首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 125 毫秒
1.
We examined the pharmacological profile of (3,4-dihydro-2H-pyrano[2,3]b quinolin-7-yl) (cis-4-methoxycyclohexyl) methanone (JNJ16259685). At recombinant rat and human metabotropic glutamate (mGlu) 1a receptors, JNJ16259685 non-competitively inhibited glutamate-induced Ca2+ mobilization with IC50 values of 3.24+/-1.00 and 1.21+/-0.53 nM, respectively, while showing a much lower potency at the rat and human mGlu5a receptor. JNJ16259685 inhibited [3H]1-(3,4-dihydro-2H-pyrano[2,3-b]quinolin-7-yl)-2-phenyl-1-ethanone ([3H]R214127) binding to membranes prepared from cells expressing rat mGlu1a receptors with a Ki of 0.34+/-0.20 nM. JNJ16259685 showed no agonist, antagonist or positive allosteric activity toward rat mGlu2, -3, -4 or -6 receptors at concentrations up to 10 microM and did not bind to AMPA or NMDA receptors, or to a battery of other neurotransmitter receptors, ion channels and transporters. In primary cerebellar cultures, JNJ16259685 inhibited glutamate-mediated inositol phosphate production with an IC50 of 1.73+/-0.40 nM. Subcutaneously administered JNJ16259685 exhibited high potencies in occupying central mGlu1 receptors in the rat cerebellum and thalamus ( ED50=0.040 and 0.014 mg/kg, respectively). These data show that JNJ16259685 is a selective mGlu1 receptor antagonist with excellent potencies in inhibiting mGlu1 receptor function and binding and in occupying the mGlu1 receptor after systemic administration.  相似文献   

2.
Melanin-concentrating hormone (MCH) is a hypothalamic peptide that centrally regulates food intake, energy balance and emotion. Interestingly, MCH and melanin-concentrating hormone MCH(1) receptors are distributed in brain areas known to regulate vigilance states. Effects of subcutaneous administration of two selective melanin-concentrating hormone MCH(1) receptor antagonists, labeled A and B were examined over a broad dose range (1, 3, 10, 20, 40 mg/kg) on rat sleep-wake architecture. Both compounds have a nanomolar antagonist activity at recombinant human melanin-concentrating hormone MCH(1) receptor (IC(50)=44.1+/-6.1 nM and 26.6+/-5.4 nM, respectively) and potently inhibited the MCH-induced mobilization of [Ca(2+)] (IC(50) 29.1+/-8.1 nM and 10.5+/-4.1 nM, respectively). The selectivity of both compounds was further confirmed on a panel of receptors, transporters and channels. In vivo, both compounds dose-dependently decreased deep sleep primarily by decreasing the mean duration of episodes during the first 4 h post-administration. In parallel, REM sleep and intermediate stage sleep were decreased while active and passive waking increased. Deep sleep and REM sleep onset latencies were significantly prolonged at higher doses. No homeostatic rebound of deep sleep was observed, while a tendency for recovery of REM sleep was found during subsequent dark phase. Together, the results support a role of the melanin-concentrating hormone MCH(1) receptor in the regulation of deep slow-wave sleep-REM sleep cycle. Therapeutic application of melanin-concentrating hormone MCH(1) receptor-inhibiting agents should take into account the significant decreases in deep sleep without recovery as these may interfere with sleep dependent memory consolidation.  相似文献   

3.
Prior work has demonstrated that melanin-concentrating hormone-1 (MCH-1) receptor antagonism decreases food intake and body weight in obese rodents. The purpose of this study was to determine if the MCH-1 receptor antagonist-mediated hypophagia was due a decrease in meal size, meal frequency, or both. We performed a meal pattern analysis in free-feeding hyperphagic diet-induced obese (DIO) rats treated with 1, 3 or 10 mg/kg p.o. of the MCH-1 receptor antagonist T-226296 (a (-)enantiomer of N-[6-(dimethylamino)-methyl]-5,6,7,8-tetrahydro-2-naphthalenyl]-4'-fluoro[1,1'-biphenyl]-4 carboxamide). Food intake was continuously monitored for 24 h using a BioDAQ food intake monitoring system. A total of 10 mg/kg T-226296 significantly decreased body weight and 24-h food intake, and had no effect on locomotor activity. The decrease in food intake was due to a reduction in meal size, not meal frequency. We conclude that MCH-1 receptor antagonism with T-226296 decreases food intake in DIO rats by selectively reducing meal size, and that the reduced food intake is not due to a generalized behavioral malaise.  相似文献   

4.
1. SB-706375 potently inhibited [(125)I]hU-II binding to both mammalian recombinant and 'native' UT receptors (K(i) 4.7+/-1.5 to 20.7+/-3.6 nM at rodent, feline and primate recombinant UT receptors and K(i) 5.4+/-0.4 nM at the endogenous UT receptor in SJRH30 cells). 2. Prior exposure to SB-706375 (1 microM, 30 min) did not alter [(125)I]hU-II binding affinity or density in recombinant cells (K(D) 3.1+/-0.4 vs 5.8+/-0.9 nM and B(max) 3.1+/-1.0 vs 2.8+/-0.8 pmol mg(-1)) consistent with a reversible mode of action. 3. The novel, nonpeptidic radioligand [(3)H]SB-657510, a close analogue of SB-706375, bound to the monkey UT receptor (K(D) 2.6+/-0.4 nM, B(max) 0.86+/-0.12 pmol mg(-1)) in a manner that was inhibited by both U-II isopeptides and SB-706375 (K(i) 4.6+/-1.4 to 17.6+/-5.4 nM) consistent with the sulphonamides and native U-II ligands sharing a common UT receptor binding domain. 4. SB-706375 was a potent, competitive hU-II antagonist across species with pK(b) 7.29-8.00 in HEK293-UT receptor cells (inhibition of [Ca(2+)](i)-mobilization) and pK(b) 7.47 in rat isolated aorta (inhibition of contraction). SB-706375 also reversed tone established in the rat aorta by prior exposure to hU-II (K(app) approximately 20 nM). 5. SB-706375 was a selective U-II antagonist with >/=100-fold selectivity for the human UT receptor compared to 86 distinct receptors, ion channels, enzymes, transporters and nuclear hormones (K(i)/IC(50)>1 microM). Accordingly, the contractile responses induced in isolated aortae by KCl, phenylephrine, angiotensin II and endothelin-1 were unaltered by SB-706375 (1 microM). 6. In summary, SB-706375 is a high-affinity, surmountable, reversible and selective nonpeptide UT receptor antagonist with cross-species activity that will assist in delineating the pathophysiological actions of U-II in mammals.  相似文献   

5.
Neurokinins are known to induce neurogenic inflammation related to respiratory diseases, though there is little information on triple neurokinin receptor antagonists. The pharmacological properties of the novel triple neurokinin 1, 2 and 3 receptor antagonist [1-(2-[(2R)-(3,4-dichlorophenyl)-4-(3,4,5-trimethoxybenzoyl)morpholin-2-yl]ethyl)spiro[benzo[c]thiophene-1(3H),4'-piperidine]-(2S)-oxide hydrochloride] (CS-003) were evaluated in this study. The binding affinities of CS-003 were evaluated with human and guinea pig neurokinin receptors. As well, the in vivo antagonism of CS-003 against exogenous neurokinins and effects on capsaicin-induced and citric acid-induced responses were investigated in guinea pigs. CS-003 exhibited high affinities for human neurokinin 1, neurokinin 2 and neurokinin 3 receptors with Ki values (mean+/-S.E.M.) of 2.3+/-0.52, 0.54+/-0.11 and 0.74+/-0.17 nM, respectively, and for the guinea pig receptors with Ki values of 5.2+/-1.4, 0.47+/-0.075 and 0.71+/-0.27 nM, respectively. Competitive antagonism was indicated in a Schild analysis of substance P-, neurokinin A- and neurokinin B-induced inositol phosphate formation with pA2 values of 8.7, 9.4 and 9.5, respectively. CS-003 inhibited substance P-induced tracheal vascular hyperpermeability, neurokinin A- and neurokinin B-induced bronchoconstriction with ID50 values of 0.13, 0.040 and 0.063 mg/kg (i.v.), respectively. CS-003 also inhibited capsaicin-induced bronchoconstriction (ID50: 0.27 mg/kg, i.v.), which is caused by endogenous neurokinins. CS-003 significantly inhibited citric acid-induced coughs and the effect was greater than those of other selective neurokinin receptor antagonists. CS-003 is a potent antagonist of triple neurokinin receptors and may achieve the best therapeutic efficacy on respiratory diseases associated with neurokinins compared to selective neurokinin receptor antagonists.  相似文献   

6.
1. In this study we used ligand binding techniques to determine the affinity and selectivity of endothelin receptor agonists and antagonists in human left ventricle which expresses both ETA and ETB receptors, and compared these results with cardiovascular tissues from rat and porcine hearts. 2. The linear tripeptide antagonist, FR139317 competed for [125I]-ET-1 binding to human left ventricle with over 200,000 fold selectivity for the ETA receptor (KD ETA = 1.20 +/- 0.28 nM, KDETB = 287 +/- 93 microM). The ETA-selective non-peptide antagonist, 50235, competed with lower affinity and selectivity (KDETA = 162 +/- 61 nM, KDETB = 171 +/- 42 microM) in this tissue. BQ123 and FR139317 also showed high selectivity (greater than 20,000 fold) and affinity in rat (BQ123: KDETA = 1.18 +/- 0.16 nM, KDETB = 1370 +/- 1150 microM; FR139317: KDETA = 2.28 +/- 0.30 nM, KDETB = 292 +/- 114 microM) and pig heart (BQ123: KDETA = 0.52 +/- 0.05 nM, KDETB = 70.4 +/- 4.0 microM; FR139317: KDETA = 2.17 +/- 0.51 nM, KDETB = 47.1 +/- 5.7 microM) (n > or = 3 individuals +/- s.e.mean). 3. Although BQ3020 competed with over 1000 fold selectivity for the ETB subtype in human heart (KDETB = 1.38 +/- 0.72 nM, KDETA = 2.04 +/- 0.21 microM) the peptide inhibited only the binding of [125I]-ET-1 at concentrations greater than 100 nM in rat and porcine heart. This is in contrast to the data from the ETA-selective antagonists which indicated the presence of ETB sites in these tissues from animal hearts. 4. The peptide antagonist, BQ788, had a low, micromolar affinity (KD = 1.98 +/- 0.13 microM) using human left ventricle and no significant selectivity for the human ETB-subtype in this tissue. 5. The non-peptide ET antagonists, Ro462005 (KD = 50.3 +/- 9.5 microM) and bosentan (Ro470203; KD = 77.9 +/- 7.9 nM) competed monophasically for [125I]-ET-1 binding sites in human left ventricle. 6. The results show that the ETA antagonists, BQ123 and FR139317, are highly selective for ETA receptors in all cardiac tissues tested, whereas BQ788 has a low affinity and no selectivity in this human tissue. Further we showed that there are species differences in the binding of BQ3020 to the ETB receptors in the hearts derived from human, rat and pig.  相似文献   

7.
1. We determined competition binding characteristics of endothelin ETB receptor selective ligands in human left ventricle and compared these values to those obtained with rat left ventricle. Sarafotoxin S6c, ET-3, BQ788 and IRL2500 competed against [125I]-PD151242 (ETA selective radioligand) with low affinity in human left ventricle, confirming the ETB selectivity of these compounds. 2. ET-3 competed with moderate selectivity for ETB over ETA receptors in human left ventricle and with slightly higher selectivity in rat left ventricle (460 and 1,400 fold, respectively). There was a small difference in the affinity of ETA receptors for ET-3 (KD ETA in human left ventricle = 0.07 +/- 0.02 microM; KD ETA in rat left ventricle = 0.27 +/- 0.08 microM; P = 0.05) but no difference in the affinity of ETB receptors for this ligand (KD ETB in human left ventricle = 0.15 +/- 0.06 nM; KD ETB in rat left ventricle = 0.19 +/- 0.03 nM). 3. The selectivity of sarafotoxin S6c for ETB over ETA receptors in human left ventricle was 5,900 fold compared with 59,400 fold in rat left ventricle. The affinity of ETA receptors for sarafotoxin S6c was higher in human than in rat left ventricle (KD ETA = 2.00 +/- 0.20 microM and 3.50 +/- 0.26 microM, respectively; P = 0.03), while the affinity of ETB receptors for this ligand was higher in rat left ventricle (KD ETB = 0.06 +/- 0.02 nM) than in human left ventricle (KD ETB = 0.34 +/- 0.13 nM) (P = 0.02). The affinity of ETB receptors for sarafotoxin S6c in rat left ventricle determined in the absence or presence of GTP was the same indicating that differing affinity states of ETB receptors in human and rat left ventricle do not account for the variation observed between species. 4. There was no difference in the affinity of ETA receptors for BQ788 (KD ETA = 1.01 +/- 0.20 microM and KD ETA = 1.39 +/- 0.35 microM) or for the novel ETB selective antagonist. IRL2500 (KD ETA = 30.0 +/- 20.8 microM and KD ETA = 55.6 +/- 9.93 microM) in human and rat left ventricle, respectively. ETB receptors had a significantly higher affinity for BQ788 (KD ETB = 9.8 +/- 1.3 nM and KD ETB = 31.0 +/- 5.4 nM; P = 0.02) and IRL2500 (KD ETB = 78.2 +/- 9.7 nM and KD ETB = 300.0 +/- 75.1 nM; P = 0.03) in human and rat left ventricle, respectively. The synthetically synthesized ETB selective antagonist RES-701-1 (0.1 -3 microM) failed to inhibit [125I]-ET-1 binding in either tissue. 5. In conclusion, we have compared equilibrium dissociation constants for a number of ETB selective compounds in human and rat heart. The affinity of ETB receptors for sarafotoxin S6c, BQ788 and IRL2500 differed in human and rat left ventricle. No difference in affinity was detected for ET-3 binding at ETB receptors. Sarafotoxin S6c binding was unaffected by GTP indicating that the different receptor affinities in human and rat heart cannot be explained by differing ETB receptor affinity states. This study highlights the need to consider differences in binding characteristics that may arise from the use of tissues obtained from different species.  相似文献   

8.
9.
Shortened, more stable and weakly hydrophobic analogues of melanin-concentrating hormone (MCH) were searched as candidates for radioiodination. Starting from the dodecapeptide MCH(6 - 17), we found that: (1) substitution of Tyr(13) by a Phe residue; (2) addition of a 3-iodo-Tyr residue at the N-terminus; and (3) addition of a hydrophilic spacer 8-amino-3,6-dioxyoctanoyl between the 3-iodo-Tyr and MCH(6 - 17) (compound S36057), led to an agonist more potent than MCH itself in stimulating [35S]-GTPgammaS binding at membranes from HEK293 cells stably expressing the human MCH receptor. Specific binding of [125I]-S36057 was found in HEK293 and CHO cell lines stably expressing the human MCH receptor. This radioligand recognized a similar number of binding sites (ca. 800 fmol mg(-1)) than [125I]-[3-iodo Tyr(13)]-MCH. However, the K(D) for [125I]-S36057 obtained from saturation studies (0.037 nM) or from binding kinetics (0.046 nM) was at least 10 fold higher to that of [125I]-[3-iodo Tyr(13)]-MCH (0.46 nM). Affinities determined for a series of MCH analogues were similar with both radioligands, S36057 being the most potent compound tested (K(i)=0.053 nM). Finally, [125I]-S36057 also potently labelled the MCH receptor in membranes from whole rat brain (K(D) 0.044 nM, B(max)=11 fmol mg(-1)). In conclusion, [125I]-S36057 is a more potent and more stable radioligand than [125I]-[3-iodo Tyr(13)]-MCH that will represent a reliable tool for binding assays in the search of novel MCH ligands. It should also provide great help for autoradiographic studies of the MCH receptor distribution in the central nervous system.  相似文献   

10.
We investigated the biochemical and pharmacological properties of a new adenosine A(3) receptor antagonist, KF26777 (2-(4-bromophenyl)-7,8-dihydro-4-propyl-1H-imidazo[2,1-i]purin-5(4H)-one dihydrochloride). This compound was characterized using N(6)-(4-amino-3-iodobenzyl)adenosine-5'-N-methyluronamide ([125I]AB-MECA) or [35S]guanosine 5'-O-(3-thiotriphosphate) (GTPgammaS) binding to membranes from human embryonic kidney 293 (HEK293) cells expressing human adenosine A(3) receptors. KF26777 showed a K(i) value of 0.20+/-0.038 nM for human adenosine A(3) receptors labeled with [125I]AB-MECA and possessed 9000-, 2350- and 3100-fold selectivity vs. human adenosine A(1), A(2A) and A(2B) receptors, respectively. The inhibitory mode of binding was competitive. KF26777 inhibited the binding of [35S]GTPgammaS stimulated by 1 microM 2-chloro-N(6)-(3-iodobenzyl)adenosine-5'-N-methyluronamide (Cl-IB-MECA). The IC(50) value was 270+/-85 nM; the compound had no effect on basal activity. Dexamethasone treatment for HL-60 cells, human promyelocytic leukemia, up-regulated functional adenosine A(3) receptors expression, and resulted in the enhanced elevation of intracellular Ca(2+) concentration ([Ca(2+)](i)) via the adenosine A(3) receptor. KF26777 antagonized this [Ca(2+)](i) mobilization induced by Cl-IB-MECA, with a K(B) value of 0.42+/-0.14 nM. These results indicate that KF26777 is a highly potent and selective antagonist of the human adenosine A(3) receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号