首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Poly(lactide-co-glycolide) microspheres containing different loads of OVA (0.05, 0.1, 0.5 and 1.0% w/w) were manufactured by a w/o/w emulsion/solvent evaporation method. Low load efficiencies of less than 20% were observed. Normal size distributions with mean volume diameters ranging from 3.7 to 4.7 µm were obtained for different batches. The in vitro release of OVA from different loaded microspheres showed an expected burst release with all batches. The in vivo dose study (1, 10, 25, 50 µg of OVA) was performed by subcutaneous and oral inoculation in mice by single (0 week) or double (0 and 3 weeks) administration of PLGA 50/50 microspheres containing 0.1% OVA. Subcutaneous administration showed an immune response (serum Ig levels by ELISA) statistically (Fishers paired t-test; P < 0.05) above OVA saline negative controls at 3, 6 and 12 weeks after administration. Oral administration of microspheres produced statistically higher systemic immune responses at the higher doses. Single and double inoculation orally and subcutaneously produced similar serum antibody levels. The in vivo load study was performed by subcutaneous and oral administration to mice of 25 µg OVA contained in various loaded (0.05, 0.1, 0.5 and 1.0% w/w) microspheres. Serum immune responses at 3, 6, and 12 weeks after inoculation were statistically above OVA saline controls and were inversely proportional to the OVA load using either route. This observation suggested a relationship between the number of microspheres delivered and the in vivo serum response. Single subcutaneous administration of 0.05 or 0.1% OVA loaded PLGA 50/50 microspheres induced larger immune responses compared with complete Freunds adjuvant.  相似文献   

2.
Nine solid dispersions were prepared by the melting method in the form of particles containing theophylline at 10%, 20%, and 30% (w/w) in three Compritols (Compritol 888 ATO, HD5 ATO, E ATO) to compare their efficiency in controlling theophylline release. After solidification the mass was ground and granules were evaluated by thermal [differential scanning calorimetry, hot stage microscopy (HSM)] and spectroscopic [Fourier transform infrared (FTIR), Raman, X-ray powder diffraction (XRD)] analysis and the solubility parameters. Another nine samples of the same composition were obtained as microspheres by ultrasound-assisted (US) atomization. XRD confirmed the presence of crystalline theophylline inside the solid dispersions. FTIR and Raman microspectroscopy revealed that crystals of the drug were present on the granule surface. On the contrary, the surface of the final microspheres did not present free drug crystals. The granules do not work so efficiently as microspheres in controlling the release of theophylline: 888 ATO ≈ HD5 ATO > E ATO represents the order of the ability of the Compritols to control the theophylline release from microspheres. HSM revealed that, on aging, the dissolved drug crystallizes, considerably modifying the granule formulation and that US vibration, speeding up the crystallization of the drug during the preparation of microspheres, greatly reduces the changes associated with aging.  相似文献   

3.
The delivery of particles as small as possible (preferably <5 µm) to the respiratory tract should be the aim of those formulating metered dose inhalers (MDIs). This may be facilitated by the formulation of solution, rather than suspension-type, pressurized aerosol units. Two series of MDIs were compared; one contained suspended micronized disodium fluorescein (0.1%, w/v), while the other contained the same concentration of dissolved salicylic acid. Either oleic acid, L--phosphatidylcholine, or sorbitan trioleate was incorporated at 0.15% (w/v) as suspending agent (disodium fluorescein) or solubilizing agent (salicylic acid). The propellant blend was 70% (w/w) Freon 12 and 30% (w/w) Freon 11 in all cases. This exhibited a vapor pressure of 50.6 psig (444.7 kPa) at 21°C. The output particle size distribution of the aerosol reaching the cascade impactor showed a mass median aerodynamic diameter (MMAD) of approximately 4 and 2 µm for the suspension and solution formulations respectively, regardless of the surfactant used. Larger MMADs were observed for solution aerosols formulated with oleic acid (2.32 µm) compared to those containing L--phosphatidylcholine (1.93 µm) or sorbitan trioleate (2.07 µm). Possible reasons for these observations are discussed.  相似文献   

4.
In this work, the supercritical assisted atomization (SAA) is proposed, for the first time, not only as a micronization technology but also as a thermal coagulation process for the production of bovine serum albumin (BSA) microspheres charged with Gentamicin sulfate (GS). Particularly, different water solutions of BSA/GS were processed by SAA to produce protein microspheres with different size and antibiotic content. SAA precipitation temperature was selected in the range 100-130°C to generate protein coagulation and to recover micronized BSA in form of hydrophobic aggregates; GS loading was varied between 10% and 50% (w/w) with an encapsulation efficiency which often reached 100%. In all cases, spherical and noncoalescing particles were successfully produced with a mean particle size of 2 μm and with a standard deviation of about ± 1 μm. The microspheres also showed a good stability and constant water content after 60 days of storage. The release profiles of the entrapped drug were monitored using Franz cells to evaluate the possible application of the produced microspheres in wound dressing formulations. Particularly, the microspheres with a BSA/GS ratio of 4:1 after the first burst effect (of 40% of GS loaded) were able to release the GS continuously over 10 days.  相似文献   

5.
In order to improve the therapeutic index of adapalene, a new drug under development for the treatment of acne, site-specific delivery to the hair follicles using 50:50 poly(DL-lactic-co-glycolic acid) microspheres as particulate carriers was investigated in vitro and in vivo. The percutaneous penetration pathway of the microspheres was shown to be dependent on their mean diameter. Thus, after topical application onto hairless rat or human skin, adapalene-loaded microspheres (5-µm diameter) were specifically targeted to the follicular ducts and did not penetrate via the stratum corneum. The in vitro release of adapalene from the microspheres into artificial sebum at 37°C was controlled and faster than the in vivo sebum excretion in humans. Aiming to reduce either the applied dose of drug or the frequency of administration, different formulations of adapalene-loaded microspheres were evaluated in vivo in the rhino mouse model. A dose-related comedolytic activity of topical formulations of adapalene-loaded microspheres was observed in this model. Furthermore, by applying a site-specific drug delivery system (0.1% adapalene) every other day or by administering a 10-fold less concentrated targeted formulation (0.01%) every day, a pharmacological activity equivalent to a daily application of an aqueous gel containing drug crystals (0.1% adapalene) was observed. Since an aqueous gel containing 10% adapalene-loaded microspheres was not irritating in a rabbit skin irritancy test, this formulation was applied onto forearms of human volunteers. Site-specific drug delivery was further evidenced by follicular biopsy. These results support the view that follicular drug targeting using 5-µm polymeric microspheres may represent a promising therapeutic approach for the treatment of pathologies associated with pilosebaceous units.  相似文献   

6.
Abstract

In spite of several biomedical applications of polyurethanes, very little attention has been focused on these polymers for controlled drug delivery. In this study, an aliphatic polyurethane, Tecoflex®, was evaluated as a microsphere matrix for the controlled release of theophylline. Polyurethane microspheres containing theophylline were prepared using a solvent evaporation technique from a dichloromethane solution of the polymer containing the drug. A dilute solution of poly(vinyl alcohol) served as the dispersion medium. Microspheres of good spherical geometry having theophylline content of 35% could be prepared by the technique. The release of the drug from the microspheres was examined in simulated gastric and intestinal fluids at 37°C. While a large burst effect was observed in gastric fluid, in the intestinal fluid a close to zero-order release was seen. Attempts were made to modulate the release by incorporating poly(ethylene glycol) in the matrix and also coating the spheres with paraffin wax. Preliminary data indicate that polyurethanes could be interesting matrices for controlled drug delivery.  相似文献   

7.
Li  Chun  Yang  David J.  Nikiforow  Sarah  Tansey  Wayne  Kuang  Li-Ren  Wright  Kenneth C.  Wallace  Sidney 《Pharmaceutical research》1994,11(12):1792-1799
Chemoembolization using microspheres of 100- to 200-µm is a useful way to treat primary and secondary hepatic tumors. In a search for a better embolic material, we described in detail the preparation and characterization of a poly(benzyl 1-glutamate) (PBLG) microspheres containing cisplatin (CDDP). We determined the optimal experimental conditions to produce spherical free-flowing microspheres that were able to release drug content (44% [w/w] CDDP) in a sustained manner. We found that solvent viscosity played a key role in determining the resulting microsphere characteristics. Microscopic studies showed that increasing the polymer concentration (to 10% [w/v]) and the viscosity of the organic phase produced microspheres with uniform drug distribution. Increasing polymer concentration also markedly improved drug incorporation efficiency. In vitro release studies revealed that the release of CDDP was a function of drug loading; microspheres with a higher amount of entrapped CDDP had a slower release rate. This observation and the fact that CDDP/ PBLG microspheres did not show burst effect at higher loading is ascribed to the formation of uniformly distributed drug crystal networks within the polymer matrix. The favorable properties of the CDDP/PBLG system warrants its further evaluation on experimental animal models for the treatment of hepatic tumors.  相似文献   

8.
Baclofen, a water soluble drug advocated for the treatment of spinal spasticity, was microencapsulated, using the oil/water emulsion extraction process in an attempt to identify the appropriate experimental conditions capable of producing microspheres releasing baclofen over 2-4 weeks. Individual microspheres ranging in size from 15 to 30 microns were formed exhibiting smooth surfaces at low drug payload (12.8% w/w), irregular and rough surface at high drug content (33.9% w/w). The microencapsulation yield remained practically unchanged (85-90%) up to theoretical payloads of 37.5% w/w, and decreased markedly to 70% when the initial theoretical payload was 50% w/w. The in vitro release profile of baclofen from the poly(D,L-lactide-co-glycolide) microspheres was biphasic only for the high drug payload microspheres with a rapid release of 70% within 48 h, followed by a slower release rate over at least 25 days. In contrast, the microspheres containing low baclofen contents (12.8% w/w) exhibited a gradual and progressive release rate over the course of the experiment. The baclofen release data did not fit either the general equation which describes the diffusional release of dispersed tiny drug particles from spherical micromatrices, or to the kinetic equations which describe the release of dissolved drug from monolithic microspherical devices. It appears that the release of baclofen from the present microspheres is not governed by a unique mechanism. This should be attributed either to the presence of some uncoated drug particles or to the large size of the embedded drug particles compared with the relatively small size of the spherical micromatices, or to some polymeric erosion occurring after several days incubation in the release medium.  相似文献   

9.
Microencapsulation of the anti-inflammatory drug piroxicam and the anti-asthmatic drug theophylline was investigated as a means of controlling drug release and minimizing or eliminating local side effects. Microspheres of both drugs that are different in the chemical nature and size were successfully encapsulated at a theoretical loading of 25% with the pH sensitive Eudragit S 100 polymer using the emulsion-solvent evaporation method. Solvent composition, stirring rate and the volume of the external phase were adjusted to obtain reproducible, uniform and spherical microspheres. The size distribution of microsphere batches generally ranged from 125-500 microm with geometric means close to 300 microm. Optical light microscopy was used to identify the microsphere shape. Drug loading was determined by completely dissolving the microspheres in an alkaline borate buffer at pH 10. In vitro dissolution studies were carried out on the microspheres at 37 degrees C (+/-0.5 degrees C) at 100 rpm with USP Dissolution Apparatus II using the procedure for enteric-coated products at two successive different pH media (1.2 and 6.5). Both preparations exhibited an initial rapid release in the acidic medium with theophylline showing a larger increase in the amount released during this stage. The drug release was sustained for both preparations at pH 6.5 with theophylline microspheres, showing more extended release. Drug release rate kinetics followed a Higuchi spherical matrix model for both microsphere preparations.  相似文献   

10.
Summary In a prospective study in 73 patients with obstructive pulmonary disease, aged 63.5±13.5 years (SD), it was found that theophylline dose, cigarette smoking and age were all significant determinants of the steady-state trough plasma theophylline level during oral administration of the drug. As the predictive efficiency of the three factors combined amounted only to 25%, firm dosage recommendations cannot be made. Even among elderly patients, tobacco smokers had significantly lower plasma concentrations of theophylline. It is suggested that in order to obtain trough plasma concentrations of 50 µmol/l (9 µg/ml), a non-smoking 50 year-old patient would require 9.8 mg/kg/day of oral theophylline, the dose increasing to 14.2 mg/kg/day in smokers of the same age. These doses should probably be reduced by 15–20% in 75 year-old patients.  相似文献   

11.
The preparation, characteristics, and behavior of microspheres of poly(L-lactic acid) (PLA) containing griseofulvin (Gris) or Gris:phospholipid coprecipitates are described. Microspheres were spherical and increased in size from 17 µm (empty) to 30 µm, containing 22% Gris. The release of coprecipitated Gris after 60 min from 146,000 MW PLA microspheres in pH 2.0 buffer at 37°C was twofold greater than that from microspheres containing pure Gris. Also, the release profile from pure Gris microspheres was 25% lower than its dissolution profile, whereas the dissolution and mi-crosphere release profiles of Gris coprecipitate were the same. Microspheres of Gris coprecipitate suspended in PEG 600 in hard gelatin capsules for 1 week released Gris at levels comparable to the dissolution of coprecipitate. Decreasing the MW of PLA substantially increased the release of Gris from microspheres of coprecipitate after 20 min but insignificantly from microspheres of pure Gris. These findings suggest that microsphere formulation offers some new opportunities in the development of solid dispersions which normally encounter processing difficulties.  相似文献   

12.
Propranolol hydrochloride was directly encapsulated in alginate gel microspheres (40-50?μm in diameter) using a novel method involving impinging aerosols of CaCl(2) cross-linking solution and sodium alginate solution containing the drug. Microspheres formulated using 0.1?M CaCl(2) exhibited the highest drug loading (14%, w/w of dry microspheres) with 66.5% encapsulation efficiency. Less than 4% and 35% propranolol release occurred from hydrated and dried microspheres, respectively, in 2?h in simulated gastric fluid (SGF). The majority of the drug load (90%) was released in 5 and 7?h from hydrated and dried microspheres, respectively, in simulated intestinal fluid (SIF). Prior incubation of hydrated microspheres (cross-linked using 0.5?M CaCl(2)) in SGF prolonged the time of release in SIF to 10?h, which has implications for the design of protocols and correlation with in?vivo release behaviour. Restricted propranolol release in SGF and complete extraction in SIF demonstrate the potential of alginate gel microspheres for oral delivery of pharmaceuticals.  相似文献   

13.
Mesalazine (5-ASA) is a cyclo-oxygenase inhibitor and anti-inflammatory drug effective in Crohn's disease and ulcerative-colitis. As 5-ASA is rapidly absorbed from the small intestine and it is necessary to develop a colon-specific delivery system for it. Coated chitosan microspheres were used for this purpose by an emulsion-solvent evaporation technique based on a multiple w/o/w emulsion. Four hundred milligrams of chitosan solution (3%) in dilute acetic acid (0.5?M) containing 12% 5-ASA was dispersed into 2?ml solution of cellulose acetate butyrate (CAB) in methylene chloride. The primary induced w/o emulsion was dispersed into a 1% PVA aqueous solution to produce a w/o/w multiple emulsion and was stirred for ~2.5?h. The produced microspheres were separated, washed and dried. Release of 5-ASA from microspheres was studied in different pHs 1.2, 7.4, 6.8 and 6.8 in the presence of caecal contents of rat. The average size of microspheres was 200?µm. The highest yield efficiency (80%) was seen in medium molecular weight (MW) chitosan with a 1?:?2 core/coat ratio and the greatest loading efficiency (85%) related to the microspheres of the same type of chitosan but with a 1?:?1 core/coat ratio. Decreasing the coat content and increasing chitosan Mw increased the bioadhesion significantly (p?<?0.05). Microspheres of chitosan with medium Mw and 1?:?1 core/coat that showed the greatest release of drug (near 80%) in the presence of caecal secretions with a zero-order mechanism, near zero per cent in pH 1.2 after 2?h, max 20% in pH 7.4 after 3?h and near 60% in pH 6.8 after 8?h seem suitable for site-specific delivery of 5-ASA in vitro.  相似文献   

14.
Abstract

The objective of this study was to produce biodegradable poly(lactide-co-glycolide) (PLGA; 50/50) microspheres by an oil-in-oil (o/o) solvent evaporation method to prolong the in vitro release of ovalbumin (OVA) as a model protein. The effects, on loading efficiency, microsphere yield, morphology and drug release, of two dispersing agents, aluminum tristearate and Span 80, in mineral oil were examined. PLGA 50/50 microspheres containing OVA powder (sieved through a 53 μm mesh) were prepared using an o/o solvent evaporation method. When aluminum tristearate was employed as a dispersing agent, the loading efficiency and yield of OVA had maximum values of 89 and 72% at 0·15% (w/v) aluminum tristearate, respectively. Morphology studies suggested that the obtained microspheres were spherical, and had a smooth surface. The diameters of the microspheres ranged between 100 and 200 μm. The loading efficiency, or yield, for microspheres decreased significantly above or below 0·15% (w/v) aluminum tristearate, and microspheres wkh irregular shapes were observed. The minimum sedimentation volume ratio (F) was obtained at a dispersity of carbon black particles in ethanol containing 0·15% (w/v) aluminum tristearate by a sedimentation study, and the cloudy supernatant suggested a defiocculated suspension. However, on the contrary, when Span 80 was added into the mineral oil as a dispersing agent, the concentration of Span 80 had little or no effect on the characteristics of the prepared microspheres. Drug loadings (60–70%) were obtained within the Span 80 concentrations employed in the present study (0·05–1·0% (w/v)). The yields were also in the same levels. The microspheres prepared in mineral oil containing Span 80 had an average diameter less than 50 μm in all cases. Sustained-release characteristics were demonstrated for PLGA microspheres prepared in mineral oil containing aluminum tristearate as a dispersing agent, even though a burst release at the initial phase was observed. This initial burst release from PLGA microspheres was reduced to some extent by micronization of the OVA powder using a planetary-type ball mill. However, PLGA microspheres prepared in mineral oil containing Span 80 as a dispersing agent, exhibited a large initial burst release. This burst release seems to be due to the smaller size of microspheres and the OVA powder adhering to the surface of PLGA microspheres (confirmed by scanning electron microscope (SEM) study).  相似文献   

15.
Etoposide-loaded biodegradable microspheres of poly lactic-co-glycolide (PLGA) 50:50, PLGA 75:25, and polycaprolactone (PCL) were prepared by simple o/w emulsification solvent evaparation method and characterized by size analysis and microscopy. The influence of drug to polymer ratio on the entrapment of etoposide was studied. Of all the three types of microspheres, polycaprolactone microspheres (PCL MS) showed the highest entrapment efficiency (94.64%), followed by PLGA 75:25 microspheres (PLGA 75:25 MS) (88.64%) and PLGA 50:50 microspheres (PLGA 50:50 MS) (79.19%). The drug to polymer ratio of 1:20 gave the highest entrapment efficiency for all the three types of microspheres. The in vitro release of etoposide from the three microsphere formulations were studied in phosphate buffer pH 7.4 (pH 7.4 PB) containing 0.1% Tween 80. The microspheres showed an initial burst release, which was highest from the PLGA 50:50 MS and least from the PCL MS. PCL MS microspheres showed the lower and slow drug release than the remaining formulations. The release of etoposide from all the three microsphere formulations followed Higuchi's diffusion pattern. The microspheres in the dissolution medium for 28 days appeared irregular in shape and slightly fragmented.  相似文献   

16.
The purpose of present work was to develop suppositories containing mucoadhesive microspheres of granisetron hydrochloride (GH) using combination of xanthan gum and sodium alginate. Twelve different batches of microspheres containing GH were prepared by simple emulsification method and evaluated for surface morphology, particle size, equilibrium swelling degree, drug content, in vitro mucoadhesion, and in vitro drug release. The suppositories containing optimized batch of microspheres (C2) were formulated by fusion method using hydrophilic and lipophilic polymer base. The suppositories were evaluated for weight variation, hardness, macromelting range, drug content, drug release, morphology of rectal tissues, and in vivo suppository localization. Results show that, all microsphere batches were spherical and had size range 23.56–36.76 μm. The % drug encapsulation was found in the range 61.67–92.30 %, and showed satisfactory mucoadhesion. Especially, C2 batch had 83.67 % mucoadhesion and 92.30 % drug encapsulation and showed release retardation for 4 h. The results of all suppositories were within the pharmacopoeial standard limits. Drug content of all the suppositories was in the range 93.20–98.40 %. The suppository batch (P2M) was considered best on the basis of optimum retardation up to 5 h, high drug content, optimum mechanical strength and zero order release (r2 = 0.9860). The suppository of batch P2M showed no morphological changes in rectal tissues indicating its safety. In vivo localization revealed satisfactory mucoadhesion of microspheres. Hence, it can be concluded that, delivery of GH in suppository form can avoid its presystemic metabolism, thus, may be an efficient alternative to its oral dosage form and conventional suppository.  相似文献   

17.
Microencapsulation of Hepatitis B Core Antigen for Vaccine Preparation   总被引:2,自引:0,他引:2  
Purpose. To prepare poly(lactide-co-glycolide)(PLGA) microspheres containing recombinant hepatitis B core antigen (HBcAg; Mw = 3,600,000) by a w/o/w emulsion/solvent evaporation method and evaluate the possibility of this system as a potent long-acting carrier for hepatitis B core antigen in mice. Methods. Various additives had been incorporated in the internal aqueous phase during the process of microencapsulating HBcAg, HBcAg antigenicity in the medium extracted from the prepared microspheres were measured by ELISA. Shape confirmation of the HBcAg antigen was performed by a sucrose gradient velocity centrifugal technique. For in vivo study, prepared microspheres were administered subcutaneously to Balb/C mice, and the serum IgG level was determined by ELISA. Results. The inactivation of HBcAg by methylene chloride was dramatically reduced by the addition of gelatin (4–8% (w/v)) to the internal aqueous phase during the preparation. Further improvement of the loading efficiency to almost 61% resulted with cooling (4°C). The prepared microspheres (4.27 m ± 1.23 m) containing 0.15% HBcAg displayed burst release (50–60% within 2 days). In subcutaneous inoculation, the adjuvant effect of PLGA microspheres was almost the same as that of the complete Freund's adjuvant. Whereas oral inoculation using the microspheres was not effective. Conclusions. The pH of the added gelatin seemed to be the key to the stabilization of HBcAg from various stability tests and CD spectrum study. Finally, the possibility of using this system as a potent long-acting hepatitis B vaccine was demonostrated.  相似文献   

18.
PURPOSE: To examine the effect of formulation type on the aerosolization of respirable particles in narrow size distributions. METHODS: Aerosol dispersion of two formulation types (drug alone and 2% w/w drug-lactose blends) containing micronized or spray-dried fluticasone propionate (FP) particles (d50% = 1.3 to 9.6 microm, GSD = 1.8 to 2.2) were examined using cascade impaction at 60 l/min with low and high resistance inhaler devices: Rotahaler and Inhalator, respectively. RESULTS: The aerosol dispersion of FP particles was significantly affected by the particle size, particle type, inhaler device, and formulation type. Interactions were observed between all factors. Generally, greater powder entrainment was obtained with smaller d50%. Higher emitted doses were obtained from drug-alone formulations of spray-dried FP particles and lactose blends of micronized FP particles. Greater aerosol dispersion of spray-dried FP particles was obtained using lactose-blend formulations with d50% around 4 microm. Greater aerosol dispersion of micronized FP particles was obtained using formulations of drug alone. Larger d50% produced larger mass median aerodynamic diameters. CONCLUSIONS: Small changes in the particle size within the 1-10-microm range exerted a major influence on aerosol dispersion of jet-milled and spray-dried FP particles using drug-alone and lactose-blend formulations.  相似文献   

19.
The present research work compares the effect of microsphere preparation technique on micromeritics and release behaviors of theophylline microspheres. Microspheres were prepared by oil-in oil (O1/O2) emulsion solvent evaporation method (ESE) using different ratios of anhydrous theophylline to cellulose acetate butyrate (CAB). Cyclohexane was used as non-solvent to modify the ESE technique (MESE method) and the effect of non-solvent volume on properties of microspheres was investigated. The obtained microspheres were analyzed in terms of drug content, particle size and encapsulation efficiency. The morphology of microsphere was studied using scanning electron microscope. The solid state of microspheres, theophylline and CAB were investigated using X-ray, FT-IR and DSC. The drug content of microspheres prepared by MESE method was significantly lower (15.54% ± 0.46) than microspheres prepared by ESE method (41.08 ± 0.40%). The results showed that as the amount of cyclohexane was increased from 2 mL to 6 mL the drug content of microspheres was increased from 15.54% to 28.71%. Higher encapsulation efficiencies were obtained for microspheres prepared by ESE method (95.87%) in comparison with MESE method (64.71%). Mean particle size of microsphere prepared by ESE method was not remarkably affected by drug to polymer ratio, whereas in MSES method when the volume of cyclohexane was increased the mean particle size of microsphere was significantly decreased. The ratio of drug to polymer significantly changed the rate of drug release from microspheres and the highest drug release was obtained for the microsphere with high drug to polymer ratio. The amount of cyclohexane did not significantly change the drug release. Although, x-ray showed a small change in crystallinity of theophylline in microspheres, DSC results proved that theophylline in microspheres is in amorphous state. No major chemical interaction between the drug and polymer was reported during the encapsulation process.  相似文献   

20.
The solvent evaporation process has been used to form hydrocortisone-loaded microspheres from poly((+/-)-lactide) (PLA) and a lactide-glycolide copolymer (65/35). Methylene chloride was the casting solvent. Partially hydrolysed (88%) poly(vinyl alcohol) and methylcellulose were used as aqueous phase emulsifiers. Methylcellulose was preferred, because it gave stable emulsions as the amount of hydrocortisone being encapsulated increased whereas poly(vinyl alcohol) did not. With methylcellulose as the emulsifier, a broad size range of spherical microspheres containing up to 50% (w/w) hydrocortisone could be prepared. Thermal and X-ray analyses established that poly((+/-)-lactide) microspheres containing hydrocortisone retained thermal events characteristic of both materials. This is evidence that such microspheres contain, to some extent, crystalline hydrocortisone domains dispersed in a PLA matrix. But most of the encapsulated drug was molecularly dispersed in the PLA glass. The stability of hydrocortisone in microspheres was evaluated in different storage conditions: no degradation of drug was found. The release of hydrocortisone from 250-350 microns diameter microspheres into agitated 37 degrees C water (nitrogen atmosphere) was determined by HPLC analysis. The microspheres evaluated had initial hydrocortisone payloads of 12 to 47% (w/w). The rate of drug release increased as the initial drug payload carried by the microspheres increased. The release data are not adequately described by zero order, first order, or square-root-of-time release kinetics. Drug release from microspheres that contain 12% (w/w) hydrocortisone approached a plateau value well below the amount of drug actually carried by the microspheres. This is particularly true for hydrocortisone encapsulated in lactide-glycolide polymer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号