首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
A gram‐scale synthesis of [3,4‐13C2,1α,7‐2H2]cortisone from prednisone was developed. The deuterium atom at the C‐1 position was introduced through a regioselective and stereoselective deuteration of the 1,2‐double bond of the 1,4‐diene‐3‐one using Wilkinson's catalyst. After the oxidative cleavage of the A‐ring, two carbon‐13 atoms were introduced via acetylation of an A‐ring enol lactone with [1,2‐13C2]acetyl chloride. The steroidal A‐ring was then reconstructed to incorporate the carbon‐13 atoms into the C‐3 and C‐4 positions. The deuterium atom at C‐7 was introduced through a regioselective deuteration of the 6,7‐double bond of a 4,6‐diene‐3‐one intermediate using palladium on strontium carbonate. The M + 4 stable isotope labeled cortisone was thus prepared in ca. 4% overall yield. In addition, [3,4‐13C2,1α,7‐2H2]‐11‐dehydrocorticosterone, [3,4‐13C2,1α,7‐2H2]cortisol, and [3,4‐13C2,1α,7‐2H2]corticosterone were also prepared. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
The adduct O6‐carboxymethyl‐2′‐deoxyguanosine (O6CMdG) is of importance as it has been previously linked to high red meat diet in humans, and as yet, a liquid chromatography‐mass spectrometry (LC‐MS) method has not been developed due to lack of appropriate standards. The synthesis of the deuterated and C‐13 analogues required the use of [2H2]‐ and [13C2]ethyl glycolate to label the carboxymethyl moiety of O6CMdG. [2H2]Ethyl glycolate was synthesised via acid hydrolysis of ethyl diazoacetate using deuterated solvents (59% yield), whilst [13C2]ethyl glycolate was synthesised from [13C2]glycine in a three‐step procedure (35% yield). The labelled ethyl glycolates were then used to synthesise [2H2]‐ and [13C2]O6CMdG for future use as internal standards in the LC‐MS analysis of biological samples. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
Benzyl [1‐13C]acetate (2a) was prepared via esterification of sodium [1‐13C]acetate (1) with benzyl bromide in the presence of 18‐crown‐6‐ether in 97% yield. n‐Octyl [1‐13C]acetate (2b) was rapidly obtained by microwave irradiation of 1‐bromooctane and potassium [1‐13C]acetate (obtained by salt exchange of 1) absorbed on Al2O3 in 82% yield. Solvent‐free Claisen condensation of benzyl or n‐octyl [1‐13C]acetate (2a or 2b) in the presence of potassium tert‐butoxide efficiently gave benzyl or n‐octyl [1,3‐13C2]acetoacetate (3a or 3b) in 51 or 68% yield, respectively. Dibenzyl 2,4‐dimethyl[2,4‐13C2]pyrrole‐3,5‐di[13C]carboxylate (4) was synthesized from benzyl [1,3‐13C2]acetoacetate (3a) in 54% yield. [2,4‐13C2]Hymecromone (6) (7‐hydroxy‐4‐methyl[2,4‐13C2]coumarin) was obtained from n‐octyl [1,3‐13C2]acetoacetate (3b) and 1,3‐benzenediol (5) in 73% yield. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

4.
[14C]‐N‐(6‐Chloro‐7‐methoxy‐9H‐pyrido [3,4‐b]indol‐8‐yl)‐2‐methyl‐3‐pyridinecarboxamide (5B ), an IKK inhibitor, was synthesized from [14C]‐barium carbonate in two steps in an overall radiochemical yield of 41%. The intermediate, [carboxyl‐14C]‐2‐methylnicotinic acid, was prepared by the lithiation and carbonation of 3‐bromo‐2‐methylpyridine. [13C4,D3]‐N‐(6‐chloro‐7‐methoxy‐9H‐pyrido [3,4‐b]indol‐8‐yl)‐2‐methyl‐3‐pyridinecarboxamide (5C ) was synthesized from [1,2,3,4‐13C4]‐ethyl acetoacetate and [D4]‐methanol in six steps in an overall yield of 2%. [13C4]‐2‐methylnicotic acid, was prepared by condensation of [13C4]‐ethyl 3‐aminocrotonate and acrolein, followed by hydrolysis with lithium hydroxide. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

5.
A reliable route is described for the preparation of various 2‐substituted derivatives of [1,2,3,4,4a,8a‐13C6]‐naphthalene via the bromide 10. The approach is used to prepare [naphthalene‐1,2,3,4,4a,8a‐13C6]‐2‐(2‐bromoethyl)naphthalene (1), a key intermediate in the synthesis of labelled SR57746A, Xaliproden (2). Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
The double labelled lignan precursors [1,2‐13C2]coniferin and the glucoside of [1,2‐13C2]ferulic acid were prepared by classical synthetic methods. Pure double labelled lignan precursors could only be obtained after separation from their contaminating Z‐isomers and dihydro by‐products by high‐performance liquid chromatography. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

7.
(S)‐2‐[(R)‐7‐(3,5‐Dichlorophenyl)‐5‐methyl‐6‐oxo‐5‐(4‐trifluoromethoxybenzyl)‐6,7‐dihydro‐5H‐imidazo[1,2‐a]imidazole‐3‐sulfonylamino]‐proprionamide (1), a potent lymphocyte function‐associated antigen‐1 antagonist and its sulfonamide metabolite (2) labeled with stable isotopes and carbon‐14 were prepared for Drug Metabolism and PharmacoKinetics and other studies. A long linear route was used to prepare [13C2, 2H3]‐(1) using [3,3,3‐2H]‐D‐alanine and [13C2]‐glycine in 15 steps and 2.5% overall yield. With the availability of [13C6]‐3,5‐dichloroaniline, the sulfonamide [13C6]‐(2) was prepared in 12 steps and in 5.6% overall yield. For the carbon‐14 synthesis, a six‐step synthesis gave both compounds [14C]‐(1) and [14C]‐(2) from the common sulfonyl chloride intermediate [14C]‐(15) in 18% and 4% radiochemical yields and specific activities of 44 and 40.5 mCi/mmol, respectively. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
N‐[1‐(4‐chlorophenyl)‐1H‐pyrrol‐2‐yl‐13C4‐methyleneamino]guanidinium acetate has been synthesized by a four‐step procedure. This involved reduction of the Weinreb amide N,N′‐dimethyl‐N,N′‐dimethyloxybutane‐1,4‐diamide‐1,2,3,4‐13C4 by Dibal‐H to give the corresponding unstable dialdehyde which is reacted in situ with 4‐chloroaniline to form 1‐(4‐chlorophenyl)‐1H‐pyrrole‐13C4. This pyrrole analogue underwent a Vilsmeyer acylation with POCl3/DMF followed by final reaction with aminoguanidine bicarbonate to produce the desired labelled compound with 99% atom 13C. By using DMF [α14C] a radio‐labelled analogue was synthesized with a specific activity of 60 mCi/mmol. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

9.
(S )‐6‐(2‐Hydroxy‐2‐methylpropyl)‐3‐((S )‐1‐(4‐(1‐methyl‐2‐oxo‐1,2‐dihydropyridin‐4‐yl)phenyl)ethyl)‐6‐phenyl‐1,3‐oxazinan‐2‐one (1) and (4aR ,9aS )‐1‐(1H‐benzo[d]midazole‐5‐carbonyl)‐2,3,4,4a,9,9a‐hexahydro‐1‐H‐indeno[2,1‐b]pyridine‐6‐carbonitrile hydrochloride (2) are potent and selective inhibitor of 11β‐hydroxysteroid dehydrogenase type 1 enzyme. These 2 drug candidates developed for the treatment of type‐2 diabetes were prepared labeled with carbon‐13 and carbon‐14 to enable drug metabolism, pharmacokinetics, bioanalytical, and other studies. In the carbon‐13 synthesis, benzoic‐13C 6 acid was converted in 7 steps and in 16% overall yield to [13C6]‐(1). Aniline‐13C 6 was converted in 7 steps to 1H‐benzimidazole‐1‐2,3,4,5,6‐13C6‐5‐carboxylic acid and then coupled to a tricyclic chiral indenopiperidine to afford [13C6]‐(2) in 19% overall yield. The carbon‐14 labeled (1) was prepared efficiently in 2 radioactive steps in 41% overall yield from an advanced intermediate using carbon‐14 labeled methyl magnesium iodide and Suzuki‐Miyaura cross coupling via in situ boronate formation. As for the synthesis of [14C]‐(2), 1H‐benzimidazole‐5‐carboxylic‐14C acid was first prepared in 4 steps using potassium cyanide‐14C , then coupled to the chiral indenopiperidine using amide bond formation conditions in 26% overall yield.  相似文献   

10.
5‐[4,5‐13C2]‐ and 5‐[1,5‐13C2]Aminolevulinic acid (ALA) have been synthesized by the Gabriel condensation of potassium phthalimide with ethyl bromo[1,2‐13C2]acetate (derived from [1,2‐13C2]acetic acid) or ethyl bromo[2‐13C]‐acetate (derived from sodium [2‐13C]acetate), followed by conversion to the chloride, coupling reaction with 2‐ethoxycarbonylethylzinc iodide derived from ethyl 3‐iodopropionate or 2‐methoxy[13C]carbonylethylzinc iodide derived from methyl 3‐iodo[1‐13C]propionate (generated from potassium [13C]cyanide), and hydrolysis. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

11.
A facile synthesis is described for [3,4,1′‐13C3]genistein for use as an internal standard in isoflavone analysis by mass spectrometric methods. Ethyl 4‐hydroxy[1‐13C]benzoate was first prepared from the reaction of diethyl [2‐13C]malonate and 4H‐pyran‐4‐one. Two further 13C atoms were incorporated using potassium [13C]cyanide as the source to give 4′‐benzyloxy‐[1,2,1′‐13C3]phenylacetonitrile. [3,4,1′‐13C3]Genistein was then constructed through coupling of the isotopically labelled phenylacetonitrile with phloroglucinol under Hoesch conditions, followed by formylation and cyclization. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

12.
The drug candidates ( 2 ) and ( 3 ) are highly potent LFA‐1 inhibitors. They were efficiently prepared labeled with carbon‐14 using a palladium‐catalyzed carboxylation of an iodo‐precursor ( 5 ) and sodium formate‐14C to afford acid [14C]‐( 6 ), which was coupled via an amide bond to chiral amines ( 7 ) and ( 8 ) in 52% and 48% overall yield, respectively, and with specific activities higher than 56 mCi/mmol and radiochemical purities of 99%. For stable isotopes synthesis, the amine [2H8]‐( 7 ) was synthesized in three steps from 2‐cyanopyridine‐2H4 using Kulinkovich‐Szymonik aminocyclopropanation, followed by coupling to L ‐alanine‐2,3,3,3‐2H4Nt‐BOC, and then removal of the BOC‐protecting group. Amide bond formation with acid ( 6 ) gave [2H8]‐( 2 ) in 36% overall yield. The amine [13C4,15N]‐( 8 ) was obtained in two steps using L‐threonine‐14C4,15N and then coupled to acid [13C]‐( 6 ) to give [13C5,15N]‐( 3 ) in 56% overall yield.  相似文献   

13.
Pure 3‐L ‐chlorotyrosine‐[ring‐13C6] is prepared by chlorination of the 5‐oxazolidinone of L ‐tyrosine‐[ring‐13C6] with SO2Cl2 in CH3COOH‐Et2O and successive one‐pot regeneration of the protected aminoacidic functions by BCl3 in dichloromethane. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

14.
JTT‐501 specifically labelled with 13C was obtained via a four‐step synthesis at an isotopic enrichment level of 99% and in 14% overall chemical yield starting from 4‐hydroxy‐[ring‐U‐13C6]benzaldehyde (3) . The hydrogenation of [13C6]JTT‐501 over Pd/C gave [13C6]JTP‐20604 in 90% chemical yield. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

15.
Antalarmin (butyl‐ethyl‐[2,5,6‐trimethyl‐7‐(2,4,6‐trimethyl‐phenyl)‐7H‐pyrrolo[2,3‐d]pyrimidin‐4‐yl]‐amine) was doubly labelled with carbon‐13. The synthesized butyl‐[13C2]ethyl‐[2,5,6‐trimethyl‐7‐(2,4,6‐trimethyl‐phenyl)‐7H‐pyrrolo[2,3‐d]pyrimidin‐4‐yl]‐amine ( 1 ) and butyl‐ethyl‐[2‐13C]‐[2,5,6‐trimethyl‐7‐(2,4,6‐trimethyl‐phenyl)‐7H‐pyrrolo[2,3‐d]‐[2‐13C] pyrimidin‐4‐yl]‐amine, ( 2 ) were prepared for use as substrates for pharmacokinetic studies. These compounds were obtained in fair overall yield in a 5 and 6 step synthesis (20–24.5%, respectively) and high isotopic purity (about 99 at% 13C). Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

16.
5,11‐Dihydro‐11‐ethyl‐5‐methyl‐8‐{2‐{(1‐oxido‐4‐quinolinyl)oxy}ethyl}‐6H‐dipyrido[3,2‐b:2′,3′‐e][1,4]diazepin‐6‐one, (1), labeled with carbon‐14 in the quinoline–benzene ring, in one of the pyridine rings of the dipyridodiazepinone tricyclic moiety, and in the side chain, was prepared in three different syntheses with specific activities ranging from 44 to 47 mCi/mmol (1.63–1.75 GBq/mmol). In the first synthesis, 5,11‐dihydro‐11‐ethyl‐8‐(2‐hydroxyethyl)‐5‐methyl‐6H‐dipyrido[3,2‐b:2′,3′‐e][1,4]diazepin‐6‐one (2) was coupled to 4‐hydroxyquinoline, [benzene‐14C(U)]‐, using Mitsunobu's reaction conditions, followed by the oxidation of the quinoline nitrogen with 3chloroperoxybenzoic acid to give ([14C]‐(1a)) in 43% radiochemical yield. Second, 3‐amino‐2‐chloropyridine, [2,6‐14C]‐, was used to prepare 8‐bromo‐5,11‐dihydro‐11‐ethyl‐5‐methyl‐6H‐dipyrido[3,2‐b:2′,3′‐e][1,4]diazepin‐6‐one (8), and then Stille coupled to allyl(tributyl)tin followed by ozonolysis of the terminal double bond and in situ reduction of the resulting aldehyde to alcohol (10). Mitsunobu etherification and oxidation as seen before gave ([14C]‐(1b)) in eight steps and in 11% radiochemical yield. Finally, carbon‐14 potassium cyanide was used to prepare isopropyl cyanoacetate (12), which was used to transform bromide (8) to labeled aryl acetic acid (13) under palladium catalysis. Trihydroborane reduction of the acid gave alcohol (14) labeled in the side chain, which was used as described above to prepare ([14C]‐(1c)) in 4.3% radiochemical yield. The radiochemical purities of these compounds were determined by radio‐HPLC and radio‐TLC to be more than 98%. To prepare [13C6]‐(1), [13C6]‐4‐hydroxyquinoline was prepared from [13C6]‐aniline and then coupled to (2) and oxidized as seen before. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
To support the metabolism and toxicology study of cis‐neonicotinoids, radio or stable isotope was introduced into different sites of the key intermediate 2‐chloro‐5‐((2‐(nitromethylene)imidazolidin‐1‐yl)methyl)pyridine (6‐Cl‐PMNI). [3H2]‐ and [14C]‐label were successively prepared from initial materials NaB3H4 and [14C]‐nitromethane, respectively. Similarly, [D2]‐6‐Cl‐PMNI was prepared from NaBD4 in four steps, with 52.6% overall isotopic yield, and dual‐labeled [D2, 13C]‐target was obtained from NaBD4 and [13C]‐nitromethane, affording overall isotopic yield of 42.5%. Moreover, [14C2] was introduced from [U‐14C]‐ethylenediamine dihydrochloride in three steps, with a 58.3% overall chemical yield. Finally, typical labeled cis‐neonicotinoids paichongding and cycloxaprid were prepared and characterized. The methods were proved to have good generality in the synthesis of other cis‐neonicotinoids, and all results would be useful in metabolism studies of new cis‐neonicotinoids. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
The related tripeptides glycyl‐L ‐prolyl‐L ‐glutamic acid (GPE) and glycyl‐L ‐2‐methylprolyl‐L ‐glutamic acid (G‐2‐MePE) were labelled with commercially available [1,2,3,4,5‐13C5, 2‐15N1]‐L ‐glutamic acid in 3 steps in excellent overall yield with high isotope incorporation. A related cyclic dipeptide was labelled with [2,2‐2H2, 2‐15N1]glycine giving a mixture of compounds resulting from deuterium scrambling. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

19.
Di‐docosahexaenoyl (C22:6)‐bis(monoacylglycerol) phosphate (BMP) has been identified as a promising biomarker for drug‐induced phospholipidosis (DIPL). Both unlabelled and stable isotope labelled versions of BMP were desired for use as internal standards. Isopropylideneglycerol was converted to 4‐methoxyphenyldiphenylmethyl‐3‐PMB‐glycerol in three steps. Initially, the 2‐postion of the glycerol was protected as a t‐butyldiphenylsilyl ether, which proved to be a mistake; deprotection of the ether resulted in the decomposition of the compound. A switch to a t‐butyldimethylsilyl ether protecting group resulted in an intermediate that could be deprotected to the alcohol to give the target compound after salt exchange. The same procedure was used to prepare [13C6]BMP from [13C3]glycerol.  相似文献   

20.
[phenyl13C6]Lachnanthocarpone ([phenyl13C6]2,6‐dihydroxy‐9‐phenylphenalen‐1‐one), a hypothetical intermediate in the biosynthesis of various natural phenylphenalenones, was prepared in four steps using [U‐13C]bromobenzene to introduce the label. Based on related methodologies further native phenylphenalenones such as [phenyl13C6]anigorufone, [1‐13C]anigorufone and [4′‐O13CH3]4′‐methoxyanigorufone were synthesized in labelled form. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号