首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Store-operated Ca(2+) entry (SOCE) plays an important role in the contraction and proliferation of pulmonary artery smooth muscle cells (PASMCs). The aim of this study was to characterise the pharmacological properties of the SOCE pathway in freshly isolated PASMCs from rat lung and to determine whether this Ca(2+) entry pathway is sensitive to nitric oxide donor drugs. Following depletion of Ca(2+) from the sarcoplasmic reticulum, by treating cells with thapsigargin, re-addition of Ca(2+) produced an increase in cytosolic fluo-4 fluorescence that was sustained for the period that extracellular Ca(2+) was present. Thapsigargin also increased the rate of quench of fura-2 fluorescence, confirming that SOCE was activated. The SOCE pathway was not affected by nifedipine or verapamil; however, it was inhibited by the divalent cations Ni(2+) (10 microM) and Cd(2+) (10 microM) by 47+/-5% and 49+/-5% respectively. SOCE was also inhibited 42+/-5% by 2-aminoethoxydiphenyl borate (2-APB; 75 microM) and 58+/-4% by Gd(3+) (10 microM), although La(3+) (100 microM) had little effect. None of the NO donors examined, including sodium nitroprusside, glyceryl trinitrate, and 2-(N,N-diethylamino)-diazenolate-2-oxide had any effect on SOCE. Thus, the pulmonary vasorelaxation produced by NO does not involve direct inhibition of SOCE in PASMCs. Western blot and immunocytochemistry using antibodies directed against specific TRPC subunits detected the presence of TRPC1, 3, and 6 in pulmonary artery and the pharmacological profile of SOCE in PASMCs favours a role for TRPC1 in mediating the underlying channels that are activated by store depletion.  相似文献   

2.
Store-operated calcium entry (SOCE) is the main Ca(2+) influx pathway of dendritic cells (DCs). DCs primed with histamine facilitate Th2 immune response via different types of histamine receptors. Histamine induces DCs to release Ca(2+) from internal store. Therefore, we wonder that whether histamine could activate SOCE in DCs through its receptors, and what's the functional relevance of the Ca(2+) influx through SOCE induced by histamine in Th(2) response. We certificate that histamine induced a transient Ca(2+) release followed by pronounced Ca(2+) influx after re-addition of external Ca(2+) which could be inhibited by SOCE blockers SKF-96365 and BTP-2. Moreover, the percentages of DCs that showed an obvious Ca(2+) release response to histamine were decreased in the presence of histamine 1 (H1) receptor antagonist pyridylethylamine (Pyr) or histamine 4 (H4) receptor antagonist JNJ7777120 (JNJ). Histamine up-regulated the mRNA expression of STIM1 in DCs, one of the two major proteins of SOCE channel. SOCE blocker BTP-2 and histamine receptor antagonists JNJ and Pyr inhibited the increase of CD86 induced by histamine on DCs. Histamine increased the level of IL-10 and decreased the level of IL-12p70 secreted by DCs. SOC blockers SKF and BTP-2 inhibited the level of both IL-10 and IL-12p70 secreted by DCs. Pretreatment of SOC blockers and H1, H4 receptor antagonists with DCs inhibited the Th2 polarization of T helper cells induced by histamine in mixed lymphocyte responses (MLR). We demonstrated that SOCE was involved in histamine-induced maturation and Th(2) response of DCs which was through histamine 1 and 4 receptor.  相似文献   

3.
In human osteoblasts, the effect of the widely prescribed cyclooxygenase-2 inhibitor celecoxib on intracellular Ca(2+) concentrations ([Ca(2+)](i)) and cell proliferation was explored by using fura-2 and the tetrazolium assay, respectively. Celecoxib at concentrations greater than 1microM caused a rapid rise in [Ca(2+)](i) in a concentration-dependent manner ( EC 50= 10 microM). Celecoxib-induced [Ca(2+)](i) rise was reduced by 90% by removal of extracellular Ca(2+), and by 30% by l-type Ca(2+) channel blockers. Celecoxib-induced Mn(2+)-associated quench of intracellular fura-2 fluorescence also suggests that celecoxib-induced extracellular Ca(2+) influx. In Ca(2+)-free medium, thapsigargin, an inhibitor of the endoplasmic reticulum Ca(2+)-ATPase, caused a monophasic [Ca(2+)](i) rise, after which the increasing effect of celecoxib on [Ca(2+)](i) was greatly inhibited. Conversely, pretreatment with celecoxib to deplete intracellular Ca(2+) stores totally prevented thapsigargin from releasing more Ca(2+). U73122, an inhibitor of phoispholipase C, abolished histamine (an inositol 1,4,5-trisphosphate-dependent Ca(2+) mobilizer)-induced, but not celecoxib-induced, [Ca(2+)](i) rise. Pretreatment with phorbol 12-myristate 13-acetate and forskolin to activate protein kinase C and adenylate cyclase, respectively, partly inhibited celecoxib-induced [Ca(2+)](i) rise in Ca(2+)-containing medium. Separately, overnight treatment with 1-100microM celecoxib inhibited cell proliferation in a concentration-dependent manner. These findings suggest that in human osteoblasts, celecoxib increases [Ca(2+)](i) by stimulating extracellular Ca(2+) influx and also by causing intracellular Ca(2+) release from the endoplasmic reticulum via a phospholiase C-independent manner. Celecoxib may be cytotoxic at higher concentrations.  相似文献   

4.
5.

BACKGROUND AND PURPOSE

Histamine H1 receptors are highly expressed in hypothalamic neurons and mediate histaminergic modulation of several brain-controlled physiological functions, such as sleep, feeding and thermoregulation. In spite of the fact that the mouse is used as an experimental model for studying histaminergic signalling, the pharmacological characteristics of mouse H1 receptors have not been studied. In particular, selective and potent H1 receptor agonists have not been identified.

EXPERIMENTAL APPROACH

Ca2+ imaging using fura-2 fluorescence signals and whole-cell patch-clamp recordings were carried out in mouse preoptic/anterior hypothalamic neurons in culture.

KEY RESULTS

The H1 receptor antagonists mepyramine and trans-triprolidine potently antagonized the activation by histamine of these receptors with IC50 values of 0.02 and 0.2 μM respectively. All H1 receptor agonists studied had relatively low potency at the H1 receptors expressed by these neurons. Methylhistaprodifen and 2-(3-trifluoromethylphenyl)histamine had full-agonist activity with potencies similar to that of histamine. In contrast, 2-pyridylethylamine and betahistine showed only partial agonist activity and lower potency than histamine. The histamine receptor agonist, 6-[2-(4-imidazolyl)ethylamino]-N-(4-trifluoromethylphenyl)heptanecarboxamide (HTMT) had no agonist activity at the H1 receptors H1 receptors expressed by mouse preoptic/anterior hypothalamic neurons but displayed antagonist activity.

CONCLUSIONS AND IMPLICATIONS

Methylhistaprodifen and 2-(3-trifluoromethylphenyl)histamine were identified as full agonists of mouse H1 receptors. These results also indicated that histamine H1 receptors in mice exhibited a pharmacological profile in terms of agonism, significantly different from those of H1 receptors expressed in other species.  相似文献   

6.
Effect of unfractionated heparin (UFH), described as a cell-impermeant IP3 receptor antagonist, was studied on the capacitive Ca(2+) entry in non-permeabilized, intact cells, measuring the intracellular Ca(2+) levels using fluorescence microplate technique. Ca(2+) influx induced via Ca(2+) mobilization by histamine in Hela cells or evoked by store depletion with thapsigargin in RBL-2H3 cells was dose-dependently suppressed by UFH added either before or after the stimuli. UFH also prevented the spontaneous Ba(2+) entry indicating that the non-capacitive Ca(2+) channels may also be affected. In addition, UFH caused a significant and dose-dependent delay in Ca(2+), and other bivalent cation inflow after treatment of the cells with Triton X-100, but it did not diminish the amount of these cations indicating that UFH did not act simply as a cation chelator, but modulated the capacitive Ca(2+) entry possibly via store operated Ca(2+) channels (SOCCs). Inhibitory activities of UFH and 2-aminoethyl diphenyl borate on the capacitive Ca(2+) influx was found reversible, but the time courses of their actions were dissimilar suggesting distinct modes of action. It was also demonstrated using a fluorescence potentiometric dye that UFH had a considerable hyperpolarizing effect and could alter the changes of membrane potential during Ca(2+) influx after store depletion by thapsigargin. We presume that the hyperpolarizing property of this agent might contribute to the suppression of Ca(2+) influx. We concluded that UFH can negatively modulate SOCCs and also other non-capacitive Ca(2+) channels and these activities might also account for its multiple biological effects.  相似文献   

7.
The cloning of the histamine H(3) receptor (H(3)R) cDNA in 1999 by Lovenberg et al. [10] allowed detailed studies of its molecular aspects and indicated that the H(3)R can activate several signal transduction pathways including G(i/o)-dependent inhibition of adenylyl cyclase, activation of phospholipase A(2), Akt and the mitogen activated kinase as well as the inhibition of the Na(+)/H(+) exchanger and inhibition of K(+)-induced Ca(2+) mobilization. Moreover, cloning of the H(3)R has led to the discovery several H(3)R isoforms generated through alternative splicing of the H(3)R mRNA. The H(3)R has gained the interest of many pharmaceutical companies as a potential drug target for the treatment of various important disorders like obesity, myocardial ischemia, migraine, inflammatory diseases and several CNS disorders like Alzheimer's disease, attention-deficit hyperactivity disorder and schizophrenia. In this paper, we review various molecular aspects of the hH(3)R including its signal transduction, dimerization and the occurrence of different H(3)R isoforms.  相似文献   

8.
To visualize the 5-hydroxytryptamine2A (5-HT2A) receptor, we developed a 5-HT2A receptor fused with yellow fluorescent protein (5-HT2A-YFP) and expressed this receptor in HEK293 cells. In 5-HT2A-YFP-expressing cells, but not in YFP-expressing or non-expressing cells, 5-HT induced a transient increase in the intracellular Ca(2+) concentration (Ca(2+) transient) in the Fluo 3 assay, suggesting that 5-HT2A-YFP possesses a function similar to the wild-type 5-HT2A receptor. Interestingly, not only 5-HT but also insulin induced the internalization of 5-HT2A-YFP. Insulin also inhibited the 5-HT-induced Ca(2+) transient. Genistein, an inhibitor of tyrosine kinase, blocked these insulin effects. Our results provide the first evidence that insulin receptor signaling via tyrosine kinase activation induces internalization of the plasma membrane 5-HT2A receptor, and demonstrate crosstalk between the 5-HT2A receptor and the insulin receptor.  相似文献   

9.
Within the placenta, a specialized Ca(2+) transport pathway develops in trophoblasts to promote growth of the fetus and hypothetically to enhance fetal uptake of Pb(2+). This hypothesis could not be tested until a method to monitor Pb(2+) influx by indo-1 fluorescence quench became available. We have applied this new method to cultured undifferentiated and differentiated Rcho-1 trophoblastic cells. Pb(2+) concentrations of 1 and 10 microM are equivalent to blood levels of 20 and 200 microg/dl in pregnant women. Over this range, Pb(2+) uptake increased with time and concentration in medium containing 1 mM Ca(2+) but was greater in Ca(2+)-omitted solutions. Activation of capacitative Ca(2+) entry (CCE) with thapsigargin, an endoplasmic reticulum (ER) Ca(2+) pump inhibitor, increased Pb(2+) uptake, while inhibition of CCE by La(3+) decreased influx. Parathyroid hormone-related peptide (PTHrP) stimulates the synthesis of Ca(2+)-binding proteins (CaBPs), as well as Ca(2+) transporters, during trophoblastic differentiation. Pretreatment for 72 h with PTHrP increased Pb(2+) uptake by undifferentiated Rcho-1 cells but had little effect on the quench in differentiated cells, probably due to their greater content of CaBPs which competed for Pb(2+)-binding with indo-1. This competition was most evident in differentiated cells when 1 microM Pb(2+) caused an initial quench, followed by a rise in fluorescence. This rise was not inhibited by thapsigargin, thereby ruling out sequestration into the ER and leaving complexation of Pb(2+) by CaBPs as the most plausible interpretation. We conclude that trophoblasts have the ability to clear Pb(2+) from the maternal circulation and deliver it to the fetus.  相似文献   

10.
Regulators of G-protein signaling (RGS) proteins are regulators of Ca(2+) signaling that accelerate the GTPase activity of the G-protein α-subunit. RGS1, RGS2, RGS4, and RGS16 are expressed in the pancreas, and RGS2 regulates G-protein coupled receptor (GPCR)-induced Ca(2+) oscillations. However, the role of RGS4 in Ca(2+) signaling in pancreatic acinar cells is unknown. In this study, we investigated the mechanism of GPCR-induced Ca(2+) signaling in pancreatic acinar cells derived from RGS4(-/-) mice. RGS4(-/-) acinar cells showed an enhanced stimulus intensity response to a muscarinic receptor agonist in pancreatic acinar cells. Moreover, deletion of RGS4 increased the frequency of Ca(2+) oscillations. RGS4(-/-) cells also showed increased expression of sarco/endoplasmic reticulum Ca(2+) ATPase type 2. However, there were no significant alterations, such as Ca(2+) signaling in treated high dose of agonist and its related amylase secretion activity, in acinar cells from RGS4(-/-) mice. These results indicate that RGS4 protein regulates Ca(2+) signaling in mouse pancreatic acinar cells.  相似文献   

11.
We hypothesized that the histamine H(3)-receptor (H(3)R)-mediated attenuation of norepinephrine (NE) exocytosis from cardiac sympathetic nerves results not only from a Galpha(i)-mediated inhibition of the adenylyl cyclase-cAMP-PKA pathway, but also from a Gbetagamma(i)-mediated activation of the MAPK-PLA(2) cascade, culminating in the formation of an arachidonate metabolite with anti-exocytotic characteristics (e.g., PGE(2)). We report that in Langendorff-perfused guinea-pig hearts and isolated sympathetic nerve endings (cardiac synaptosomes), H(3)R-mediated attenuation of K(+)-induced NE exocytosis was prevented by MAPK and PLA(2) inhibitors, and by cyclooxygenase and EP(3)-receptor (EP(3)R) antagonists. Moreover, H(3)R activation resulted in MAPK phosphorylation in H(3)R-transfected SH-SY5Y neuroblastoma cells, and in PLA(2) activation and PGE(2) production in cardiac synaptosomes; H(3)R-induced MAPK phosphorylation was prevented by an anti-betagamma peptide. Synergism between H(3)R and EP(3)R agonists (i.e., imetit and sulprostone, respectively) suggested that PGE(2) may be a downstream effector of the anti-exocytotic effect of H(3)R activation. Furthermore, the anti-exocytotic effect of imetit and sulprostone was potentiated by the N-type Ca(2+)-channel antagonist omega-conotoxin GVIA, and prevented by an anti-Gbetagamma peptide. Our findings imply that an EP(3)R Gbetagamma(i)-induced decrease in Ca(2+) influx through N-type Ca(2+)-channels is involved in the PGE(2)/EP(3)R-mediated attenuation of NE exocytosis elicited by H(3)R activation. Conceivably, activation of the Gbetagamma(i) subunit of H(3)R and EP(3)R may also inhibit Ca(2+) entry directly, independent of MAPK intervention. As heart failure, myocardial ischemia and arrhythmic dysfunction are associated with excessive local NE release, attenuation of NE release by H(3)R activation is cardioprotective. Accordingly, this novel H(3)R signaling pathway may ultimately bear therapeutic significance in hyper-adrenergic states.  相似文献   

12.
We recently demonstrated that endothelin-1 (ET-1) activates two types of Ca(2+)-permeable nonselective cation channel (designated NSCC-1 and NSCC-2) and a store-operated Ca(2+) channel (SOCC) in rabbit basilar artery (BA) vascular smooth muscle cells (VSMCs). In this study, we investigated the effects of phosphoinositide 3-kinase (PI3K) on ET-1-induced activation of these channels and BA contraction by using PI3K inhibitors, wortmannin and LY 249002. To determine which Ca(2+) channels are activated via PI3K, monitoring of intracellular Ca(2+) concentration was performed. Role of PI3K in ET-1-induced vasoconstriction was examined by tension study using rabbit BA rings. Only NSCC-1 was activated by ET-1 in wortmannin- or LY 294002-pretreated VSMCs. In contrast, addition of these drugs after ET-1 stimulation did not suppress Ca(2+) influx. Wortmannin inhibited the ET-1-induced contraction of rabbit BA rings that depends on the Ca(2+) influx through NSCC-2 and SOCC. The IC(50) values of wortmannin for the ET-1-induced Ca(2+) influx and vasoconstriction were similar to those for the ET-1-induced PI3K activation. These results indicate that (1) NSCC-2 and SOCC are stimulated by ET-1 via PI3K-dependent cascade, whereas NSCC-1 is stimulated via PI3K-independent cascade; (2) PI3K is required for the activation of the Ca(2+) entry, but not for its maintenance; and (3) PI3K is involved in the ET-1-induced contraction of rabbit BA rings that depends on the extracellular Ca(2+) influx through SOCC and NSCC-2.  相似文献   

13.
The role of Na(+) and Na(+) exchangers in intracellular Ca(2+) elevation and leukotriene B(4) (LTBs) formation was investigated in granulocyte macrophage colony-stimulating factor (GM-CSF)-primed, fMLP-stimulated human neutrophils. Isotonic substitution of extracellular Na(+) with N-methyl-D-glucamine(+) (NMDG(+)) resulted in over 85% inhibition of the LTBs generation observed (from 14.1+/-0.9pmol/10(6) neutrophils to 1.7+/-1.0pmol/10(6) neutrophils at 0.3 microM fMLP). Isotonic substitution of Na(+) with NMDG(+) also induced a significant inhibition of fMLP-induced rise in cytosolic Ca(2+) concentration ([Ca(2+)](i)) (from 2.17- to 0.78-fold increase over basal levels). Pretreatment with an inhibitor of the Na(+)/Ca(2+) exchanger (benzamil) did not inhibit either [Ca(2+)](i) rise or LTBs production, indicating that the observed effects of extracellular Na(+)-deprivation were unrelated to the Na(+)/Ca(2+) exchanger in receptor-mediated Ca(2+) influx, as previously hypothesized. LTBs production by thapsigargin-activated neutrophils was not affected by Na(+) depletion, but was totally abolished in the presence of EGTA, suggesting that store depletion-driven extracellular Ca(2+) influx is required for leukotriene synthesis and that this process is independent of Na(+)-deprivation. Exposure to Na(+)-free medium for the time of GM-CSF priming led to a significant decrease of intracellular pH values, suggesting a role of the Na(+)/H(+) exchanger in intracellular Na(+) depletion. Reducing the time of Na(+)-deprivation totally reversed the observed effect on LTBs production, resulting in enhanced, rather than inhibited, formation of LTBs. These results indicate that LTBs generation and [Ca(2+)](i) rise in human neutrophils primed by GM-CSF and stimulated with fMLP is dependent on intracellular Na(+) concentration, and, at variance with previously published results, unrelated to the Ca(2+) influx through the Na(+)/Ca(2+) exchanger.  相似文献   

14.
There have been few reports on the mechanism(s) of action of oxethazaine (OXZ) despite its potent local anesthetic action. Generally, local anesthetics (LAs) not only inhibit Na(+) channels but also affect various membrane functions. In the present study, using PC12 cells as a nerve cell model, the effects of OXZ on intracellular Ca(2+) concentration ([Ca(2+)](i)) were examined in relation to cytotoxicity and dopamine release. [Ca(2+)](i) was determined by the quin2 method. In resting cells, (6-10)x10(-5)M OXZ produced lactate dehydrogenase leakage, which was Ca(2+)-dependent, inhibited by metal Ca(2+) channel blockers, and preceded by a marked increase in [Ca(2+)](i). Some other LAs showed no cytotoxicity at these concentrations. In K(+)-depolarized cells, however, lower concentrations of OXZ (10(-6)-10(-7)M), that had no effect on resting [Ca(2+)](i), inhibited both the dopamine release and the increase of [Ca(2+)](i) in parallel. The inhibitory potency against the [Ca(2+)](i) increase was in the order of nifedipine>OXZ approximately verapamil>diltiazem, and OXZ acted additively on the Ca(2+) channel blockers. OXZ showed the least effect on K(+)-depolarization as determined by bisoxonol uptake. OXZ also inhibited the increase in [Ca(2+)](i) induced by S(-)-BAY K 8644, a Ca(2+) channel agonist. These observations suggested that low concentrations of OXZ interact with L-type Ca(2+) channels. The biphasic effects of OXZ on Ca(2+) movement may be due to a unique chemical structure, and may participate in and complicate the understanding of the potent pharmacological and toxicological actions of OXZ.  相似文献   

15.
Modulation of P2X3 receptors by Mg2+ on rat DRG neurons in culture   总被引:2,自引:0,他引:2  
On nociceptive neurons the commonest response to ATP is a rapidly desensitizing current mediated by P2X(3) receptors and believed to be involved in certain forms of pain. P2X(3) receptor recovery from desensitization is a slow process. We studied whether Mg(2+) might modulate such ATP-evoked currents on rat cultured DRG neurons, and thus account for its analgesic action in vivo. Transient increases in extracellular Mg(2+) strongly and reversibly depressed ATP currents which had not recovered from desensitization. Ca(2+)-free solution had the same action as Mg(2+). High Mg(2+) or Ca(2+)-free modulation depended on exposure length to modified divalent cation solutions, whereas it was independent from membrane potential or intracellular Ca(2+) buffering. Paired-pulse protocols showed that high Mg(2+) or Ca(2+)-free medium delayed ATP receptor recovery from desensitization, while leaving desensitization onset apparently unchanged. Tests with various concentrations of Ca(2+) and Mg(2+) showed that the depressant action by Mg(2+) was primarily due to functional antagonism of a facilitatory effect of Ca(2+) on ATP receptor function. The present results suggest that, on sensory neurons, P2X(3) receptors could be inhibited by high Mg(2+) or lack of Ca(2+), representing a negative feedback process to limit ATP-mediated nociception.  相似文献   

16.
Vascular smooth muscle cells can obtain a proliferative function in environments such as atherosclerosis in vivo or primary culture in vitro. Proliferation of vascular smooth muscle cells is accompanied by changes in ryanodine receptors (RyRs). In several studies, the cytosolic Ca(2+) response to caffeine is decreased during smooth muscle cell culture. Although caffeine is commonly used to investigate RyR function because it is difficult to measure Ca(2+) release from the sarcoplasmic reticulum (SR) directly, caffeine has additional off-target effects, including blocking inositol trisphosphate receptors and store-operated Ca(2+) entry. Using freshly dissociated rat aortic smooth muscle cells (RASMCs) and cultured RASMCs, we sought to provide direct evidence for the operation of RyRs through the Ca(2+)- induced Ca(2+)-release pathway by directly measuring Ca(2+) release from SR in permeabilized cells. An additional goal was to elucidate alterations of RyRs that occurred during culture. Perfusion of permeabilized, freshly dissociated RASMCs with Ca(2+) stimulated Ca(2+) release from the SR. Caffeine and ryanodine also induced Ca(2+) release from the SR in dissociated RASMCs. In contrast, ryanodine, caffeine and Ca(2+) failed to trigger Ca(2+) release in cultured RASMCs. These results are consistent with results obtained by immunocytochemistry, which showed that RyRs were expressed in dissociated RASMCs, but not in cultured RASMCs. This study is the first to demonstrate Ca(2+) release from the SR by cytosolic Ca(2+) elevation in vascular smooth muscle cells, and also supports previous studies on the alterations of RyRs in vascular smooth muscle cells associated with culture.  相似文献   

17.
We studied the effects of carmustine (1,3-bis(2-chloroethyl)-1-nitrosourea) on the intracellular Ca(2+) concentration ([Ca(2+)](i)) in PC12 cells using fura-2 fluorescence imaging. Carmustine (100 microM) caused a delayed increase in [Ca(2+)](i) that developed within approximately 3 h. This effect was enhanced in cells that were pretreated with an inhibitor of glutathione (GSH) synthesis, buthionine sulfoximine (BSO, 200 microM, 24 h), and was suppressed in cells that were treated with an antioxidant deferoxamine (50 microM). The carmustine-induced increase in [Ca(2+)](i) was absolutely dependent on the presence of extracellular Ca(2+) and could be inhibited by dihydropyridine blockers of L-type voltage-gated Ca(2+) channels (nimodipine or nitrendipine, 10 microM). The increase in [Ca(2+)](i) was also suppressed in Cl(-)-free solution and in the presence of the Cl(-) channel blockers, indanyloxyacetic acid 94 (IAA-94, 100 microM) and 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB, 100 microM). The inhibition was complete when the blockers were applied simultaneously with carmustine and was partial when the blockers were applied after the initial increase in [Ca(2+)](i). We conclude that carmustine induces an influx of extracellular Ca(2+) through L-type Ca(2+) channels and that this effect is mediated by oxidative stress that results from the depletion of GSH following the inhibition by carmustine of glutathione reductase.  相似文献   

18.
In neonatal mouse right ventricles, endothelin-1 (ET-1, 1-300 nM) induced a dose-dependent increase in twitch contractions and the dose-response curve was shifted to the right by BQ-123 (10 microM), an endothelin ET(A) receptor antagonist. The ET-1 (100 nM)-induced positive inotropy was accompanied by an increase in [Ca(2+)](i) transients without any change in the [Ca(2+)](i)-force relationship. Ryanodine (1 microM) partially decreased the [Ca(2+)](i) transients and contractile force, but did not affect the ET-1 (100 nM)-induced positive inotropy. Reduction of [Na(+)](o) elicited an increase in contractile force, and this effect was significantly inhibited by KB-R7943 (30 microM), an inhibitor of the Na(+)-Ca(2+) exchanger. KB-R7943 (30 microM) almost completely suppressed the positive inotropic effect of ET-1. Activation of protein kinase C (PKC) by phorbol 12,13-dibutylate (100 nM) decreased the contractile force, an effect which was suppressed by bisindolylmaleimide I (3 microM). On the other hand, the ET-1-induced positive inotropic effect was unaffected by bisindolylmaleimide I (3 microM). These results suggest that the positive inotropic effect of ET-1 in neonatal mouse right ventricles is caused by the increase in [Ca(2+)](i) transients through activation of the endothelin ET(A) receptor and the increase in Ca(2+) influx via the Na(+)-Ca(2+) exchanger during an action potential. Furthermore, the ET-1-induced positive inotropy is independent of the effects of PKC, which makes it distinct from the ET-1-mediated pathways reported for cardiac tissues in other species.  相似文献   

19.
The pathogenesis of myocardial stunning caused by brief ischemia and reperfusion remains unclear. The aim of the present study was to investigate the underlying mechanism of myocardial stunning. An isolated cell model of myocardial stunning was firstly established in isolated rat ventricular myocytes exposed to 8 min of simulated ischemia and 30 min of reperfusion, the cardiomyocyte contractile function was used to evaluate myocardial stunning. A diastolic Ca(2+) overload without significant changes in systolic Ca(2+) and the amplitude of Ca(2+) transient during the first 10 min of reperfusion played an important role in the occurrence of myocardial stunning. Decreasing Ca(2+) entry into myocardial cells with low Ca(2+) reperfusion was a very efficient way to prevent myocardial stunning. Diastolic Ca(2+) overload was closely related to the reverse mode of Na(+)/Ca(2+) exchanger (NCX) rather than L-type Ca(2+) channel. The activity of the reverse mode of NCX was found significantly higher at the initial time of reperfusion, and KB-R7943, a selective inhibitor of the reverse mode of NCX, administered at first 10 min of reperfusion rather than at the time of ischemia significantly attenuated myocardial stunning. In addition, NCX inhibition also attenuated the Ca(2+) oscillation and cardiac dysfunction when field stimulus was stopped at first 10 min of reperfusion. These data suggest that one of the important mechanisms of triggering myocardial stunning is diastolic Ca(2+) overload caused by activation of the reverse mode of NCX of cardiomyocytes during the initial period of reperfusion following brief ischemia.  相似文献   

20.
The voltage-gated Ca(2+) channels responsible for synaptic transmission at CA3-CA1 synapses are mainly P/Q- and N-types. It has been shown that tonic inhibition of transmission due to activation of adenosine A(1) receptors occurs at this synapse. We have recently developed a technique to monitor synaptically released glutamate which is based on synaptically induced glial depolarisation. Using this technique, we have examined the effects of different voltage-gated Ca(2+) channel blockers on glutamate release. Under conditions in which the adenosine A(1) receptor was not blocked, omega-AgaIVA (a P/Q-type voltage-gated Ca(2+) channel blocker) suppressed synaptically induced glial depolarisation to a greater extent than omega-CgTxGVIA (an N-type voltage-gated Ca(2+) channel blocker) did. In contrast, in the presence of an adenosine A(1) receptor antagonist, omega-AgaIVA was less effective at suppressing synaptically induced glial depolarisation than omega-CgTxGVIA. These results indicate that, in the absence of adenosine A(1) receptor-mediated tonic inhibition, the contribution of N-type is much greater than that of P-type, and that N-types are the primary target of tonic inhibition in normal conditions in which adenosine A(1) receptor-mediated tonic inhibition is present.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号