首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
The mechanism of delayed neurotoxicity, triggered by glutamate, was studied in 7-8-day-old primary cultures of rat cerebellar granule cells. Treatment of cultures for 15 min with 50 microM glutamate in Mg2+ -free medium, followed by removal of the excitoxin, resulted in neuronal death, which started to appear 2-3 hr after the termination of glutamate treatment. The number of dead neurons increased gradually in the next few hours and 80-85% of neurons were found dead 24 hr later. Antagonists of N-methyl-D-aspartate-sensitive glutamate receptors (phencyclidine) or 1.2 mM MgCl2, but not the antagonist of N-methyl-D-asparatate-insensitive glutamate receptors (6-cyano-7-nitroquinoxaline-2,3-dione), abolished the neurotoxic effect of kainate. Development of glutamate-induced neuronal death depends strongly on Ca2+. Removal of extracellular Ca2+ (with 1mM ethyleneglycol-bis-(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid) immediately after the termination of glutamate exposure and before the appearance of the early signs of neuronal death (post-glutamate period) dramatically reduced neuronal degeneration. Neurotoxic concentrations of glutamate induced sustained increase of 45Ca2+ uptake in the post-glutamate period. The delayed increase of 45Ca2+ uptake, as well as the delayed neurotoxicity, were not affected by post-glutamate treatment with phencyclidine, dibenzocyclohepteneimine; DL-2-amino-5-phosphonovalerate, or MgCl2 or with voltage-dependent Ca2+ channel blockers (nitrendipine, verapamil, diltiazem). Neurotoxic concentrations of glutamate also induced a delayed sustained increase of [3H]phorbol-12,13-dibutyrate binding, reflecting an increased translocation of protein kinase C (PKC) from cytosol to the cell membrane during the post-glutamate period. Pretreatment of neurons with the ganglioside GT1b (trisialosylgangliotetraglycosylceramide), followed by removal of free GT1b from the incubation medium, prevented PKC translocation, the sustained increase of 45Ca2+ uptake in the post-glutamate period, and the delayed neuronal death. We suggest that the sustained activation and translocation of PKC primed by glutamate receptor stimulation may be the triggering event causing the protracted increase of neuronal Ca2+ influx. This influx is insensitive to voltage-dependent Ca2+ channel blockers and glutamate receptor antagonists. It appears that this delayed increase of Ca2+ influx may be important in causing neuronal death.  相似文献   

2.
Intracellular Na+ concentration plays an important role in the regulation of cellular energy metabolism; i.e., increased intracellular Na+ concentration stimulates glucose utilization both in cultured neurons and astrocytes. Both high KCI and veratridine, which have been known to cause neuronal damage, elicit increased glucose utilization, presumably via increased intracellular Na+ concentration. In the present study, we examined the role of intracellular Na+ influx in the mechanisms of neuronal cell damage induced by high KCl or veratridine assayed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) colorimetric method. Rat primary cultures of striatal neurons were incubated with high KCl (final concentrations: 25, 50 mM) or veratridine (0.1-100 microM) with or without various inhibitors. High KCl depolarizes cell membrane, thus, leading to Na+ influx through an activation of voltage-sensitive Na+ channels, while veratridine elicits Na+ influx by directly opening these channels. After 24-h incubation with elevated [K+]o or veratridine, glucose contents in the medium decreased significantly (approximately by 7 mM), but remained higher than 18 mM. High [K+]o reduced percent cell viability significantly (approximately 50% at 25 mM, approximately 40% at 50 mM [K+]o, P<0.01), but tetrodotoxin (100 nM) had no protective effect, indicating that Na+ influx was not essential to high K+ -induced cell death. DL-2-Amino-5-phosponovaleric acid (APV) (1 mM) completely blocked cell death induced by elevated [K+]o, while 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) (10 microM) did not. In contrast, veratridine (>10 microM) caused cell damage in a dose-dependent and tetrodotoxin-sensitive manner, but none of APV, CNQX, or bepridil (Na+ -Ca2+ exchanger blocker) had any protective effect. Nifedipine (50 approximately 100 microM), however, reduced percent cell damage induced by veratridine.  相似文献   

3.
Long-lasting membrane depolarization in cerebral ischemia causes neurotoxicity via increases of intracellular sodium concentration ([Na+]i) and calcium concentration ([Ca2+]i). Donepezil has been shown to exert neuroprotective effects in an oxygen-glucose deprivation model. In the present study, we examined the effect of donepezil on depolarization-induced neuronal cell injury resulting from prolonged opening of Na+ channels with veratridine in rat primary-cultured cortical neurons. Veratridine (10 microM)-induced neuronal cell damage was completely prevented by 0.1 microM tetrodotoxin. Pretreatment with donepezil (0.1-10 microM) for 1 day significantly decreased cell death in a concentration-dependent manner, and a potent NMDA receptor antagonist, dizocilpine (MK801), showed a neuroprotective effect at the concentration of 10 microM. The neuroprotective effect of donepezil was not affected by nicotinic or muscarinic acetylcholine receptor antagonists. We further characterized the neuroprotective properties of donepezil by measuring the effect on [Na+]i and [Ca2+]i in cells stimulated with veratridine. At 0.1-10 microM, donepezil significantly and concentration-dependently reduced the veratridine-induced increase of [Ca2+]i, whereas MK801 had no effect. At 10 microM, donepezil significantly decreased the veratridine-induced increase of [Na+]i. We also measured the effect on veratridine-induced release of the excitatory amino acids, glutamate and glycine. While donepezil decreased the release of glutamate and glycine, MK801 did not. In conclusion, our results indicate that donepezil has neuroprotective activity against depolarization-induced toxicity in rat cortical neurons via inhibition of the rapid influx of sodium and calcium ions, and via decrease of glutamate and glycine release, and also that this depolarization-induced toxicity is mediated by glutamate receptor activation.  相似文献   

4.
Astroglial cell death induced by excessive influx of sodium ions   总被引:4,自引:0,他引:4  
Na(+) influx has been implicated to play an important role in the mechanisms of neuronal cell damage under ischemia as well as in neurodegenerative disorders. Thus far, however, the effects of Na(+) influx on astrocytic damage have not been studied extensively. In the present study, we have examined the effects of Na(+) influx induced by veratridine (Na(+) channel opener), monensin (Na(+) ionophore), and glutamate (co-transportation with Na(+)) on rat cultured astroglial damage. Cells were incubated with bicarbonate buffer with 25 mM glucose containing either 100 microM veratridine, 10 microM monensin, or 1 mM glutamate with or without 1 mM ouabain for 20 h. Cellular damage was evaluated quantitatively by lactate dehydrogenase (LDH) release or 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) reduction. Veratridine, monensin, or glutamate alone did not induce significant astroglial damage. Veratridine and monensin co-incubated with ouabain, which inhibits active extrusion of Na(+) by Na(+),K(+)-ATPase, thereby enhances intracellular Na(+) accumulation, caused significant cell death (P<0. 001, approximately 50% cell damage), whereas glutamate did not. Na(+)-free solution substituted by choline (impermeable cation) attenuated cell damage induced by veratridine and monensin markedly, while Li(+) substitution (permeable cation) rather exacerbated. Nifedipine (100 microM), a blocker of L-type Ca(2+) channel, reduced veratridine-induced glial damage by 50%. Neither bepridil nor benzamil, a blocker of Na(+)-Ca(2+) exchanger, had any protection. Cyclosporin A (1 or 10 microM), an inhibitor of mitochondrial permeability transition or 10 microM N-benzyloxycarbonyl-Val-Ala-Asp-(O-methyl)fluoromethyl ketone (zVAD-fmk), which inhibits a broad range of caspases, did not show protective effects.  相似文献   

5.
Glutamate receptors-mediated excitotoxicity is believed to play a role in the pathophysiology of neurodegenerative diseases. The present study was performed to evaluate the inhibitory effect of fangchinoline, a bis-benzylisoquinoline alkaloid, which has a characteristic as a Ca2+ channel blocker, on excitatory amino acids (EAAs)-induced neurotoxicity in cultured rat cerebellar granule neuron. Fangchinoline (1 and 5 microM) inhibited glutamate (1 mM), N-methyl-D-aspartate (NMDA; 1 mM) and kainate (100 microM)-induced neuronal cell death which was measured by trypan blue exclusion test. Fangchinoline (1 and 5 microM) inhibited glutamate release into medium induced by NMDA (1 mM) and kainate (100 microM), which was measured by HPLC. And fangchinoline (5 microM) inhibited glutamate (1 mM)-induced elevation of intracellular calcium concentration. These results suggest that inhibition of Ca2+ influx by fangchinoline may contribute to the beneficial effects on neurodegenerative effect of glutamate in pathophysiological conditions.  相似文献   

6.
1. The effect of tetrodotoxin (5 microM), monensin (10 microM) and the replacement of Na+ by choline (choline medium) on the contractions of the rat testicular capsule induced by oxytocin (50 and 200 nM) have been studied. 2. The sodium channel blocker tetrodotoxin did not modify the oxytocin contraction. 3. The sodium ionophore monensin produces contraction of rat testicular capsule and reduces the oxytocin-induced contraction. The monensin contraction is inhibited by amiloride (0.1 mM). 4. Replacement of Na+ by choline increases the contraction induced by oxytocin and KCl (60 mM) but inhibits that induced by noradrenaline (3 microM). 5. The increase of contraction due to oxytocin in choline medium is inhibited by amiloride (50 microM and 1 mM) and when calcium is suppressed of the incubation medium.  相似文献   

7.
1. Smooth muscle cells were dispersed from rat aorta and then cultured. The action of palytoxin on rat aortic myocytes was analysed by measurement of 22Na+ uptake and single channel recording techniques. 2. Palytoxin induced an increase in 22Na+ uptake, with a concentration of 50 nM producing half-maximal activation. The action of palytoxin was inhibited by amiloride derivatives and by ouabain. The concentrations of inhibitor producing half-maximal inhibition were 10 microM for 3,4 dichlorobenzamil, 30 microM for benzamil, 100 microM for phenamil and 1 mM for ouabain. 3. In outside-out patches, palytoxin induced single channel currents that reversed near 0 mV with NaCl or KCl in the extracellular solution, but were outward with N-methyl-D-glucamine chloride or CaCl2 (110 mM), indicating that palytoxin induced a cation channel permeable to Na+ and K+ (PK/PNa = 1.2) but not to Ca2+ (PK/PCa > 30) or to N-methyl-D-glucamine (NMDG) (PK/PNMDG > 11) The unit channel conductance was 11-14 pS. 4. A high (> 0.1 mM) extracellular concentration of Ca2+ was necessary to observe channel activation by palytoxin. A high (150 mM) extracellular concentration of K+ partially prevented and reversed channel activation by palytoxin. 5. The channel activity was fully blocked by 3,4 dichlorobenzamil (20 microM) and partially blocked by phenamil (50 microM). It was not reduced by ouabain (200 microM).  相似文献   

8.
Recent studies indicate that the glutamatergic neurotransmitter system is involved in neurotoxicity caused by inorganic lead (Pb2+). We studied the role of apoptosis in the effects induced by Pb2+ (0.01-100 microM) and glutamate (0.1 and 1 mM) in mouse hypothalamic GT1-7 neurons. Although glutamate alone had no effect on cell viability, it enhanced neuronal cell death induced by Pb2+ (1-100 microM) within 72 h. Glutamate alone neither induced caspase-3-like protease activity nor promoted internucleosomal DNA fragmentation, both biochemical hallmarks of apoptosis. However, concurrent exposure to Pb2+ (10 or 100 microM) and glutamate (1 mM) resulted in more prominent cleavage of the fluorogenic caspase-3 substrate (Ac-DEVD-AMC) than caused by the same Pb2+ concentrations alone at 24-72 h. The highest caspase-3-like protease activities were measured at 48 h. Internucleosomal DNA fragmentation caused by Pb2+ (10 or 100 microM) alone or together with glutamate (1 mM) was evident at 96 h, less clear at 72 h and absent at 48 h. Immunoblotting did not reveal any changes in p53 protein levels in cells exposed to Pb2+, glutamate or their combination at any studied time point (3-72 h). Our results suggest that Pb2+-induced neurotoxicity may partially be mediated through p53-independent apoptosis and enhanced by glutamate.  相似文献   

9.
The influence of isoflurane (Iso) on proliferation and Na+,K+-ATPase activity of alveolar type II cells (ATII cells) injured by hydrogen peroxide (H2O2) was investigated. ATII cells isolated and purified from adult Sprague-Dawley rats were randomly divided into six groups: control group, 0.28 mM Iso group, 2.8 mM Iso group, 75 microM H2O2 group, 75 microM H2O2 + 0.28 mM Iso group, and 75 microM H2O2 + 2.8 mM Iso group. After primary culture for 32 hours, the proliferation of ATII cells was detected by MTT assay, and after culture for 24 hours the activity of Na+,K+-ATPase and lactate dehydrogenase (LDH) in the cells, and malonaldehyde (MDA) content of the culture medium, were measured by colorimetry. It was found that 0.28 mM and 2.8 mM Iso had no effect on the proliferation of ATII cells (p > 0.05), but 75 microM H2O2 inhibited their proliferation (p < 0.05) compared with untreated controls; 0.28 mM and 2.8 mM Iso significantly decreased Na+,K+-ATPase activity of ATII cells compared with untreated control cells (p < 0.05), and 75 microM H2O2 markedly decreased Na+,K+-ATPase activity of ATII cells (p < 0.01) with untreated control cells. 0.28 mM and 2.8 mM Iso aggravated the decrease of Na+,K+-ATPase activity induced by H2O2. Iso had no effect on LDH activity and MDA content of the culture medium of normal ATII cells, but significantly increased LDH activity and MDA content of the culture medium of ATII cells injured by H2O2. These findings suggest that Iso itself may decrease the activity of Na+,K+-ATPase of ATII cells in vitro and further damage the cells' function under peroxidation conditions, but has no effect on the proliferation of ATII cells.  相似文献   

10.
Nipradilol (3,4-dihydro-8-(2-hydroxy-3-isopropylamino)propoxy-3-nitroxy-2H-1-benzopyran) is used clinically as an anti-glaucoma ophthalmic solution in Japan, and was recently reported to suppress N-methyl-d-aspartate-induced retinal damage in rats. Here we investigated cytotoxic and cytoprotective actions of nipradilol on primary cultures of rat cortical neurons. Treatment of cortical cultures with a high concentration (500 microM) of nipradilol significantly reduced cell viability, increased lactate dehydrogenase (LDH) release and nitrite concentration in culture medium, whereas desnitro-nipradilol (3,4-dihydro-8-(2-hydroxy-3-isopropylamino)propoxy-3-hydroxy-2H-1-benzopyran) had no significant effects. Nipradilol-induced neuronal damage was inhibited by S-hexylglutathione, a glutathione S-transferase inhibitor, and FeTPPS (5,10,15,20-tetrakis(4-sulfonatophenyl)prophyrinato iron (III) chloride), a peroxynitrite decomposition catalyst. On the other hand, relatively low concentrations (10-100 microM) of nipradilol but not desnitro-nipradilol prevented neuronal cell death induced by 24 h application of 100 microM glutamate. Importantly, neuroprotective concentration (100 microM) of nipradilol suppressed glutamate-induced elevation of intracellular Ca2+ concentrations, but had no effect on intracellular cyclic GMP levels. Hence, nipradilol can protect cultured cortical neurons against glutamate neurotoxicity via cyclic GMP-independent mechanisms, and nitric oxide (NO) released from the nitoroxy moiety of nipradilol may mediate neuroprotective effect through the modulation of NMDA receptor function.  相似文献   

11.
To investigate the direct evidence for the role which nitric oxide (NO) plays in the neurotoxicity of excitatory amino acids, we evaluated NO level by Greiss testing solution when glutamate (Glu) and kainate (KA) induced neuronal degeneration in primary cortical cultures. Glutamate-induced neurotoxicity was accompanied by a rise in NO. 5 mM hemoglobin (Hb) led to a decrease of NO content and prevented excitotoxicity induced by 1 mM glutamate. 1 mM L-arginine (L-Arg) reversed the effect of hemoglobin by raising the NO level. No change in NO content was found in KA-induced neurotoxicity, which was not affected by L-Arg, Hb or L-Arg + Hb. It is suggested that NO plays an important role in glutamate-, but not KA-induced neurotoxicity in primary cortical cultures. We also investigated the effects of glutamate on a growth-associated protein, B-50. The B-50 level declined significantly 24 h after exposure to 100 microM glutamate for 30 min and then recovered 2 days later. The effect of glutamate on B-50 was concentration-dependent. This indicates that B-50 might be involved in both glutamate neurotoxicity and the following neuronal repair process.  相似文献   

12.
Chiou WF  Lee WS  Yeh PH 《Planta medica》2006,72(14):1300-1304
The evidence for loss of Ca2+ homeostasis due to neuronal degeneration is considerable and rapidly increasing. In this study, we try to evaluate the protective effect of tetrandrine (TET), an alkaloid isolated from the Chinese medicinal herb Radix Stephania tetrandrae S., on amyloid-beta protein (Abeta) and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) induced cell death in SK-N-SH neuroblastoma cells. Both compounds reduced cell viability in a concentration-dependent manner after 72 h in culture. Cell proliferation in the presence of 20 microM Abeta or 0.4 mM MPTP was reduced to 58.3 +/- 4.9 or 54.9 +/- 5.5 %, respectively. TET (0.1, 0.5 and 1 microM) alone had no significant effect on cell survival; however, it prevented Abeta-induced cell death in a concentration-dependent manner. In contrast, TET failed to counteract MPTP-induced cytotoxicity. Also, an L-type calcium channel blocker, nimodipine, solely reversed Abeta-induced cell death. On the other hand, ELISA determination of mono-/oligo-nucleosomes accumulation showed that the mode of cell death evoked by Abeta was necrosis while that evoked by MPTP was presumably apoptosis. These results suggest that TET may mitigate the harmful effects of Abeta on cell survival, probably by interfering via the necrotic signal related to Ca2+ overloading through the L-type calcium channel.  相似文献   

13.
1. In the presence of indomethacin (IM, 10 microM) and N omega-nitro-L- arginine (L-NOARG, 0.3 mM), acetylcholine (ACh) induces an endothelium-dependent smooth muscle hyperpolarization and relaxation in the rat isolated hepatic artery. The potassium (K) channel inhibitors, tetrabutylammonium (TBA, 1 mM) and to a lesser extent 4-aminopyridine (4-AP, 1 mM) inhibited the L-NOARG/IM-resistant relaxation induced by ACh, whereas apamin (0.1-0.3 microM), charybdotoxin (0.1-0.3 microM), iberiotoxin (0.1 microM) and dendrotoxin (0.1 microM) each had no effect. TBA also inhibited the relaxation induced by the receptor-independent endothelial cell activator, A23187. 2. When combined, apamin (0.1 microM) + charybdotoxin (0.1 microM), but not apamin (0.1 microM) + iberiotoxin (0.1 microM) or a triple combination of 4-AP (1 mM) + apamin (0.1 microM) + iberiotoxin (0.1 microM), inhibited the L-NOARG/IM-resistant relaxation induced by ACh. At a concentration of 0.3 microM, apamin + charybdotoxin completely inhibited the relaxation. This toxin combination also abolished the L-NOARG/ IM-resistant relaxation induced by A23187. 3. In the absence of L-NOARG, TBA (1 mM) inhibited the ACh-induced relaxation, whereas charybdotoxin (0.3 microM) + apamin (0.3 microM) had no effect, indicating that the toxin combination did not interfere with the L-arginine/NO pathway. 4. The gap junction inhibitors halothane (2 mM) and 1-heptanol (2 mM), or replacement of NaCl with sodium propionate did not affect the L-NOARG/IM-resistant relaxation induced by ACh. 5. Inhibition of Na+/K(+)-ATPase by ouabain (1 mM) had no effect on the L-NOARG/IM-resistant relaxation induced by ACh. Exposure to a K(+)-free Krebs solution, however, reduced the maximal relaxation by 13% without affecting the sensitivity to ACh. 6. The results suggest that the L-NOARG/IM-resistant relaxation induced by ACh in the rat hepatic artery is mediated by activation of K-channels sensitive to TBA and a combination of apamin + charybdotoxin. Chloride channels, Na+/K(+)-ATPase and gap junctions are probably not involved in the response. It is proposed that endothelial cell activation induces secretion of an endothelium-derived hyperpolarizing factor(s) (EDHF), distinct from NO and cyclo-oxygenase products, which activates more than one type of K-channel on the smooth muscle cells. Alternatively, a single type of K-channel, to which both apamin and charybdotoxin must bind for inhibition to occur, may be the target for EDHF.  相似文献   

14.
BackgroundThe aim of this study was to examine the putative protective effect of calcium channel blockers on hippocampal neurons in the experimental model of excitotoxic damage.MethodsSeven-day old primary dissociated cultures of rat hippocampal neural cells containing one of the following calcium channel blockers: cinnarizine, flunarizine or nimodipine were exposed to glutamate-induced injury. Quantitative assessments of neuronal injury were accomplished by measuring lactate dehydrogenase (LDH) activity in the media 24 h after exposure to glutamate and by counting and establishing the apoptotic and necrotic cells in flow cytometry with Annexin V-FITC/PI staining.ResultsIn our experiment, glutamate induced a 339% elevation of apoptotic cells and a 289% increase of necrotic cells in hippocampal neurons as compared to control cultures without drugs. In cultures containing flunarizine, glutamate-induced cell apoptosis was suppressed by 62% while necrosis showed no significant alternation. Cinnarizine exerted no anti-apoptotic effects on glutamate-injured cultured hippocampal neurons, while nimodipine intensified the apoptotic pathway of cell death and promoted an increase in the number of apoptotic neurons by 26%. When cinnarizine or nimodipine were used, the percentage of necrotic cells was significantly lower when compared with glutamate-injured cultures and it amounted to 44% and 24% for cinnarizine and nimodipine, respectively.ConclusionsThe obtained results suggest the beneficial anti-apoptotic potential of flunarizine and the anti-necrotic potential of cinnarizine against glutamate-induced death of cultured hippocampal neurons. Nimodipine can protect neurons against necrosis, but has an intensified adverse pro-apoptotic effect on cultured neurons in the experimental model of excitotoxic injury.  相似文献   

15.
We have studied the effect of drugs which affect the movement of calcium on the contractions induced by 50 and 200 nM oxytocin in the isolated testicular capsule of the rat. The ED50 for oxytocin in this preparation was 188 (+/- 66 S.E.) nM and the maximal contraction induced by oxytocin was smaller than that obtained with 10 microM of the calcium ionophore, A23187. Lanthanum (10 mM), cobalt (2 mM), EGTA (3.5 and 5 nM, 30 s exposure) and a decrease in the calcium concentration of the medium reduced the oxytocin response. The response was completely abolished after prolonged incubation with EGTA (2 mM) in a calcium-free medium. The calcium blocking agents, nifedipine and flunarizine, and the agonist, Bay K 8644, did not modify the responses to oxytocin. Verapamil, at possibly non-specific doses (10 microM), reduced the contractions while diltiazem (0.1 mM), in a prazosin (10 microM)-resistant way, and nickel (0.1 mM) increased them. Both modifiers of intracellular calcium that were used namely TMB-8 (10 microM), in a calcium-free medium, and dantrolene sodium (10 and 30 microM), with and without calcium in the medium, decreased the oxytocin response. On the whole, it seems as if both intra- and extracellular calcium were involved in the contractile effect of oxytocin, although extracellular calcium does not seem to gain access to the cell through voltage-dependent calcium channels sensitive to selective calcium entry blockers.  相似文献   

16.
Donepezil hydrochloride (donepezil: (+/-)-2-[(1-benzylpiperidin-4-yl)methyl]-5,6-dimethoxy-indan-1-one monohydrochloride) is a potent acetylcholinesterase inhibitor used for treatment of Alzheimer's disease. Although acetylcholinesterase inhibitors are used as a symptomatic treatment for Alzheimer's disease, it is not clear whether or not they are effective against progressive degeneration of neuronal cells. In this study, we investigated the neuroprotective effects of donepezil and other acetylcholinesterase inhibitors used for treatment of Alzheimer's disease, i.e., galantamine, rivastigmine, and tacrine. As a neurodegenerative model, we used rat cortical neurons exposed to oxygen-glucose deprivation. Lactate dehydrogenase (LDH) released into the culture medium was measured as a marker of neuronal cell damage. First, the effects of donepezil (10 microM) on three different treatment schedules (from 12 h before to 24 h after oxygen-glucose deprivation (pre-12 h), from 1 h before to 24 h after oxygen-glucose deprivation (pre-1 h) and from 1 h after to 24 h after oxygen-glucose deprivation (post-1 h)) were compared. The pre-12-h treatment most effectively inhibited LDH release. The protective effect of donepezil was confirmed morphologically. Next, the effects of donepezil and the other three acetylcholinesterase inhibitors were compared under the pre-12-h treatment condition. Donepezil (0.1, 1, and 10 microM) significantly decreased LDH release in a concentration-dependent manner. However, galantamine (1, 10, and 100 microM), tacrine (0.1, 1, and 10 microM), and rivastigmine (0.1, 1, and 10 microM) did not significantly decrease LDH release. The neuroprotective effect of donepezil was not antagonized by scopolamine or mecamylamine. These results demonstrate that donepezil has a protective effect against oxygen-glucose deprivation-induced injury to rat primary cultured cerebral cortical neurons. Besides, it is suggested that this effect of donepezil is independent of muscarinic cholinergic system and nicotinic cholinergic system. Thus, donepezil is expected to have a protective effect against progressive degeneration of brain neuronal cells in ischemic cerebrovascular disease and Alzheimer's disease.  相似文献   

17.
The present study was performed to examine the effect of fangchinoline, a bis- benzylisoquinoline alkaloid, which exhibits the characteristics of a Ca2+ channel blocker, on cyanide-induced neurotoxicity using cultured rat cerebellar granule neurons. NaCN produced a concentration-dependent reduction of cell viability, which was blocked by MK-801, an N-methyl-D-aspartate (NMDA) receptor antagonist, verapamil, L-type Ca2+ channel blocker, and L-NAME, a nitric oxide synthase inhibitor. Pretreatment with fangchinoline over a concentration range of 0.1 to 10 microM significantly decreased the NaCN-induced neuronal cell death, glutamate release into medium, and elevation of [Ca2+]i and oxidants generation. These results suggest that fangchinoline may mitigate the harmful effects of cyanide-induced neuronal cell death by interfering with [Ca2+]i influx, due to its function as a Ca2+ channel blocker, and then by inhibiting glutamate release and oxidants generation.  相似文献   

18.
Recent studies point to an interaction between the glutamatergic neurotransmitter system and inorganic lead (Pb) neurotoxicity. Pb (1–100 µM) evoked cytotoxicity over the period of 72 h in mouse hypothalamic GT1-7 neurons. Glutamate (0.1 or 1 mM) on its own did not have any effect on cell viability. However, 1 mM glutamate clearly increased Pb-induced cell death at 48 and 72 h. Although flunarizine (0.1–10 µM), an antagonist of L- and T-type voltage-sensitive calcium channels (VSCCs), partially protected from the cytotoxicity induced by co-exposure to Pb (10 or 100 µM) and glutamate (1 mM), it had no protective effect on cytotoxicity induced by Pb alone. The flunarizine-induced protection was dependent on time and observed only at 48 h. Neither verapamil, an antagonist of L-type VSCCs, nor DIDS, an inhibitor of anion exchange, at non-toxic concentrations (0.1–10 µM) had any effect on cytotoxicity induced by Pb alone or together with glutamate at any studied time point. Co-exposure to Pb and glutamate also resulted in more prominent production of reactive oxygen species (ROS) than either of the compounds alone. Interestingly, we observed an increase in intracellular glutathione (GSH) levels in cells exposed to micromolar concentrations of Pb. Glutamate decreased the levels of intracellular GSH and also partially reduced the Pb-induced increase in GSH levels. These results suggest that the interaction of glutamate and Pb results in increased neuronal cell death via mechanisms that involve an increase in ROS production, a decrease in intracellular GSH defense against oxidative stress and probably T-type VSCCs.  相似文献   

19.
1. Zooxanthellatoxin-A (ZT-A), a novel polyhydroxylated long chain compound, isolated from a symbiotic marine alga Simbiodinium sp., caused aggregation in rabbit washed platelets in a concentration-dependent manner (1-4 microM), accompanied by an increase in cytosolic Ca2+ concentration ([Ca2+]i). 2. ZT-A did not cause platelet aggregation or increase [Ca2+]i in a Ca(2+)-free solution, and Cd2+ (0.1-1 mM), Co2+ (1-10 mM) and Mn2+ (1-10 mM) inhibited ZT-A-induced aggregation. SK&F96365 (1-100 microM), a receptor operated Ca2+ channel antagonist, and mefenamic acid (0.1-10 microM), a non-specific divalent cation channel antagonist, inhibited platelet aggregation and the increase in [Ca2+]i induced by ZT-A. 3. Indomethacin (0.1-10 microM), a cyclo-oxygenase inhibitor, and SQ-29548 (0.1-10 microM), a thromboxane A2 (TXA2) receptor antagonist, inhibited platelet aggregation and the increase in [Ca2+]i induced by ZT-A. 4. Methysergide (0.01-1 microM), a 5-HT2 receptor antagonist, inhibited ZT-A-induced platelet aggregation but did not affect the increase in [Ca2+]i induced by ZT-A. 5. Tetrodotoxin (1 microM), a Na+ channel blocker and chlorpheniramine (1 microM), a H1-histamine receptor antagonist, neither affected ZT-A-induced platelet aggregation nor the increase in [Ca2+]i induced by ZT-A. 6. Genistein (1-100 microM), a protein tyrosine kinase inhibitor, and staurosporine (0.01-1 microM), a protein kinase C inhibitor, also inhibited ZT-A-induced platelet aggregation. 7. The present results suggest that ZT-A elicits Ca(2+)-influx from platelet plasma membranes. The resulting increase in [Ca2+]i subsequently stimulates the secondary release of TXA2 from platelets.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
AM-36 is a novel neuroprotective agent incorporating both antioxidant and Na(+) channel blocking actions. In cerebral ischaemia, loss of cellular ion homeostasis due to Na(+) channel activation, together with increased reactive oxygen species (ROS) production, are thought to contribute to neuronal death. Since neuronal death in the penumbra of the ischaemic lesion is suggested to occur by apoptosis, we investigated the ability of AM-36, antioxidants and Na(+) channel antagonists to inhibit toxicity induced by the neurotoxin, veratridine in cultured cerebellar granule cells (CGC's). Veratridine (10 - 300 microM) concentration-dependently reduced cell viability of cultured CGC's. Under the experimental conditions employed, cell death induced by veratridine (100 microM) possessed the characteristics of apoptosis as assessed by morphology, TUNEL staining and DNA laddering on agarose gels. Neurotoxicity and apoptosis induced by veratridine (100 microM) were inhibited to a maximum of 50% by the antioxidants, U74500A (0.1 - 10 microM) and U83836E (0.03 - 10 microM), and to a maximum of 30% by the Na(+) channel blocker, dibucaine (0.1 - 100 microM). In contrast, AM-36 (0.01 - 10 microM) completely inhibited veratridine-induced toxicity ( IC(50) 1.7 (1.5 - 1.9) microM, 95% confidence intervals (CI) in parentheses) and concentration-dependently inhibited apoptosis. These findings suggest veratridine-induced toxicity and apoptosis are partially mediated by generation of ROS. AM-36, which combines both Na(+) channel blocking and antioxidant activity, provided superior neuroprotection compared with agents possessing only one of these actions. This bifunctional profile of activity may underlie the potent neuroprotective effects of AM-36 recently found in a stroke model in conscious rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号