首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 932 毫秒
1.
The overall goal of this study was to develop a micellar system of paclitaxel (PTX) to enhance its oral absorption. An amphiphilic chitosan derivative, N-deoxycholic acid-N, O-hydroxyethyl chitosan (DHC), was synthesized and characterized by FTIR, 1H NMR, elemental analysis, and X-ray diffraction (XRD) techniques. The degree of substitution (DS) of hydroxyethyl group and deoxycholic acid group ranged from 89.5–114.5% and 1.11-8.17%, respectively. The critical micelle concentration (CMC) values of DHC decreased from 0.26 to 0.16 mg/mL as the DS of deoxycholic acid group increased. PTX was successfully loaded in DHC micelles with a high drug loading (31.68 ± 0.14%) and entrapment efficiency (77.57 ± 0.51%). The particle size of PTX-loaded DHC micelles ranged from 203.35 ± 2.19 to 236.70 ± 3.40 nm as the DS of deoxycholic acid group increased. After orally administration of PTX-loaded DHC micelles, the bioavailability was threefold compared with that of an orally dosed Taxol®. The single-pass intestinal perfusion studies (SPIP) showed that the intestinal absorption of micelles was via endocytosis involving a saturable process and a p-glycoprotein (P-gp)-inde-pendent way. All these indicated that the DHC micelles might be a promising tool for oral delivery of poorly water-soluble drugs. © 2010 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 99:4543–4553, 2010  相似文献   

2.
Micelle systems composed of the polyoxyethylated nonionic surfactant Pluronic® F127 (F127) and cationic polyelectrolyte chitosan (CH) were prepared with dexamethasone (DEX) as a hydrophobic model drug. The F127/CH micelles were characterised by their hydrodynamic diameter and a zeta-potential ranging between 25.4 and 28.9 nm and + 9.3 and + 17.6 mV, respectively. The DEX loading was between 0.48% and 0.56%, and no significant influence of CH on DEX loading was observed. All micelle systems were characterised by prolonged release profiles. The addition of CH significantly enhanced the in vitro DEX release rate and transport across Caco-2 cell monolayers, as compared to the CH-free F127 micelle system. This colloidal carrier was well tolerated in rabbit eyes, and no clinically abnormal signs in various ocular structures were observed. The increase in intraocular pressure (IOP) in rabbits was used to evaluate DEX ocular bioavailability. The AUC values showed a 1.7- and 2.4-fold increase in bioavailability with F127 and F127/0.015 (w/v) % CH micelle systems, respectively, as compared to a standard DEX suspension. These data indicate improved intraocular DEX absorption from the micelle systems, which can be ascribed to both F127 and CH corneal permeability enhancement.  相似文献   

3.
To promote the application of methoxy poly(ethylene glycol)-cholesterol (mPEG—Chol), mPEG–Chol was used to prepare core-shell micelles encapsulating poorly water-soluble docetaxel (DTX-PM) by modified cosolvent evaporation method. Approaches to enhance DTX entrapment efficiency (EE) and minimize particle size were investigated in detail, including organic and aqueous phase composition, organic/aqueous phase ratio, and polymer concentration. In optimal formulation, micelles had higher EE (97.6%) and drug loading (4.76%) with the diameter of 13.76 ± 0.68 nm and polydispersity index of 0.213 ± 0.006. Transmission electron microscopy (TEM) showed that the micelles were spherical, and differential scanning calorimetry (DSC) analysis proved that DTX was successfully entrapped into mPEG–Chol micelles. The in vitro cytotoxicity experiments displayed that blank micelles had no effect on the growth of SKOV-3, BXPC-3, A549, and HepG-2 cells, demonstrating that mPEG–Chol was one of the biocompatible biomaterials. The half inhibition concentration of DTX-PM on SKOV-3, BXPC-3, A549, and HepG-2 cells were 10.08, 7.6, 28.37, and 125.75 ng/mL, respectively. DTX-PM had the similar antitumor activity to free DTX, indicating that mPEG–Chol was a promising micellar vector for hydrophobic drug delivery. In addition, this work provided a new and facile approach to prepare drug-loaded micelles with controllable performances. © 2012 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 102:1054–1062, 2013  相似文献   

4.
Polymeric micelles provide a promising platform for improving oral absorption of poorly soluble drugs. However, improved understanding of how drug retention within the hydrophobic micelle core can reduce drug absorption is required. We designed supersaturated polymeric micelles (Super-PMs) to increase molecularly dissolved drug concentration and gain an insight into the effect of the degree of supersaturation on oral absorption of cyclosporine A (CsA) in rats. The drug release from Super-PMs increased with an increase in initial supersaturation degrees in micelles. The cellular uptake of coumarin-6 was reduced by the retention of drug in polymer micelles. The transport flux of CsA across Caco-2 monolayer was increased with initial supersaturation degrees of 0.81–3.53 (p < 0.05). However, increase in supersaturation to 5.64 actually resulted in decreased CsA transport. The same trend was observed in a rat in vivo absorption study, in which the highest bioavailability of 134.6 ± 24.7% (relative to a commercial product, Sandimmun Neoral®, p < 0.01) was achieved when the supersaturation degree was 3.53. These results demonstrated that Super-PMs were a promising drug delivery system for compounds with low aqueous solubility. This study also provided an experimental proof for the hypothesis that moderately supersaturated formulations are valuable alternative to high supersaturation formulations, resulting in optimal in vivo performance, and the degree of supersaturation should be carefully controlled to optimize drug absorption.  相似文献   

5.
The objective of this study was: (1) to characterize the P-gp inhibitory effect of different concentrations of Pluronic P85 on anti-HIV-1 drug cellular accumulation, and (2) to investigate the relationship between cellular accumulation and free fraction of drug. Cellular accumulation studies in MDCKII-WT and MDCKII-MDR1 cell monolayers showed a biphasic dose response characterized by decline in accumulation at Pluronic concentrations greater than the CMC. This phenomenon was independent of the inhibition of P-gp efflux by Pluronic. Cell-free equilibrium dialysis was used to determine the effect of Pluronic P85 on drug free fraction and the affinity of Pluronic micelles for drug was modeled. Nelfinavir and saquinavir associated extensively with micelles and equilibrium free fractions were low at P85 concentrations above the CMC, with association constants being in the order nelfinavir > saquinavir ? abacavir. Abacavir, a P-gp substrate, showed no association with micelles yet showed a biphasic response in cellular accumulation. These data suggest that, above the CMC, inhibition of P-gp is not affected but rather factors such as micellar trapping could contribute to decreased accumulation. Therefore, the in vitro evaluation of the effect of Pluronic formulations on active transport should take into account both the physicochemical properties of drug and the composition of Pluronic. © 2009 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 98:4170–4190, 2009  相似文献   

6.
Stearic acid-grafted chitosan oligosaccharide (CSO-SA) micelles presented a potential candidate for intracellular drug delivery carrier due to its special spatial structure. In this article, CSO-SA was further modified by polyethylene glycol (PEG). The physicochemical properties of PEGylated CSO-SA (PEG-CSO-SA) micelles were characterized. After PEGylation, the critical micelle concentration (CMC) of PEG-CSO-SA had no significant change; the micelle size increased; and the zeta potential decreased. The cellular uptake of CSO-SA micelles before and after PEGylation in macrophage RAW264.7, immortalized rat liver cells BRL-3A and human liver tumor cells HepG2 was studied. About 58.4 ± 0.63% of CSO-SA micelles were uptaked by RAW264.7 in 24 h, however, only 17.7 ± 0.94% of PEG-CSO-SA micelles were internalized into RAW264.7 after the CSO-SA was modified with PEG in five molar times. Meanwhile, there were no changes in the uptake after PEGylation of CSO-SA in BRL-3A and HepG2. Using mitomycin C as a model drug, the in vitro anti-tumor activities of the drug loaded in the micelles were investigated. The 50% cellular growth inhibition (IC50) of the drug decreased from 1.97 ± 0.2 to 0.13 ± 0.02 μg/mL after mitomycin C was loaded into CSO-SA micelles, and the IC50 value of the drug had no obvious change when the CSO-SA was modified by PEG.  相似文献   

7.
This work reports the physico-chemical characterisation of the micellar structures formed by a saponin fraction obtained from an important South American species, Ilex paraguariensis (mate). The mate saponin-enriched fraction (MSF) mainly comprises triterpenic glycosides and was obtained from mate green fruits through solid-phase extraction. The physico-chemical studies focused on the determination of the critical micellar concentration (CMC), the size and shape of the micelles, using conventional transmission electronic microscopy (TEM), as well as Cryo-TEM, light scattering and small-angle neutron scattering. The rheological behaviour of the solutions up to 4 wt% was also determined using a controlled-strain rheometer. Finally, the MSF ability to solubilise poorly water-soluble drugs was assayed using carbamazepine and flurbiprofen as basic and weak acidic drug models. Small spherical micelles of around 20 Å radius were observed in the presence of elongated structures with lengths of more than 500 nm, possessing a well-defined CMC of 0.41 g/L. MSF solutions ranging from 0.25 to 4% (w/v) demonstrated a viscoelastic behaviour independent of the concentration. MSF could improve the solubility of carbamazepine in the range of 0.13 to 1.5% (w/v)  相似文献   

8.
Enabling formulations based on hydroxypropyl-β-cyclodextrins (HPβCD), micellar preparation, and liposomes have been designed to deliver the racemic mixture of a lipophilic cannabinoid type 2 agonist, MDA7. The antiallodynic effects of MDA7 formulated in these three different systems were compared after intravenous (i.v.) administration in rats. Stoichiometry of the inclusion complex formed by MDA7 in HPβCD was determined by continuous variation plot, electrospray ionization–mass spectrometry (ESI–MS) analysis, phase solubility, and nuclear magnetic resonance studies and indicate formation of exclusively 1:1 adduct. Morphology and particle sizes determined by dynamic light scattering and transmission electron microscopy show the presence of a homogeneous population of closed round-shaped oligolamellar MDA7 containing liposomes, with an average size of 117 nm [polydispersity index (PDI) <0.1]. Monodisperse micelles exhibited an average size of 15 nm (PDI 0.1). HPβCD-based formulation administrated in vivo was composed of two discrete particles populations with a narrow size distribution of 3 nm (PDI <0.1) and 510 nm (PDI <0.1). HPβCD-based formulation dramatically improved antiallodynic effect of MDA7 in comparison with the liposomes preparation. Through inclusion complexation and possibly formation of aggregates, HPβCD can enhance the aqueous solubility of lipophilic drugs, thereby improving their bioavailability for i.v. administration.  相似文献   

9.
Ultrasound (US) increases efficacy of drugs delivered from micelles, but the pharmacokinetics have not been studied previously. In this study, US was used to deliver doxorubicin (Dox) sequestered in micelles in an in vivo rat model with bilateral leg tumors. One of two frequencies with identical mechanical index and intensity was delivered for 15 min to one tumor immediately after systemic injection of micellar Dox. Pharmacokinetics in myocardium, liver, skeletal muscle, and tumors were measured for 1 week. When applied in combination with micellar Dox, the ultrasoincated tumor had higher Dox concentrations at 30 min, compared to bilateral noninsonated controls. Initially, concentrations were highest in heart and liver, but within 24 h they decreased significantly. From 24 h to 7 days, concentrations remained highest in tumors, regardless of whether they received US or not. Comparison of insonated and noninsonated tumors showed 50% more Dox in the insonated tumor at 30 min posttreatment. Four weekly treatment produced additional Dox accumulation in the myocardium but not in liver, skeletal leg muscle, or tumors compared to single treatment. Controls showed that neither US nor the empty carrier impacted tumor growth. This study shows that US causes more release of drug at the targeted tumor. © 2010 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 99:3122–3131, 2010  相似文献   

10.

Purpose

This article describes the preparation, physicochemical characterization and in vivo assessment of parenteral colloidal formulation of flutamide (FLT) based on biocompatible casein (CAS) self-assembled micelles in order to control drug release, enhance its antitumor efficacy and reduce its hepatotoxicity.

Methods

Spray-drying technique was successfully utilized to obtain solidified redispersible drug-loaded micelles.

Results

Spherical core-shell micelles were obtained with a particle size below 100 nm and a negative zeta potential above ?30 mV exhibiting a sustained drug release up to 5 days. After intravenous administration into prostate cancer bearing rats for 28 days, FLT-loaded CAS micelles showed a higher antitumor efficacy as revealed by significantly higher reduction in PSA serum level (65.95%) compared to free FLT (55.43%). Moreover, micellar FLT demonstrated a marked decrease in relative weights of both prostate tumor and seminal vesicle (34.62 and 24.59%) compared to free FLT (11.86 and 17.74%), respectively. These antitumor responses were associated with notable reduction of cell proliferation, intratumoral angiogenesis and marked increase of tumor apoptosis. A significantly lower risk of hepatotoxicity was observed by micellar FLT as evidenced by lower alanine aminotransferase (ALT) serum level compared to free FLT.

Conclusions

Overall this approach suggested that CAS micelles might be an ideal candidate for intravenous delivery of hydrophobic anticancer drugs.  相似文献   

11.
Cationic liposomes exhibit a propensity to selectively target tumor-associated blood vessels demonstrating potential value as anti-cancer drug delivery vehicles. Their utility however, is hampered by their biological instability and rapid elimination following i.v. administration. Efforts to circumvent rapid plasma elimination have, to date, focused on decreasing cationic lipid content and incorporating polyethylene glycol (PEG)-modified lipids. In this study we wanted to determine whether highly charged cationic liposomes with surface-associated PEG could be designed to exhibit extended circulation lifetimes, while retaining tumor vascular targeting properties in an HT29 colorectal cancer xenograft model. Cationic liposomes prepared of DSPC, cationic lipids (DODAC, DOTAP, or DC-CHOL), and DSPE-PEG2000 were studied. Our results demonstrate that formulations prepared with 50 mol% DODAC or DC-CHOL, and 20 mol% DSPE-PEG2000 exhibited circulation half-lives ranging from 6.5 to 12.5 h. Biodistribution studies demonstrated that DC-CHOL formulations prepared with DSPE-PEG2000 accumulated threefold higher in s.c. HT29 tumors than its PEG-free counterpart. Fluorescence microscopy studies suggested that the presence of DSPE-PEG2000 did not adversely affect liposomal tumor vasculature targeting. We show for the first time that it is achievable to design highly charged, highly pegylated (20 mol% DSPE-PEG2000) cationic liposomes which exhibit both extended circulation lifetimes and tumor vascular targeting properties  相似文献   

12.
Aminocandin (IP960; HMR3270; NXL201) is a new echinocandin with broad-spectrum in vitro activity against Aspergillus and Candida spp. We compared the activity of aminocandin with that of amphotericin B (AmB), itraconazole (ITC) and caspofungin (CAS) in murine models of disseminated aspergillosis against three strains of A. fumigatus, two of which were fully susceptible (AF293 and A1163) and one was resistant to ITC (AF91). Mice were rendered temporarily neutropenic or persistently neutropenic with cyclophosphamide and were infected intravenously 3 days later. Temporarily neutropenic mice were treated with either intraperitoneal (i.p.) AmB (5 mg/kg/dose), oral (p.o.) ITC (25 mg/kg/dose), intravenous (i.v.) aminocandin (0.25–10 mg/kg/dose), i.p. aminocandin (1 mg/kg/dose) or solvent control for 9 days. Mice were euthanised 11 days post infection and the kidneys and liver were removed for quantitative culture. Following infection with AF293, only aminocandin 5 mg/kg i.v. yielded 100% survival. Aminocandin 1 mg/kg i.v., AmB 5 mg/kg i.p. or ITC 25 mg/kg p.o. were equivalent (P > 0.05). Aminocandin 5 mg/kg was superior to aminocandin 0.25 mg/kg (P < 0.0001) as well as all controls (P < 0.0001) in reducing mortality. Following infection with AF91, only aminocandin at 5 mg/kg and 1 mg/kg i.v. yielded 100% survival, which was superior to ITC, aminocandin 0.25 mg/kg and controls (all P < 0.0001). In the persistently neutropenic model with A1163, aminocandin, CAS and micafungin (2–10 mg/kg) were all effective at prolonging survival, with some impact on reducing culture burdens, even with alternate-day dosing (4 mg/kg). The only fungicidal regimen was aminocandin 5 mg/kg, which sterilised 40% and 50% of mice following infection with AF293 and AF91, respectively. Aminocandin at doses of ≥1 mg/kg is highly effective in reducing mortality and organ burden in disseminated infection caused by ITC-susceptible and -resistant A. fumigatus.  相似文献   

13.
Thienorphine (TNP) is a new partial opioid agonist currently developed as a promising drug candidate with the intended clinical indication for the treatment of opioid dependence. The pharmacokinetic profile and biliary excretion of TNP and its glucuronide conjugate (TNP-Glu) were investigated after oral administration of TNP in rats. The concentrations of TNP and TNP-Glu were simultaneously quantified using a LC-MS/MS method. A double peak phenomenon was observed in TNP plasma concentration–time curves with the secondary peak appeared at 6–8 h. A slower decline of plasma concentrations in the terminal phase was observed for TNP with T1/2 of 7.01 h. TNP-Glu was the predominant component in rat plasma and bile. Its plasma level was about 10 times higher than TNP and the 24 h accumulative bile excretion rate was 23%. Enterohepatic circulation of TNP and TNP-Glu was evaluated using a paired rat model. In bile-donor rats, no double-peak was detected and the elimination half life of TNP was significantly shortened (3.71 h) when compared to intact rats (7.01 h, P<0.05). Both TNP and TNP-Glu were detected in bile-recipient rats. Their exposures in recipient rats due to enterohepatic circulation were 15.6% and 42.6% for the parent drug and the metabolite, respectively. The deconjugation of the glucuronide conjugate and the reabsorption of free TNP were further confirmed in in situ perfused rat intestinal preparations. These results indicate that the enterohepatic circulation has a significant influence on the systemic exposure of the parent drug and its glucuronide conjugate, particularly on the terminal elimination of TNP, which may result in the prolonged retention of the drug in body.  相似文献   

14.
A hydrophobic mucoadhesive thiolated chitosan for hydrophobic drug delivery was designed and prepared by conjugating p-coumaric acid (pCA) to increase hydrophobic compatibility with drug via pi–pi interaction and then covalently linking homocysteine thiolactone (HT) to the pCA-chitosan to increase the mucoadhesive properties. The degree of substituted phenolics in the modified chitosan was about 7.21 ± 0.05 mg gallic acid equivalents (GAE)/g. The pCA-HT-chitosan formed from a 24 h HT conjugation reaction time showed the highest yield of grafted thiol groups (∼17.6 μmol/g) and the strongest mucoadhesive property, being about 10-, 2- and 1.6-fold more than that for the unmodified chitosan at pH 1.2, 4.0 and 6.4, respectively. Piperine (PIP) as a model hydrophobic drug was encapsulated in pCA-HT-chitosan microparticles via electrospray ionization with an encapsulation efficiency of over 80%. In vitro release studies showed a sustained release of PIP to >75% over 12 h between pH 1.2 and 6.4.  相似文献   

15.
Nanosized liposomal drug delivery systems are well suited for selective drug delivery at tumor sites. Celecoxib (CLX) is a highly hydrophobic cyclooxygenase-2 inhibitor that can reduce the incidence of colorectal polyps; however, the adverse cardiovascular effects limit its applicability. Here, we report a liposomal formulation of CLX using 1,2-Distearoyl-sn-glycero-3-phosphocholine, cholesterol, and polyethylene glycol. Encapsulation efficiency of the drug was greater than 70%; the release was slow and sustained with only 12%–20% of CLX released in the first 12 h. Flow cytometry and confocal microscopy studies using the colon cancer cell lines HCT-116 and SW620 showed significantly higher cellular association and internalization of the liposomes after incubation for 6 h when compared with 30 min. The liposomes did not colocalize with transferrin, but had a punctuate appearance, indicating vesicular localization. Cell proliferation was inhibited by 95% and 78%, respectively, in SW620 and HT29 cells after incubation with 600 μM liposomal CLX for 72 h. Moreover, cellular motility, as shown by a scratch wound healing assay, was also significantly (p = 0.006) inhibited when SW620 cells were incubated with 400 μM liposomal CLX. This is the first report of the successful encapsulation of CLX in a long-circulating liposomal formulation that could be effective against colorectal cancer.  相似文献   

16.
Nanocarriers may act as useful tools to deliver therapeutic agents to the skin. However, balancing the drug–particle interactions; to ensure adequate drug loading, with the drug–vehicle interactions; to allow efficient drug release, presents a significant challenge using traditional semi-solid vehicles. The aim of this study was to determine how the physicochemical properties of nanoparticles influenced minoxidil release pre and post dose application when formulated as a simple aqueous suspension compared to dynamic hydrofluoroalkane (HFA) foams. Minoxidil loaded lipid nanoparticles (LN, 1.4 mg/ml, 50 nm) and polymeric nanoparticles with a lipid core (PN, 0.6 mg/ml, 260 nm) were produced and suspended in water to produce the aqueous suspensions. These aqueous suspensions were emulsified with HFA using pluronic surfactant to generate the foams. Approximately 60% of the minoxidil loaded into the PN and 80% of the minoxidil loaded into the LN was released into the external aqueous phase 24 h after production. Drug permeation was superior from the PN, i.e. it was the particle that retained the most drugs, irrespective of the formulation method. Premature drug release, i.e. during storage, resulted in the performance of the topical formulation being dictated by the thermodynamic activity of the solubilised drug not the particle properties.  相似文献   

17.
Polymeric micelles have been under extensive investigation during the past years as drug delivery systems, particularly for anticancer drugs. They are formed by the self-assembly of amphiphilic block copolymers in aqueous solutions and have a spherical shape and a size in the nano-range (< 200 nm). Tumor accumulation of polymeric micelles upon intravenous administration can occur as a result of the leaky vasculature of tumor tissue (called the enhanced permeation and retention (EPR) effect).To benefit from the EPR effect, polymeric micelles need to have prolonged circulation times as well as high and stable drug loadings. Poly[N-(2-hydroxypropyl) methacrylamide] (pHPMA) is a hydrophilic polymer currently under investigation for its use in polymer-drug conjugates. Its biocompatibility, non-immunogenicity and the possibility for functionalization are properties that resulted in broad pharmaceutical and biomedical applications, also in the micelle technology research. Being hydrophilic, it can serve as a micellar stealth corona, while it can also be modified with hydrophobic moieties to serve as a micellar core in which hydrophobic drugs can be solubilized and retained. HPMA-based polymeric micelles have been showing very promising in vitro and in vivo results. This review summarizes the applications of pHPMA in the field of polymeric micelles, either serving as a micellar stealth corona, or, if hydrophobically rendered by derivatization, as a micellar core.  相似文献   

18.
In the present work attempts have been made to prepare the nanostructured lipid carrier (NLC) gel, by using minoxidil, which is preferably used in case of Alopecia, i.e. baldness pattern as a effective drug. The nine different formulations of Minoxidil-NLC (NLC1–NLC9) were prepared using solid and liquid lipids with Cholesterol and Soya lecithin in different concentrations by the melt dispersion ultrasonication method. Properties of NLC1–NLC9 such as the particle size and its distribution, the scanning electron microscopy (SEM), the drug entrapment efficiency (EE), and the drug release behavior were investigated. The nanoparticulate dispersion was suitably gelled and characterized with respect to drug content, pH, spreadability, rheology, and in vitro release. Safety of the NLC-based gel was assessed using primary skin irritation studies. The formulated NLC3 was spherical in shape, with average particle size of 280 nm, zeta potential of ?42.40 mV and entrapment efficiency of 86.09%. Differential Scanning Calorimeter (DSC) measurements revealed that imperfect crystallization occurred in the inner core of the NLC particles. The drug release behavior from the NLC displayed a biphasic drug release pattern with burst release at the initial stage followed by sustained release. These results indicated that the NLC3 is a suitable carrier of minoxidil with improved drug loading capacity and controlled drug release properties. It has been observed that NLC gel produces the gel with good consistency, homogeneity, spreadability and rheological behavior. The developed NLC-based gel showed faster onset and elicited prolonged activity up to 16 h. The present study concluded that the NLC-based gel containing minoxidil dissolved in a mixture of solid lipid and liquid lipid in the nanoparticulate form helped us to attain the objective of faster onset yet prolonged action as evident from in vitro release.  相似文献   

19.
Mass production of nanoparticles using a reliable cost-effective approach is a challenge in the pharmaceutical industry. In this study, the spinning disc processing (SDP) technology was used to fabricate chitosan nanoparticles, with a view to commercially produce chitosan nanoparticle-based drug delivery platforms. Chitosan solution (0.25%, w/v, in dilute acid, 27.5 mL, 1.5 mL/s) was intensely mixed with sodium tripolyphosphate solution (0.10%, w/v, in water, 20mL, 1.1mL/s) on the spinning disc (1000rpm). Transmission electron microscopy and dynamic light scattering data confirmed that the nanoparticles (20 ± 3 nm) were comparable in size and shape to those synthesised using a beaker and magnetic stirrer (31 ± 13 nm). Larger nanoparticles (131 ± 5 nm) were produced by increasing the chitosan and TPP feed concentrations to 0.5% and 0.125%, respectively. Drug loading further increased the size of the nanoparticles, with N-acetyl cysteine (NAC) having a greater effect (403 ± 4 nm) than paracetamol (165 ± 4 nm). Co-loading of both drugs increased the size of the particles to the micron range. In conclusion, the SDP is a robust technology capable of expanding the production of blank and drug-loaded chitosan nanoparticles for the biomedical and pharmaceutical industries.  相似文献   

20.
Sildenafil citrate (SIL) is used in the treatment of erectile dysfunction and other chronic disorders. For the pharmacokinetic investigation of SIL we developed a simple and sensitive method for the estimation of SIL in rat plasma by reverse phase high-performance liquid chromatography (RP-HPLC). The drug samples were extracted by liquid–liquid extraction with 300 μl of acetonitrile and 5 ml of diethyl ether. Chromatographic separation was achieved on C18 column using methanol:water (85:15 v/v) as mobile phase at a flow rate of 1 ml/min and UV detection at 230 nm. The retention time of SIL was found to be 4.0 min having a separation time less than 5 min. The developed method was validated for accuracy, precision, linearity and recovery. Linearity studies were found to be acceptable over the range of 0.1–6 μg/ml. The method was successfully applied for the analysis of rat plasma sample for the application in pharmacokinetic study, drug interaction, bioavailability and bioequivalence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号