首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
Endothelin (ET), a vasoconstrictive peptide, acts as an anti-apoptotic factor, and endothelin receptor B (ETB receptor) is associated with neuronal survival in the brain. Human group IIA secretory phospholipase A2 (sPLA2-IIA) is expressed in the cerebral cortex after brain ischemia and causes neuronal cell death via apoptosis. In primary cultures of rat cortical neurons, we investigated the effects of an ETB receptor agonist, ET-3, on sPLA2-IIA-induced cell death. sPLA2-IIA caused neuronal cell death in a concentration- and time-dependent manner. ET-3 significantly prevented neurons from undergoing sPLA2-IIA-induced cell death. These agonists reversed sPLA2-IIA-induced apoptotic features such as the condensation of chromatin and the fragmentation of DNA. Before cell death, sPLA2-IIA potentiated the influx of Ca2+ into neurons. Blockers of the L-type voltage-dependent calcium channel (L-VSCC) not only suppressed the Ca2+ influx, but also exhibited neuroprotective effects. As well as L-VSCC blockers, ET-3 significantly prevented neurons from sPLA2-IIA-induced Ca2+ influx. An ETB receptor antagonist, BQ788, inhibited the effects of ET-3. The present cortical cultures contained few non-neuronal cells, indicating that the ETB receptor agonist affected the survival of neurons directly, but not indirectly via non-neuronal cells. In conclusion, we demonstrate that the ETB receptor agonist rescues cortical neurons from sPLA2-IIA-induced apoptosis. Furthermore, the present study suggests that the inhibition of L-VSCC contributes to the neuroprotective effects of the ETB receptor agonist.  相似文献   

2.
The elevated level of group IIA secretory phospholipase A(2) (sPLA(2)-IIA) activity contributes to neurodegeneration in the cerebral cortex after ischemia. The up-regulation of cyclooxygenase-2 (COX-2) is also relevant to cerebral ischemia in humans. Studies of ischemia with COX-2 inhibitors suggest a clinical benefit. In the present study, we investigated effects of S-2474 on sPLA(2)-IIA-induced cell death in primary cultures of rat cortical neurons, which was established as an in vitro model of brain ischemia. S-2474 is a novel nonsteroidal anti-inflammatory drug (NSAID), which inhibits COX-2 and contains the di-tert-butylphenol antioxidant moiety. S-2474 significantly prevented neurons from undergoing sPLA(2)-IIA-induced cell death. S-2474 completely ameliorated sPLA(2)-IIA-induced apoptotic features such as the condensation of chromatin and the fragmentation of DNA. sPLA(2) also generated neurotoxic prostaglandin D(2) (PGD(2)) and free radicals from neurons before cell death. S-2474 significantly inhibited the sPLA(2)-IIA-induced generation of PGD(2). The present cortical cultures contained few non-neuronal cells, indicating that S-2474 affected neuronal survival directly, but not indirectly via non-neuronal cells. The inhibitory effect of S-2474 on COX-2 might contribute to its neuroprotective effect. In conclusion, S-2474 exhibits neuroprotective effects against sPLA(2)-IIA. Furthermore, the present study suggests that S-2474 may possess therapeutic potential for stroke via ameliorating neurodegeneration.  相似文献   

3.
Expression of group IIA secretory phospholipase A2 (sPLA2-IIA) is documented in the cerebral cortex (CTX) after ischemia, suggesting that sPLA2-IIA is associated with neurodegeneration. However, how sPLA2-IIA is involved in the neurodegeneration remains obscure. To clarify the pathologic role of sPLA2-IIA, we examined its neurotoxicity in rats that had the middle cerebral artery occluded and in primary cultures of cortical neurons. After occlusion, sPLA2 activity was increased in the CTX. An sPLA2 inhibitor, indoxam, significantly ameliorated not only the elevated activity of the sPLA2 but also the neurodegeneration in the CTX. The neuroprotective effect of indoxam was observed even when it was administered after occlusion. In primary cultures, sPLA2-IIA caused marked neuronal cell death. Morphologic and ultrastructural characteristics of neuronal cell death by sPLA2-IIA were apoptotic, as evidenced by condensed chromatin and fragmented DNA. Before apoptosis, sPLA2-IIA liberated arachidonic acid (AA) and generated prostaglandin D2 (PGD2), an AA metabolite, from neurons. Indoxam significantly suppressed not only AA release, but also PGD2 generation. Indoxam prevented neurons from sPLA2-IIA-induced neuronal cell death. The neuroprotective effect of indoxam was observed even when it was administered after sPLA2-IIA treatment. Furthermore, a cyclooxygenase-2 inhibitor significantly prevented neurons from sPLA2-IIA-induced PGD2 generation and neuronal cell death. In conclusion, sPLA2-IIA induces neuronal cell death via apoptosis, which might be associated with AA metabolites, especially PGD2. Furthermore, sPLA2 contributes to neurodegeneration in the ischemic brain, highlighting the therapeutic potential of sPLA2-IIA inhibitors for stroke.  相似文献   

4.
The effect of diazoxide, a K+ channel opener, on apoptotic cell death was investigated in HepG2 human hepatoblastoma cells. Diazoxide induced apoptosis in a dose-dependent manner and this was evaluated by flow cytometric assays of annexin-V binding and hypodiploid nuclei stained with propidium iodide. Diazoxide did not alter intracellular K+ concentration, and various inhibitors of K+ channels had no influence on the diazoxide-induced apoptosis; this implies that K+ channels activated by diazoxide may be absent in the HepG2 cells. However, diazoxide induced a rapid and sustained increase in intracellular Ca(2+) concentration, and this was completely inhibited by the extracellular Ca(2+) chelation with EGTA, but not by blockers of intracellular Ca(2+) release (dantrolene and TMB-8). This result indicated that the diazoxide-induced increase of intracellular Ca(2+) might be due to the activation of a Ca(2+) influx pathway. Diazoxide-induced Ca(2+) influx was not significantly inhibited by either voltage-operative Ca(2+) channel blockers (nifedipine or verapamil), or by inhibitors of Na+, Ca(2+)-exchanger (bepridil and benzamil), but it was inhibited by flufenamic acid (FA), a Ca(2+)-permeable nonselective cation channel blocker. A quantitative analysis of apoptosis by flow cytometry revealed that a treatment with either FA or BAPTA, an intracellular Ca(2+) chelator, significantly inhibited the diazoxide-induced apoptosis. Taken together, these results suggest that the observed diazoxide-induced apoptosis in the HepG2 cells may result from a Ca(2+) influx through the activation of Ca(2+)-permeable non-selective cation channels. These results are very significant, and they lead us to further suggest that diazoxide may be valuable for the therapeutic intervention of human hepatomas.  相似文献   

5.
We hypothesized that the histamine H(3)-receptor (H(3)R)-mediated attenuation of norepinephrine (NE) exocytosis from cardiac sympathetic nerves results not only from a Galpha(i)-mediated inhibition of the adenylyl cyclase-cAMP-PKA pathway, but also from a Gbetagamma(i)-mediated activation of the MAPK-PLA(2) cascade, culminating in the formation of an arachidonate metabolite with anti-exocytotic characteristics (e.g., PGE(2)). We report that in Langendorff-perfused guinea-pig hearts and isolated sympathetic nerve endings (cardiac synaptosomes), H(3)R-mediated attenuation of K(+)-induced NE exocytosis was prevented by MAPK and PLA(2) inhibitors, and by cyclooxygenase and EP(3)-receptor (EP(3)R) antagonists. Moreover, H(3)R activation resulted in MAPK phosphorylation in H(3)R-transfected SH-SY5Y neuroblastoma cells, and in PLA(2) activation and PGE(2) production in cardiac synaptosomes; H(3)R-induced MAPK phosphorylation was prevented by an anti-betagamma peptide. Synergism between H(3)R and EP(3)R agonists (i.e., imetit and sulprostone, respectively) suggested that PGE(2) may be a downstream effector of the anti-exocytotic effect of H(3)R activation. Furthermore, the anti-exocytotic effect of imetit and sulprostone was potentiated by the N-type Ca(2+)-channel antagonist omega-conotoxin GVIA, and prevented by an anti-Gbetagamma peptide. Our findings imply that an EP(3)R Gbetagamma(i)-induced decrease in Ca(2+) influx through N-type Ca(2+)-channels is involved in the PGE(2)/EP(3)R-mediated attenuation of NE exocytosis elicited by H(3)R activation. Conceivably, activation of the Gbetagamma(i) subunit of H(3)R and EP(3)R may also inhibit Ca(2+) entry directly, independent of MAPK intervention. As heart failure, myocardial ischemia and arrhythmic dysfunction are associated with excessive local NE release, attenuation of NE release by H(3)R activation is cardioprotective. Accordingly, this novel H(3)R signaling pathway may ultimately bear therapeutic significance in hyper-adrenergic states.  相似文献   

6.
7.
Long-lasting membrane depolarization in cerebral ischemia causes neurotoxicity via increases of intracellular sodium concentration ([Na+]i) and calcium concentration ([Ca2+]i). Donepezil has been shown to exert neuroprotective effects in an oxygen-glucose deprivation model. In the present study, we examined the effect of donepezil on depolarization-induced neuronal cell injury resulting from prolonged opening of Na+ channels with veratridine in rat primary-cultured cortical neurons. Veratridine (10 microM)-induced neuronal cell damage was completely prevented by 0.1 microM tetrodotoxin. Pretreatment with donepezil (0.1-10 microM) for 1 day significantly decreased cell death in a concentration-dependent manner, and a potent NMDA receptor antagonist, dizocilpine (MK801), showed a neuroprotective effect at the concentration of 10 microM. The neuroprotective effect of donepezil was not affected by nicotinic or muscarinic acetylcholine receptor antagonists. We further characterized the neuroprotective properties of donepezil by measuring the effect on [Na+]i and [Ca2+]i in cells stimulated with veratridine. At 0.1-10 microM, donepezil significantly and concentration-dependently reduced the veratridine-induced increase of [Ca2+]i, whereas MK801 had no effect. At 10 microM, donepezil significantly decreased the veratridine-induced increase of [Na+]i. We also measured the effect on veratridine-induced release of the excitatory amino acids, glutamate and glycine. While donepezil decreased the release of glutamate and glycine, MK801 did not. In conclusion, our results indicate that donepezil has neuroprotective activity against depolarization-induced toxicity in rat cortical neurons via inhibition of the rapid influx of sodium and calcium ions, and via decrease of glutamate and glycine release, and also that this depolarization-induced toxicity is mediated by glutamate receptor activation.  相似文献   

8.
The effect of carvedilol on intracellular free Ca(2+) levels ([Ca(2+)](i)) has not been explored previously. This study was aimed to examine the effect of carvedilol on Ca(2+) handling in renal tubular cells. Madin-Darby canine kidney cells were used as a model for renal tubular cells and fura-2 was used as a fluorescent Ca(2+) probe. Carvedilol increased [Ca(2+)](i) in a concentration-dependent manner with an EC(50) value of 5 microM. Extracellular Ca(2+) removal partly inhibited the [Ca(2+)](i) signals. Carvedilol-induced Ca(2+) influx was verified by measuring Mn(2+)-induced quench of fura-2 fluorescence. Carvedilol-induced store Ca(2+) release was reduced by pretreatment with 1 microM thapsigargin (an endoplasmic reticulum Ca(2+) pump inhibitor) but not with 5 microM ryanodine or 2 microM carbonylcyanide m-chlorophenylhydrazone (a mitochondrial uncoupler). Carvedilol (30 microM)-induced Ca(2+) release was not affected by inhibiting phospholipase C with 1-(6-((17beta-3-methoxyestra-1,3,5(10)-trien-17-l)amino)hexyl)-1H-pyrrole-2,5-dione (U73122; 2 microM), but was potentiated by increasing cAMP levels or inhibiting protein kinase C. The carvedilol-induced Ca(2+) mobilization was not significantly sequestered by the endoplasmic reticulum or mitochondria. This study shows that carvedilol increased [Ca(2+)](i) in renal tubular cells by causing Ca(2+) release from the endoplasmic reticulum and other unknown stores in an inositol-1,4,5-trisphosphate-independent manner, and by inducing Ca(2+) influx. The Ca(2+) release was modulated by cAMP and protein kinase C.  相似文献   

9.
The role of Na(+) and Na(+) exchangers in intracellular Ca(2+) elevation and leukotriene B(4) (LTBs) formation was investigated in granulocyte macrophage colony-stimulating factor (GM-CSF)-primed, fMLP-stimulated human neutrophils. Isotonic substitution of extracellular Na(+) with N-methyl-D-glucamine(+) (NMDG(+)) resulted in over 85% inhibition of the LTBs generation observed (from 14.1+/-0.9pmol/10(6) neutrophils to 1.7+/-1.0pmol/10(6) neutrophils at 0.3 microM fMLP). Isotonic substitution of Na(+) with NMDG(+) also induced a significant inhibition of fMLP-induced rise in cytosolic Ca(2+) concentration ([Ca(2+)](i)) (from 2.17- to 0.78-fold increase over basal levels). Pretreatment with an inhibitor of the Na(+)/Ca(2+) exchanger (benzamil) did not inhibit either [Ca(2+)](i) rise or LTBs production, indicating that the observed effects of extracellular Na(+)-deprivation were unrelated to the Na(+)/Ca(2+) exchanger in receptor-mediated Ca(2+) influx, as previously hypothesized. LTBs production by thapsigargin-activated neutrophils was not affected by Na(+) depletion, but was totally abolished in the presence of EGTA, suggesting that store depletion-driven extracellular Ca(2+) influx is required for leukotriene synthesis and that this process is independent of Na(+)-deprivation. Exposure to Na(+)-free medium for the time of GM-CSF priming led to a significant decrease of intracellular pH values, suggesting a role of the Na(+)/H(+) exchanger in intracellular Na(+) depletion. Reducing the time of Na(+)-deprivation totally reversed the observed effect on LTBs production, resulting in enhanced, rather than inhibited, formation of LTBs. These results indicate that LTBs generation and [Ca(2+)](i) rise in human neutrophils primed by GM-CSF and stimulated with fMLP is dependent on intracellular Na(+) concentration, and, at variance with previously published results, unrelated to the Ca(2+) influx through the Na(+)/Ca(2+) exchanger.  相似文献   

10.
Store-operated calcium entry (SOCE) plays an important role in shaping the Ca(2+) response of various tissues and cell types. In this report, we show that thapsigargin (TG)-induced SOCE was inhibited by the histamine receptor agonist, histamine-trifluoromethyltoluide (HTMT), in U937 and HL-60 human promyelocytes. Preincubation of HTMT resulted in a significant inhibition of subsequent TG-induced Ca(2+) elevation without affecting Ca(2+) release from intracellular stores. HTMT also inhibited TG-induced Ca(2+) current and Ba(2+)/Mn(2+) influx in a concentration-dependent manner. In contrast with HTMT, other H1 histamine receptor agonists, histamine, 2-methylhistamine and 2-thiazolylethylamine, did not affect TG-induced SOCE. In addition, HTMT also attenuated TG-induced cytosolic superoxide generation. Taken together, our data clearly suggest that the anti-inflammatory effect of HTMT may occur through direct inhibition of SOCE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号