首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recently, it has been demonstrated that fibroin and fibroin-derived peptides enhances insulin sensitivity and glucose metabolism in adipocytes. Here, we show that a synthetic hexapeptide Gly-Ala-Gly-Val-Gly-Tyr (GAGVGY) derived from repetitive amino acid sequence of fibroin improves glucose transport and exerts beneficial lipid metabolic effects in 3T3-L1 adipocytes. GAGVGY increases both basal and insulin-stimulated glucose uptake through enhancement of GLUT1 expression and PI 3-K-dependent GLUT4 translocation, respectively. GAGVGY treatment also led to a significant reduction in the expression of lipogenic genes including sterol regulatory element binding protein-1c (SREBP1c), peroxisome proliferator-activated receptor-γ (PPARγ), and fatty acid synthase (FAS) in mature 3T3-L1 adipocytes, which was corroborated with decreased lipid accumulation by GAGVGY treatment. Additionally, in cells undergoing differentiation, mRNA levels of adipogenic genes including PPARγ and CCAAT/enhancer binding protein α (C/EBPα), stearoyl-CoA desaturase 1 (SCD1), and FAS were suppressed by GAGVGY. Furthermore, GAGVGY increased AMP-activated protein kinase (AMPK) phosphorylation and adiponectin secretion in 3T3-L1 adipocytes. The latter effect was supported with evidence showing increased AMPK activation in C2C12 myocytes treated with 3T3-L1-adipocyte-conditioned medium. Together, our data suggest that GAGVGY has multiple beneficial effects on glucose and lipid metabolism, and would control hyperglycemia without the adverse effect of weight gain.  相似文献   

2.
Recently, it was shown that rottlerin inhibits insulin-stimulated glucose uptake and reduces intracellular adenosine triphosphate (ATP) levels in 3T3-L1 adipocytes, suggesting that these two events are causally linked. However, several other reports show that ATP-depletion induces glucose uptake in both muscle cells and adipocytes. In the present study, the mechanism of inhibition by rottlerin was studied in detail, in order to resolve this apparent discrepancy. It was found that rottlerin strongly reduces insulin-stimulated 2-deoxyglucose (2-DOG) uptake in 3T3-L1 adipocytes by a partial inhibition of the translocation of the insulin-responsive GLUT4 glucose transporter towards the plasma membrane (PM). Whereas the insulin-induced phosphatidyl-inositol-3' (PI-3') kinase signaling pathway is unaffected by rottlerin, Cbl tyrosine phosphorylation, which provides an essential, PI-3' kinase-independent signal towards GLUT4 translocation, is markedly attenuated. Furthermore, we also observed a direct inhibitory effect of rottlerin on insulin-induced glucose uptake in 3T3-L1 adipocytes. The direct inhibition of insulin-stimulated 2-DOG uptake by rottlerin displayed characteristics of uncompetitive inhibition: with the K(m(app)) of glucose uptake reduced from 1.6 to 0.9 mM and the V(max(app)) reduced from 5.2 to 1.0 nmol/minmg in the presence of rottlerin. In conclusion, rottlerin inhibits multiple steps involved in insulin-stimulated 2-DOG uptake in 3T3-L1 adipocytes. The observed reduction in GLUT4 translocation towards the PM and the uncompetitive inhibition of the glucose transport process provide alternative explanations for the inhibitory effects of rottlerin aside from the effects of rottlerin on intracellular levels of ATP.  相似文献   

3.
The nuclear receptor peroxisome proliferator-activated receptor (PPAR) γ plays an important role in adipocyte differentiation. Its ligands, including thiazolidinediones, improve insulin sensitivity in type 2 diabetes. We investigated the effects of artepillin C, an ingredient of Baccharis dracunculifolia, on adipogenesis and glucose uptake using 3T3-L1 cells. In PPARγ ligand-binding assays, artepillin C exhibited binding affinity toward PPARγ. Artepillin C dose-dependently enhanced adipocyte differentiation of 3T3-L1 cells. As a result of the artepillin C-induced adipocyte differentiation, the gene expression of PPARγ and its target genes, such as aP2, adiponectin and glucose transporter (GLUT) 4, was increased. These increases were abolished by cotreatment with GW9662, a PPARγ antagonist. In mature 3T3-L1 adipocytes, artepillin C significantly enhanced the basal and insulin-stimulated glucose uptake. These effects were decreased by cotreatment with a PI3K inhibitor. Although artepillin C had no effects on the insulin signaling cascade, artepillin C enhanced the expression and plasma membrane translocation of GLUT1 and GLUT4 in mature adipocytes. In conclusion, these findings suggest that artepillin C promotes adipocyte differentiation and glucose uptake in part by direct binding to PPARγ, which could be the basis of the pharmacological benefits of green propolis intake in reducing the risk of type 2 diabetes.  相似文献   

4.
In this study, the effect of cyanidin-3-rutinoside (C3R) on glucose uptake by 3T3-L1 adipocytes was studied. C3R significantly increased glucose uptake, which was associated with enhanced plasma membrane glucose transporter type 4 (PM-GLUT4) expression in 3T3-L1 adipocytes. The potentiating effect of C3R on glucose uptake and PM-GLUT4 expression was related to enhanced phosphorylation of insulin receptor substrate 1 (IRS-1) and Akt, as well as augmented activation of phosphatidylinositol-3-kinase (PI3K) in the insulin signaling pathway. C3R induced glucose uptake was inhibited only by the PI3K inhibitor, but not by an AMPK inhibitor in 3T3-L1 adipocytes. Therefore, C3R likely up-regulates glucose uptake and PM-GLUT4 expression in 3T3-L1 adipocytes by activating the PI3K/Akt pathways.  相似文献   

5.
The stromal MC3T3-G2/PA6 (PA6) cells from mouse clavaria did not require insulin for differentiation into mature adipose cells, although insulin is well known to play a key role in adipocyte differentiation. Large lipid droplets were observed in the cytoplasm of PA6 cells, and mRNA expression of the adipose specific proteins (aP2, PPARgamma, C/EBPalpha, FAS, GLUT4, leptin, and adiponectin) as differentiation markers appeared or increased clearly in the cells at 8 d after stimulation without insulin. In addition, the glycerol released from the cells (lipolysis) was increased in a concentration-dependent manner by isoproterenol. However, the isoproterenol-induced lipolysis in the cells was not influenced by treatment with insulin, although that was observed in extramedullary adipocytes, 3T3-L1 cells. On the other hand, the 2-deoxy-D-[1-3H]glucose uptake in differentiated PA6 cells also increased by insulin, as shown in other adipose cells. In the cells, insulin induced the phosphorylation of extracellular signal-regulated kinases (Erks), Akt at Ser 473 and ribosomal p70 S6 protein kinase (p70 S6K) at Thr 389, and the insulin-induced 2-deoxy-D-[1-3H]glucose uptake was inhibited by pre-treatment with wortmannin, an inhibitor of phosphatidylinositol 3-kinase (PI3K), or ML-9, an Akt inhibitor. These results suggest that the insulin signal for adipogenesis (lipogenesis) and lipolysis in bone marrow stroma PA6 cells differs from extramedullary adipocytes, such as 3T3-L1 cells.  相似文献   

6.
Caffeine inhibits insulin-induced glucose uptake in rat adipocytes and also decreases insulin sensitivity, including whole-body glucose disposal and glucose uptake in skeletal muscle, during a euglycemic-hyperinsulinemic clamp in human. However, the mechanism by which caffeine decreases the insulin sensitivity is not still clear. We found that pre-treatment with caffeine inhibited the insulin-induced 2-deoxy-D-[1-(3)H]glucose uptake in a concentration-dependent manner in mouse preadipose MC-3T3-G2/PA6 cells differentiated into mature adipose cells. Caffeine also suppressed insulin-induced GLUT4 translocation in the differentiated cells. Although caffeine did not alter insulin-induced activation of PI3K and protein kinase C-zeta (PKCzeta), an isoform of atypical PKC, which is reported to have an important role in insulin-induced GLUT4 translocation, we found that insulin-induced phosphorylation and activation of Akt were blocked by pre-treatment with caffeine. Inhibition of insulin-induced 2-deoxy-D-[1-(3)H]glucose uptake by caffeine was also observed in primary cultured brown adipocytes in a concentration-dependent manner. These results may, in part, explain the ability of caffeine to decrease insulin sensitivity.  相似文献   

7.
目的研究褪黑素对游离脂肪酸(FFA)诱导的胰岛素抵抗3T3-L1脂肪细胞葡萄糖摄取能力的影响。方法 "鸡尾酒"法培养诱导3T3-L1成纤维细胞分化成脂肪细胞,油红O染色鉴定脂肪细胞形态;利用棕榈酸(300μmol/L)诱导脂肪细胞的胰岛素抵抗,采用液体闪烁法检测细胞葡萄糖摄取能力;检测褪黑素对FFA处理的3T3-L1脂肪细胞的葡萄糖摄取能力的影响。结果 3T3-L1细胞经诱导分化成脂肪细胞,油红O染色呈圆形,脂滴呈典型的"戒环样"形态;用FFA处理上述细胞6 h后,细胞的葡萄糖摄取能力明显降低;褪黑素可以促进FFA处理的3T3-L1脂肪细胞胰岛素介导的葡萄糖摄取。结论 FFA可以降低胰岛素诱导的体外培养的脂肪细胞葡萄糖摄取能力,可能是胰岛素抵抗的病因之一。褪黑素可以干预FFA的作用,增加细胞的葡萄糖摄取能力。  相似文献   

8.
Berberine activates GLUT1-mediated glucose uptake in 3T3-L1 adipocytes   总被引:1,自引:0,他引:1  
It has recently been known that berberine, an alkaloid of medicinal plants, has anti-hyperglycemic effects. To explore the mechanism underlying this effect, we used 3T3-L1 adipocytes for analyzing the signaling pathways that contribute to glucose transport. Treatment of berberine to 3T3-L1 adipocytes for 6 h enhanced basal glucose uptake both in normal and in insulin-resistant state, but the insulin-stimulated glucose uptake was not augmented significantly. Inhibition of phosphatidylinositol 3-kinase (PI 3-K) by wortmannin did not affect the berberine effect on basal glucose uptake. Berberine did not augment tyrosine phosphorylation of insulin receptor (IR) and insulin receptor substrate (IRS)-1. Further, berberine had no effect on the activity of the insulin-sensitive downstream kinase, atypical protein kinase C (PKCzeta/lambda). However, interestingly, extracellular signal-regulated kinases (ERKs), which have been known to be responsible for the expression of glucose transporter (GLUT)1, were significantly activated in berberine-treated 3T3-L1 cells. As expected, the level of GLUT1 protein was increased both in normal and insulin-resistant cells in response to berberine. But berberine affected the expression of GLUT4 neither in normal nor in insulin-resistant cells. In addition, berberine treatment increased AMP-activated protein kinase (AMPK) activity in 3T3-L1 cells, which has been reported to be associated with GLUT1-mediated glucose uptake. Together, we concluded that berberine increases glucose transport activity of 3T3-L1 adipocytes by enhancing GLUT1 expression and also stimulates the GLUT1-mediated glucose uptake by activating GLUT1, a result of AMPK stimulation.  相似文献   

9.
Guo H  Ling W  Wang Q  Liu C  Hu Y  Xia M 《Biochemical pharmacology》2008,75(6):1393-1401
Anthocyanins are naturally occurring plant pigments and exhibit an array of pharmacological properties. Our previous study showed that black rice pigment extract rich in anthocyanin prevents and ameliorates high-fructose-induced insulin resistance in rats. In present study, cyanidin 3-glucoside (Cy-3-G), a typical anthocyanin most abundant in black rice was used to examine its protective effect on insulin sensitivity in 3T3-L1 adipocytes exposed to H(2)O(2) (generated by adding glucose oxidase to the medium) or tumor necrosis factor alpha (TNF-alpha). Twelve-hour exposure of 3T3-L1 adipocytes to H(2)O(2) or TNF-alpha resulted in the increase of c-Jun NH(2)-terminal kinase (JNK) activation and insulin receptor substrate 1 (IRS1) serine 307 phosphorylation, concomitantly with the decrease in insulin-stimulated IRS1 tyrosine phosphorylation and cellular glucose uptake. Blocking JNK expression using RNA interference efficiently prevented the H(2)O(2)- or TNF-alpha-induced defects in insulin action. Pretreatment of cells with Cy-3-G reduced the intracellular production of reactive oxygen species, the activation of JNK, and attenuated H(2)O(2)- or TNF-alpha-induced insulin resistance in a dose-dependent manner. In parallel, N-acetyl-cysteine, an antioxidant compound, did not exhibit an attenuation of TNF-alpha-induced insulin resistance. Taken together, these results indicated that Cy-3-G exerts a protective role against H(2)O(2)- or TNF-alpha-induced insulin resistance in 3T3-L1 adipocytes by inhibiting the JNK signal pathway.  相似文献   

10.
11.
目的探讨HDL对3T3-L1细胞葡萄糖转运的影响及其机制。方法通过对3T3-L1成纤维细胞的分化,培养符合实验要求的3T3-L1脂肪细胞。通过葡萄糖消耗实验和~3H标记的2-脱氧葡萄糖的摄取实验,研究HDL对葡萄糖转运的影响,应用RT-PCR和Western blot探讨其机制。结果 HDL可以促进3T3-L1脂肪细胞对葡萄糖的转运和摄取。3T3-L1脂肪细胞对葡萄糖的转运和摄取过程中,蛋白在RNA转录水平上没有增加,而是发生了AKT、AMPK蛋白的磷酸化。结论 HDL促进3T3-L1脂肪细胞对葡萄糖的摄取是通过AKT和AMPK两种途径来实现的。  相似文献   

12.
A number of patients with hyperlipidemia are prescribed 3-hydroxy-3-methylglutaryl-CoA reductase inhibitors that are concomitantly used along with the treatment of diabetes mellitus. The effects of atorvastatin and pravastatin on insulin-induced glucose uptake and the related signal transduction in 3T3L1 adipocytes were studied. 3T3L1 fibroblasts were differentiated into adipocytes, pretreated with atorvastatin or pravastatin, and then exposed to insulin. Glucose uptake and the amount of insulin signal proteins were measured. Atorvastatin significantly decreased insulin-stimulated 2-deoxyglucose uptake in 3T3L1 adipocytes associated with the prevention of translocation of GLUT4 into the plasma membrane. The amounts of Rab4 and RhoA that required lipid modification with farnesyl or geranylgeranyl pyrophosphate, in the membrane fraction were decreased by atorvastatin. Insulin-induced tyrosine phosphorylation of IRS-1 and serine/threonine phosphorylation of Akt were reduced by atorvastatin. Pravastatin did not modify these insulin-induced changes in the signal transduction. Inhibitors of the RhoA/Rho kinase system, C3 and Y27632, as well as atorvastatin reduced insulin-induced changes in signal transduction. Atorvastatin and pravastatin did not affect messenger RNA expression, protein level, and tyrosine phosphorylation of insulin receptors. In conclusion, hydrophobic atorvastatin decreases the glucose uptake by 3T3L1 adipocytes since it can enter the cell and prevents lipid modification of some proteins that are involved in the insulin signal transduction process.  相似文献   

13.
Effects of mercuric chloride on glucose transport in 3T3-L1 adipocytes.   总被引:2,自引:0,他引:2  
Mercury, as well as the other Group IIB metals, stimulates glucose transport in adipocytes. Here we characterize the action of mercury on adipocyte glucose transport and examine several potential mechanisms of action. Mercury exposure causes a modest (compared to insulin) 1.8-fold increase in glucose transport. This glucose transport corresponds with an increase in GLUT 1, but not GLUT 4 glucose transporters. Phosphorylation of p38 kinase and c-Jun N-terminal kinase (JNK) were examined as possible mediators of mercury induced GLUT 1 levels. Phosphorylation of p38 kinase, but not JNK, increased with mercury exposure. Activation of p38 and an increase in glucose transport corresponding to an increase in GLUT 1 are indicative the induction of a stress response, which can contribute to the induction of insulin resistance in adipocytes. However, inhibition of p38 by the p38 inhibitor SB203580 did not prevent mercury-mediated glucose uptake. While the magnitude of the action of mercury is modest, its effects were sustained over many days of exposure and impacted subsequent insulin-mediated glucose transport. Pre-treatment with HgCl2 decreased insulin-mediated glucose transport 1.3-fold suggesting that exposure to mercury may contribute to pathologies associated with glucose homeostasis.  相似文献   

14.
This study aimed to examine the anti-proliferative effects of α-, γ- and δ-tocotrienols (αT3, γT3 and δT3), and α-tocopherol on 3T3-L1 adipocytes. Results showed that compared with other vitamin E analogues, γT3 demonstrated the most potent anti-proliferative effect on 3T3-L1 cells. It significantly caused a reduction in mitochondrial membrane potential (Δψm) and an increase in ROS formation, as well as inducing cell apoptosis and cell cycle arrest at S phase. Further studies showed that it down-regulated Bcl-2 and PPAR-γ expression, suppressed Akt and ERK activation and phosphorylation, and caused cytochrome c release from mitochondria to cytosol, whereas it up-regulated CD95 (APO-1/CD95) and Bax expression, and caused caspase-3 and JNK activation, PARP cleavage and AMPK phosphorylation. Pretreatments with caspase-3 (z-DEVD-fmk) and AMPK (CC) inhibitors significantly suppressed the γT3-induced ROS production and cell death. Caspase-3 inhibitor also efficiently blocked CD95 (APO-1/CD95) and Bax expression, caspase-3 activation and PARP cleavage, whereas antioxidant N-acetyl-l-cysteine, AMPK inhibitor and AMPK siRNA effectively blocked the AMPK phosphorylation. Taken together, these results conclude that the potent anti-proliferative and anti-adipogenic effects of γT3 on 3T3-L1 adipocytes could be through the Bax-mediated mitochondrial and AMPK signaling pathways.  相似文献   

15.
BACKGROUND AND PURPOSE: Galegine and guanidine, originally isolated from Galega officinalis, led to the development of the biguanides. The weight-reducing effects of galegine have not previously been studied and the present investigation was undertaken to determine its mechanism(s) of action. EXPERIMENTAL APPROACH: Body weight and food intake were examined in mice. Glucose uptake and acetyl-CoA carboxylase activity were studied in 3T3-L1 adipocytes and L6 myotubes and AMP activated protein kinase (AMPK) activity was examined in cell lines. The gene expression of some enzymes involved in fat metabolism was examined in 3T3-L1 adipocytes. KEY RESULTS: Galegine administered in the diet reduced body weight in mice. Pair-feeding indicated that at least part of this effect was independent of reduced food intake. In 3T3-L1 adipocytes and L6 myotubes, galegine (50 microM-3 mM) stimulated glucose uptake. Galegine (1-300 microM) also reduced isoprenaline-mediated lipolysis in 3T3-L1 adipocytes and inhibited acetyl-CoA carboxylase activity in 3T3-L1 adipocytes and L6 myotubes. Galegine (500 microM) down-regulated genes concerned with fatty acid synthesis, including fatty acid synthase and its upstream regulator SREBP. Galegine (10 microM and above) produced a concentration-dependent activation of AMP activated protein kinase (AMPK) in H4IIE rat hepatoma, HEK293 human kidney cells, 3T3-L1 adipocytes and L6 myotubes. CONCLUSIONS AND IMPLICATIONS: Activation of AMPK can explain many of the effects of galegine, including enhanced glucose uptake and inhibition of acetyl-CoA carboxylase. Inhibition of acetyl-CoA carboxylase both inhibits fatty acid synthesis and stimulates fatty acid oxidation, and this may to contribute to the in vivo effect of galegine on body weight.  相似文献   

16.
Thiazolidinediones (TZDs) such as rosiglitazone are antidiabetic peroxisome proliferator-activated receptor gamma (PPARgamma) agonists. PPARgamma agents improve diabetes by increasing insulin sensitivity and enhancing the differentiation of preadipocytes into adipocytes. The present study aimed to identify if 1-(4-chlorobenzoyl)-5-hydroxy-2-methyl-3-indoleacetitic acid (GY3), a newly synthesized indole compound, could enhance adipocytes differentiation and insulin sensitivity. The results showed that both GY3 and rosiglitazone significantly increased the lipid accumulating of 3T3-L1 adipocytes induced by isobutylmethylxanthine, dexamethasone and insulin mixture, but GY3 (not rosiglitazone) failed to increase the lipid accumulation when induced by insulin alone. In addition, GY3- or rosiglitaozne-induced protein expression of GLUT4 and adiponectin was determined by Western blot analysis. GY3 activated PPARalpha weakly but did not affect PPARgamma, while rosiglitazone activated PPARgamma significantly, suggesting different mechanisms between GY3 and rosiglitazone on adipocyte differentiation. Furthermore, both GY3 and rosiglitazone enhanced the adiponectin and insulin pathway proteins expression and adiponectin secretion in mature adipocytes, but only GY3 not rosiglitazone elevated gene expression of leptin and resistin. Both GY3 and rosiglitazone enhanced glucose consumption in HepG2 cells especially in the presence of insulin. In the in vivo study, GY3 decreased serum glucose and insulin in db/db mice, indicating the insulin sensitizing effect might contribute to its antidiabetic mechanism. Altogether, these results suggest that GY3 could improve insulin resistance and lower glucose level, GY3 and its derivatives might be developed as a substitution therapy for diseases with insulin resistance.  相似文献   

17.
Peroxisome proliferator-activated receptor-gamma (PPARgamma) activation enhances insulin sensitivity in type 2 diabetes mellitus. However, downstream mediators of PPARgamma activation in adipocytes and myotubes, the most important cell types involved in glucose homeostasis, remained unclear. Here we show by using two synthetic PPARgamma agonists (rosiglitazone and KR-62776, a novel PPARgamma agonist) that phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is a key downstream mediator of PPARgamma signaling. The PPARgamma agonists down-regulated PTEN expression, resulting in glucose uptake increase in differentiated 3T3-L1 adipocytes and C2C12 skeletal muscle cells. In both cells, PTEN knockdown increased glucose uptake, whereas overexpression abolished the agonist-induced effects. The effects of PPARgamma agonists on PTEN expression and glucose uptake disappeared by pretreatment with a PPARgamma antagonist or by knockdown of PPARgamma expression. In vivo treatment of the agonists to C57BL/6J-ob/ob mice resulted in the reduction of PTEN level in both adipose and skeletal muscle tissues and decreased plasma glucose levels. Thus, these results suggest that PTEN suppression is a key mechanism of the PPARgamma-mediated glucose uptake stimulation in insulin-sensitive cells such as adipocytes and skeletal muscle cells, thereby restoring glucose homeostasis in type 2 diabetes.  相似文献   

18.
19.
To investigate the possible involvement of betel-quid chewing in adipocyte dysfunction, we determined the effects of arecoline, a major alkaloid in areca nuts, on adipogenic differentiation (adipogenesis), lipolysis, and glucose uptake by fat cells. Using mouse 3T3-L1 preadipocytes, we showed that arecoline inhibited adipogenesis as determined by oil droplet formation and adipogenic marker gene expression. The effects of arecoline on lipolysis of differentiated 3T3-L1 adipocytes were determined by the glycerol release assay, indicating that arecoline induced lipolysis in an adenylyl cyclase-dependent manner. The diabetogenic effects of arecoline on differentiated 3T3-L1 adipocytes were evaluated by the glucose uptake assay, revealing that ≥ 300 µM arecoline significantly attenuated insulin-induced glucose uptake; however, no marked effect on basal glucose uptake was detected. Moreover, using 94 subjects that were randomly selected from a health check-up, we determined the association of betel-quid chewing with hyperlipidemia and its related risk factors. Hyperlipidemia frequency and serum triglyceride levels of betel-quid chewers were significantly higher than those of non-betel-quid chewers. In this study, we demonstrated that arecoline inhibits adipogenic differentiation, induces adenylyl cyclase-dependent lipolysis, and interferes with insulin-induced glucose uptake. Arecoline-induced fat cell dysfunction may lead to hyperlipidemia and hyperglycemia/insulin-resistance. These findings provide the first in vitro evidence of betel-quid chewing modulation of adipose cell metabolism that could contribute to the explanation of the association of this habit with metabolic syndrome disorders.  相似文献   

20.
目的探讨新型的有机羧酸氧钒配合物双(α-呋喃甲酸)氧钒(BFOV)对正常及胰岛素抵抗的3T3-L1脂肪细胞糖摄取的影响。方法采用地塞米松诱导3T3-L1脂肪细胞建立胰岛素抵抗的细胞模型,研究双(α-呋喃甲酸)氧钒对正常及胰岛素抵抗3T3-L1脂肪细胞葡萄糖消耗的影响。结果双(α-呋喃甲酸)氧钒(2.5μmol·L-1~40μmol·L-1)对正常的3T3-L1脂肪细胞仅有增加葡萄糖消耗量的趋势,与空白对照组比较,差异无显著性;但能明显增加地塞米松诱导的胰岛素抵抗3T3-L1脂肪细胞的葡萄糖消耗量,改善模型细胞的胰岛素抵抗状态。结论双(α-呋喃甲酸)氧钒能促进胰岛素抵抗脂肪细胞的葡萄糖摄取,改善胰岛素抵抗状态。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号