon synapses in the IPL to function in both scotopic and photopic light conditions.  相似文献   

6.
Dopaminergic amacrine cells (DACs) release dopamine in response to light‐driven synaptic inputs, and are critical to retinal light adaptation. Retinal degeneration (RD) compromises the light responsiveness of the retina and, subsequently, dopamine metabolism is impaired. As RD progresses, retinal neurons exhibit aberrant activity, driven by AII amacrine cells, a primary target of the retinal dopaminergic network. Surprisingly, DACs are an exception to this physiological change; DACs exhibit rhythmic activity in healthy retina, but do not burst in RD. The underlying mechanism of this divergent behavior is not known. It is also unclear whether RD leads to structural changes in DACs, impairing functional regulation of AII amacrine cells. Here we examine the anatomical details of DACs in three mouse models of human RD to determine how changes to the dopaminergic network may underlie physiological changes in RD. By using rd10, rd1, and rd1/C57 mice we were able to dissect the impacts of genetic background and the degenerative process on DAC structure in RD retina. We found that DACs density, soma size, and primary dendrite length are all significantly reduced. Using a novel adeno‐associated virus‐mediated technique to label AII amacrine cells in mouse retina, we observed diminished dopaminergic contacts to AII amacrine cells in RD mice. This was accompanied by changes to the components responsible for dopamine synthesis and release. Together, these data suggest that structural alterations of the retinal dopaminergic network underlie physiological changes during RD. J. Comp. Neurol. 524:1208–1221, 2016. © 2015 Wiley Periodicals, Inc.  相似文献   

7.
The New World marmoset monkey (Callithrix jacchus) has a relatively short gestational period compared with other primates but possesses a retina at a similar stage of maturation by birth. Previous studies have highlighted that the complex fovea of the marmoset undergoes a more rapid postnatal development in comparison with the Macaca monkey, reaching a mature stage earlier than these species. In this current study, we examined the prenatal proliferation profile of cells in the entire retina employing the thymidine analogs and also determined their phenotype by double‐label immunocytochemistry using type‐specific markers. Akin to other primate species, we demonstrate a centroperipheral gradient in the emergence of both neurons and Müller glia with cones, ganglion cells, and horizontal cells generated first in the fovea at fetal day (Fd)70–74 and with the last generated at the retinal edge at Fd115. Rods, bipolar cells, amacrine cells, displaced amacrine cells, and Müller glia were generated between Fd76 and Fd135 along the same gradient. Similar to foveal development, marmoset neuronal generation was rapid, only taking 51% of gestation whereas in Macaca this takes 81%. J. Comp. Neurol. 524:1193–1207, 2016. © 2015 Wiley Periodicals, Inc.  相似文献   

8.
9.
The present study has taken advantage of publicly available cell type specific mRNA expression databases in order to identify potential genes participating in the development of retinal AII amacrine cells. We profile two such genes, Delta/Notch‐like EGF repeat containing (Dner) and nuclear factor I/A (Nfia), that are each heavily expressed in AII amacrine cells in the mature mouse retina, and which conjointly identify this retinal cell population in its entirety when using antibodies to DNER and NFIA. DNER is present on the plasma membrane, while NFIA is confined to the nucleus, consistent with known functions of each of these two proteins. DNER also identifies some other subsets of retinal ganglion and amacrine cell types, along with horizontal cells, while NFIA identifies a subset of bipolar cells as well as Muller glia and astrocytes. During early postnatal development, NFIA labels astrocytes on the day of birth, AII amacrine cells at postnatal (P) day 5, and Muller glia by P10, when horizontal cells also transiently exhibit NFIA immunofluorescence. DNER, by contrast, is present in ganglion and amacrine cells on P1, also labeling the horizontal cells by P10. Developing AII amacrine cells exhibit accumulating DNER labeling at the dendritic stalk, labeling that becomes progressively conspicuous by P10, as it is in maturity. This developmental time course is consistent with a prospective role for each gene in the differentiation of AII amacrine cells.  相似文献   

10.
The purpose of this work was to evaluate a potentially useful animal model, Meriones shawi (M.sh)—developing metabolic X syndrome, diabetes and possessing a visual streak similar to human macula—in the study of diabetic retinopathy and diabetic macular edema (DME). Type 2 diabetes (T2D) was induced by high fat diet administration in M.sh. Body weights, blood glucose levels were monitored throughout the study. Diabetic retinal histopathology was evaluated 3 and 7 months after diabetes induction. Retinal thickness was measured, retinal cell types were labeled by immunohistochemistry and the number of stained elements were quantified. Apoptosis was determined with TUNEL assay. T2D induced progressive changes in retinal histology. A significant decrease of retinal thickness and glial reactivity was observed without an increase in apoptosis rate. Photoreceptor outer segment degeneration was evident, with a significant decrease in the number of all cones and M‐cone subtype, but—surprisingly—an increase in S‐cones. Damage of the pigment epithelium was also confirmed. A decrease in the number and labeling intensity of parvalbumin‐ and calretinin‐positive amacrine cells and a loss of ganglion cells was detected. Other cell types showed no evident alterations. No DME‐like condition was noticed even after 7 months. M.sh could be a useful model to study the evolution of diabetic retinal pathology and to identify the role of hypertension and dyslipidemia in the development of the reported alterations. Longer follow up would be needed to evaluate the potential use of the visual streak in modeling human macular diseases.  相似文献   

11.
Inhibitory neurons are crucial for shaping and regulating the dynamics of the entire network, and disturbances in these neurons contribute to brain disorders. Despite the recent progress in genetic labeling techniques, the heterogeneity of inhibitory neurons requires the development of highly characterized tools that allow accurate, convenient, and versatile visualization of inhibitory neurons in the mouse brain. Here, we report a novel genetic technique to visualize the vast majority and/or sparse subsets of inhibitory neurons in the mouse brain without using techniques that require advanced skills. We developed several lines of Cre‐dependent tdTomato reporter mice based on the vesicular GABA transporter (VGAT)‐BAC, named VGAT‐stop‐tdTomato mice. The most useful line (line #54) was selected for further analysis based on two characteristics: the inhibitory neuron‐specificity of tdTomato expression and the transgene integration site, which confers efficient breeding and fewer adverse effects resulting from transgene integration‐related genomic disruption. Robust and inhibitory neuron‐specific expression of tdTomato was observed in a wide range of developmental and cellular contexts. By breeding the VGAT‐stop‐tdTomato mouse (line #54) with a novel Cre driver mouse line, Galntl4‐CreER, sparse labeling of inhibitory neurons was achieved following tamoxifen administration. Furthermore, another interesting line (line #58) was generated through the unexpected integration of the transgene into the X‐chromosome and will be used to map X‐chromosome inactivation of inhibitory neurons. Taken together, our studies provide new, well‐characterized tools with which multiple aspects of inhibitory neurons can be studied in the mouse.  相似文献   

12.
We studied the retinal cone bipolar cells of Carollia perspicillata, a microchiropteran bat of the phyllostomid family. Microchiroptera are strongly nocturnal, with small eyes and rod‐dominated retinae. However, they also possess a significant cone population (2–4%) comprising two spectral types, which are hence the basis for daylight and color vision. We used antibodies against the calcium‐binding protein recoverin and the carbohydrate epitope 15 (CD15) as reliable markers for certain cone bipolar cells. Dye injections of recoverin‐ or CD15‐prelabeled cone bipolar cells in vertical slices revealed the morphology of the axon terminal system of individual bipolar cells. Seven distinct cone bipolar cell types were identified. They differed in the morphology and stratification level of their axon terminal system in the inner plexiform layer and in immunoreactivity for recoverin and/or CD15. Additional immunocytochemical markers were used to assess the functional ON/OFF subdivision of the inner plexiform layer. In line with the extended thickness of the ON sublayer of the inner plexiform layer in the microbat retina, more ON than OFF cone bipolar cell types were found, namely, four versus three. Most likely, in the bats' predominantly dark environment, ON signals have greater importance for contrast perception. We conclude that the microbat retina conforms to the general mammalian blueprint, in which light signals of intensities above rod sensitivity are detected by cones and transmitted to various types of ON and OFF cone bipolar cells. J. Comp. Neurol. 523:963–981, 2015. © 2014 Wiley Periodicals, Inc.  相似文献   

13.
Choline acetyltransferase (ChAT) expressing retinal amacrine cells are present across vertebrates. These interneurons play important roles in the development of retinal projections to the brain and in motion detection, specifically in generating direction-selective responses to moving stimuli. ChAT amacrine cells typically comprise two spatially segregated populations that form circuits in the ‘ON’ or ‘OFF’ synaptic layers of the inner retina. This stereotypic arrangement is also found across the adult human retina, with the notable exception that ChAT expression is evident in the ON but not OFF layer of the fovea, a region specialized for high-acuity vision. We thus investigated whether the human fovea exhibits a developmental path for ON and OFF ChAT cells that is retinal location-specific. Our analysis shows that at each retinal location, human ON and OFF ChAT cells differentiate, form their separate synaptic layers, and establish non-random mosaics at about the same time. However, unlike in the adult fovea, ChAT immunostaining is initially robust in both ON and OFF populations, up until at least mid-gestation. ChAT expression in the OFF layer in the fovea is therefore significantly reduced after mid-gestation. OFF ChAT cells in the human fovea and in the retinal periphery thus follow distinct maturational paths.  相似文献   

14.
Amacrine cells comprise ~30 morphological types in the mammalian retina. The synaptic connectivity and function of a few γ‐aminobutyric acid (GABA)ergic wide‐field amacrine cells have recently been studied; however, with the exception of the rod pathway‐specific AII amacrine cell, the connectivity of glycinergic small‐field amacrine cells has not been investigated in the mouse retina. Here, we studied the morphology and connectivity pattern of the small‐field A8 amacrine cell. A8 cells in mouse retina are bistratified with lobular processes in the ON sublamina and arboreal dendrites in the OFF sublamina of the inner plexiform layer. The distinct bistratified morphology was first visible at postnatal day 8, reaching the adult shape at P13, around eye opening. The connectivity of A8 cells to bipolar cells and ganglion cells was studied by double and triple immunolabeling experiments by using various cell markers combined with synaptic markers. Our data suggest that A8 amacrine cells receive glutamatergic input from both OFF and ON cone bipolar cells. Furthermore, A8 cells are coupled to ON cone bipolar cells by gap junctions, and provide inhibitory input via glycine receptor (GlyR) subunit α1 to OFF cone bipolar cells and to ON A‐type ganglion cells. Measurements of spontaneous glycinergic postsynaptic currents and GlyR immunolabeling revealed that A8 cells express GlyRs containing the α2 subunit. The results show that the bistratified A8 cell makes very similar synaptic contacts with cone bipolar cells as the rod pathway‐specific AII amacrine cell. However, unlike AII cells, A8 amacrine cells provide glycinergic input to ON A‐type ganglion cells. J. Comp. Neurol. 523:1529–1547, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

15.
We recently identified the leucine-rich repeat (LRR) adhesion protein, trophoblast glycoprotein (TPBG), as a novel PKCα-dependent phosphoprotein in retinal rod bipolar cells (RBCs). Since TPBG has not been thoroughly examined in the retina, this study characterizes the localization and expression patterns of TPBG in the developing and adult mouse retina using two antibodies, one against the N-terminal LRR domain and the other against the C-terminal PDZ-interacting motif. Both antibodies labeled RBC dendrites in the outer plexiform layer and axon terminals in the IPL, as well as a putative amacrine cell with their cell bodies in the inner nuclear layer (INL) and a dense layer in the middle of the inner plexiform layer (IPL). In live transfected HEK293 cells, TPBG was localized to the plasma membrane with the N-terminal LRR domain facing the extracellular space. TPBG immunofluorescence in RBCs was strongly altered by the loss of TRPM1 in the adult retina, with significantly less dendritic and axon terminal labeling in TRPM1 knockout compared to wild type, despite no change in total TPBG detected by immunoblotting. During retinal development, TPBG expression increases dramatically just prior to eye opening with a time course closely correlated with that of TRPM1 expression. In the retina, LRR proteins have been implicated in the development and maintenance of functional bipolar cell synapses, and TPBG may play a similar role in RBCs.  相似文献   

16.
Fyn, a major Src family kinase (SFK) member that is densely expressed in striatal neurons, is actively involved in the regulation of cellular and synaptic activities in local neurons. This SFK member is likely regulated by dopamine signaling through a receptor mechanism involving dopamine D2 receptors (D2Rs). This study characterizes the D2R‐dependent regulation of Fyn in the rat striatum in vivo. Moreover, we explore whether D2Rs regulate metabotropic glutamate receptor 5 (mGluR5) in its tyrosine phosphorylation and whether the D2R–SFK pathway modulates trafficking of mGluR5. We found that blockade of D2Rs by systemic administration of a D2R antagonist, eticlopride, substantially increased SFK phosphorylation in the striatum. This increase was a transient and reversible event. The eticlopride‐induced SFK phosphorylation occurred predominantly in immunopurified Fyn but not in another SFK member, Src. Eticlopride also elevated tyrosine phosphorylation of mGluR5. In parallel, eticlopride enhanced synaptic delivery of active Fyn and mGluR5. Pretreatment with an SFK inhibitor blocked the eticlopride‐induced tyrosine phosphorylation and synaptic trafficking of mGluR5. These results indicate that D2Rs inhibit SFK (mainly Fyn) phosphorylation in the striatum. D2Rs also inhibit tyrosine phosphorylation and synaptic recruitment of mGluR5 through a signaling mechanism likely involving Fyn. © 2016 Wiley Periodicals, Inc.  相似文献   

17.
The striatum is the major input nucleus of the basal ganglia involved in reward processing, goal‐directed behaviors, habit learning, and motor control. The striatum projects to the basal ganglia output nuclei via the "direct" and "indirect" pathways, which can be distinguished by their projection fields and their opposing effects on behavior. In adult animals, the functional opposition is modulated by the differential actions of D1 and D2 dopamine receptors (D1R, D2R), the expression of which is largely separated between these pathways. To determine whether a similar degree of separation exists earlier in development, we used dual‐label immunohistochemistry to map dorsal‐striatal D1R and D2R expression at the promoter level in postnatal day 0 (PD0) Drd1a‐tdTomato/Drd2‐GFP BAC transgenic mice, and at the receptor level by costaining for native D1R and D2R in wildtype (WT) PD0 animals. To assess for potential molecular interactions between D1R and D2R we also employed a recently developed proximity‐ligation assay (PLA). Limited coexpression and colocalization of the D1R and D2R proteins was found in clusters of neurons endemic to the "patch" compartment as identified by costaining with tyrosine hydroxylase, but not outside these clusters. Moreover, in contrast to our recent findings where we failed to detect a D1R‐D2R PLA signal in the adult striatum, in PD0 striatum we did identify a clear PLA signal for this pair of receptors. This colocalization at close proximity points to a possible role for D1R/D2R‐mediated crosstalk in early striatal ontogeny. J. Comp. Neurol. 523:1175–1189, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

18.
We have identified a novel, sixth type of intrinsically photosensitive retinal ganglion cell (ipRGC) in the mouse—the M6 cell. Its spiny, highly branched dendritic arbor is bistratified, with dendrites restricted to the inner and outer margins of the inner plexiform layer, co-stratifying with the processes of other ipRGC types. We show that M6 cells are by far the most abundant ganglion cell type labeled in adult pigmented Cdh3-GFP BAC transgenic mice. A few M5 ipRGCs are also labeled, but no other RGC types were encountered. Several distinct subnuclei in the geniculate complex and the pretectum contain labeled retinofugal axons in the Cdh3-GFP mouse. These are presumably the principle central targets of M6 cells (as well as M5 cells). Projections from M6 cells to the dorsal lateral geniculate nucleus were confirmed by retrograde tracing, suggesting they contribute to pattern vision. M6 cells have low levels of melanopsin expression and relatively weak melanopsin-dependent light responses. They also exhibit strong synaptically driven light responses. Their dendritic fields are the smallest and most abundantly branched of all ipRGCs. They have small receptive fields and strong antagonistic surrounds. Despite deploying dendrites partly in the OFF sublamina, M6 cells appear to be driven exclusively by the ON pathway, suggesting that their OFF arbor, like those of certain other ipRGCs, may receive ectopic input from passing ON bipolar cells axons in the OFF sublayer.  相似文献   

19.
The classical understanding of mammalian vision is that it occurs through “duplex” retinae containing both rod and cone photoreceptors, the signals from which are processed through rod‐ and/or cone‐specific signaling pathways. The recent discovery of rod monochromacy in some cetacean lineages provides a novel opportunity to investigate the effects of an evolutionary loss of cone photoreception on retinal organization. Sequence analysis of right whale (Eubalaena glacialis; family Balaenidae) cDNA derived from long‐wavelength sensitive (LWS) cone opsin mRNA identified several mutations in the opsin coding sequence, suggesting the loss of cone cell function, but maintenance of non‐photosensitive, cone opsin mRNA‐expressing cells in the retina. Subsequently, we investigated the retina of the closely related bowhead whale (Balaena mysticetus; family Balaenidae) to determine how the loss of cone‐mediated photoreception affects light signaling pathways in the retina. Anti‐opsin immunofluorescence demonstrated the total loss of cone opsin expression in B. mysticetus, whereas light microscopy, transmission electron microscopy, and bipolar cell (protein kinase C‐α [PKC‐α] and recoverin) immunofluorescence revealed the maintenance of cone soma, putative cone pedicles, and both rod and cone bipolar cell types. These findings represent the first immunological and anatomical evidence of a naturally occurring rod‐monochromatic mammalian retina, and suggest that despite the loss of cone‐mediated photoreception, the associated cone signaling structures (i.e., cone synapses and cone bipolar cells) may be maintained for multichannel rod‐based signaling in balaenid whales. J. Comp. Neurol. 524:2873–2885, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

20.
The retinal network increases its sensitivity in low-light conditions to detect small visual inputs and decreases its sensitivity in bright-light conditions to prevent saturation. However, the cellular mechanisms that adjust visual signaling in the retinal network are not known. Here, we show that voltage-gated sodium channels in bipolar cells dynamically control retinal light sensitivity. In dim conditions, sodium channels amplified light-evoked synaptic responses mediated by cone pathways. Conversely, in bright conditions, sodium channels were inactivated by dopamine released from amacrine cells, and they did not amplify synaptic inputs, minimizing signal saturation. Our findings demonstrate that bipolar cell sodium channels mediate light adaptation by controlling retinal signaling gain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号