首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Objectives Paclitaxel is a potent anti‐cancer drug that has exhibited clinical activity against several tumours. Unfortunately, serious side effects are associated with Taxol, the commercial formulation of paclitaxel, which contains Cremophor EL (CrEL). Currently, the main focus of developing paclitaxel formulations is on improving efficacy and reducing toxicity. A novel, Cremophor‐free, paclitaxel solid dispersion (PSD) was prepared in our laboratory previously. The primary aim of this study was to evaluate the pharmacokinetics, tissue distribution, acute toxicity and anti‐tumour efficacy of the PSD compared with Taxol. Methods SD rats were used to examine the pharmacokinetics and tissue distribution of PSD. The acute toxicity of PSD was evaluated in ICR mouse. The anti‐tumor activity of PSD was assessed in an in vivo anti‐tumor nude mice model inoculated with human SKOV‐3 cancer cells. Key findings The two formulations presented different pharmacokinetic behaviour. The plasma AUC of paclitaxel in the PSD was 5.84‐fold lower than that of Taxol, and the mean residence time, total body clearance and apparent volume of distribution of paclitaxel in the PSD were increased by 1.73, 4.67 and 8.57 fold, respectively. However, the two formulations showed similar tissue distribution properties. CrEL, the vehicle in Taxol, decreased the clearance of paclitaxel from plasma. The LD50 (median lethal dose) was 34.8 mg/kg for Taxol, whereas no death was observed at 160 mg/kg for the PSD. The anti‐tumour activity of PSD was similar to that of Taxol at a dose of 15 mg/kg. Most importantly, the improved tolerance of PSD enabled a higher administrable dose of paclitaxel, which resulted in improved efficacy compared with Taxol administered at its maximum tolerated dose. Conclusions These results suggest that the PSD, a CrEL‐free formulation, is a promising approach to increase the safety and efficacy of paclitaxel.  相似文献   

2.
Preparation and evaluation of paclitaxel-containing liposomes   总被引:2,自引:0,他引:2  
Paclitaxel, an antitumoral drug, is poorly soluble in aqueous media. Therefore, in a commercialised formulation (Taxol), paclitaxel (30 mg active compound) is dissolved in polyethoxylated castor oil (Cremophor EL) and ethanol. After dilution of Taxol in aqueous media paclitaxel tends to precipitate. Several side effects, attributed to the surfactant Cremophor EL, occur, e.g. bronchospasm, hypotension, neuro- and nephrotoxicity, and anaphylactic reactions. To eliminate these side effects, the solubility of paclitaxel was enhanced using liposomes instead of Cremophor EL. The amount of entrapped paclitaxel in crystal-free liposomes was 0.5 mg/ml liposome suspension, i.e. almost 85 times the native solubility. Thus, 30 mg paclitaxel had to be dissolved in 60 ml liposome suspension, of either multi-lamellar vesicles (MLV's) or of small unilamellar vesicles (SUV's) with 5% sucrose as cryoprotector. No precipitation was observed after dilution of the MLV-formulation with (physiological) water or with 5% aqueous dextrose solution, which proves their suitability for administration with perfusions. The chemical stability of paclitaxel in the prepared MLV's stored at 4 degrees C was demonstrated during a period of 5 months. The chemical degradation to conjugated dienes and hydroperoxides, two oxidative degradation products of EPC, was negligible (less than 1%).  相似文献   

3.
The purpose of our study was to investigate the pharmacokinetics of Cremophor EL following administration of escalating doses of Taxol (paclitaxel dissolved in Cremophor EL/ethanol) to non-small cell lung cancer (NSCLC) patients. Patients with NSCLC stage IIIb or IV without prior chemotherapy treatment were eligible for treatment with paclitaxel and carboplatin in a dose-finding phase I study. The starting dose of paclitaxel was 100 mg/m2 and doses were escalated with steps of 25 mg/m2, which is equal to a starting dose of Cremophor EL of 8.3 ml/m2 with dose increments of 2.1 ml/m2. Carboplatin dosages were 300, 350 or 400 mg/m2. Pharmacokinetic sampling was performed during the first and the second course, and the samples were analyzed using a validated high-performance liquid chromatographic assay. A total of 39 patients were included in this pharmacokinetic part of the study. The doses of paclitaxel were escalated up to 250 mg/m2 (20.8 ml/m2 Cremophor EL). Pharmacokinetic analyses revealed a low elimination-rate of Cremophor EL (CI=37.8-134 ml/h/m2; t 1/2=34.4-61.5 h) and a volume of distribution similar to the volume of the central blood compartment (Vss=4.96-7.85 l). In addition, a dose-independent clearance of Cremophor EL was found indicating linear kinetics. Dose adjustment using the body surface area, however, resulted in a non-linear increase in systemic exposure. The use of body surface area in calculations of Cremophor EL should therefore be re-evaluated.  相似文献   

4.
The present study examines the acute, sub-acute toxicity, and cytotoxicity of paclitaxel elastic liposomal formulation in comparison to a marketed Cremophor EL (polyoxyethylated castor oil):ethanol (1:1, v/v) based formulation. In the previous study, Cremophor EL free paclitaxel elastic liposomal formulation was developed and characterized. Cytotoxicity of formulation was evaluated by MTT assay using A549 cell lines. Percentage intracellular uptake of paclitaxel elastic liposomal and marketed formulation was determined using a fluorescence activating cell sorting assay (FACS) and fluorescence microscopy techniques. Single and repeated dose toxicity measurement showed no mortality, hematological, biochemical, or histopathological changes up to a dose of 120?mg/kg for paclitaxel elastic liposomal formulation, in comparison the marketed formulation showed toxicity at a dose of 40?mg/kg. Maximum tolerated dose (MTD) for paclitaxel elastic liposomal and marketed formulation was found to be 160?mg/kg and 40?mg/kg, respectively. Results of FACS analysis showed a 94.6?±?2.5% intracellular uptake of fluorescence marker acridine orange (AO) loaded in elastic liposomes; in comparison the AO solution showed only a 19.8?±?1.1% uptake. Paclitaxel elastic liposomal formulation seems to be a better alternative for safe and effective delivery of paclitaxel. This study proves the safety and higher intracellular uptake of paclitaxel elastic liposomal formulation.  相似文献   

5.
Intravenous administration of paclitaxel is hindered by poor water solubility of the drug. Currently, paclitaxel is dissolved in a mixture of ethanol and Cremophor EL; however, this formulation (Taxol) is associated with significant side effects, which are considered to be related to the pharmaceutical vehicle. A new polymer-conjugated derivative of paclitaxel, PNU166945, was investigated in a dose-finding phase I study to document toxicity and pharmacokinetics. A clinical phase I study was initiated in patients with refractory solid tumors. PNU16645 was administered as a 1-h infusion every 3 weeks at a starting dose of 80 mg/m(2), as paclitaxel equivalents. Pharmacokinetics of polymer-bound and released paclitaxel were determined during the first course. Twelve patients in total were enrolled in the study. The highest dose level was 196 mg/m(2), at which we did not observe any dose-limiting toxicities. Hematologic toxicity of PNU166945 was mild and dose independent. One patient developed a grade 3 neurotoxicity. A partial response was observed in one patient with advanced breast cancer. PNU166945 displayed a linear pharmacokinetic behavior for the bound fraction as well as for released paclitaxel. The study was discontinued prematurely due to severe neurotoxicity observed in additional rat studies. The presented phase I study with PNU166945, a water-soluble polymeric drug conjugate of paclitaxel, shows an alteration in pharmacokinetic behavior when paclitaxel is administered as a polymer-bound drug. Consequently, the safety profile may differ significantly from standard paclitaxel.  相似文献   

6.
Taxol for Injection Concentrate contains a solution of paclitaxel in a 50:50 v/v mixture of Cremophor EL (cleaned):ethanol. Cleaned, rather than unpurified, Cremophor EL is used as a cosolvent because paclitaxel was observed to be less stable in the presence of unpurified Cremophor. In order to understand the cause of this paclitaxel instability, various studies were performed. The results of these studies, coupled with the examination of degradation products, suggested that carboxylate anions present in the unpurified Cremophor catalyze the degradation of paclitaxel by general base catalyzed ethanolysis. Stabilization of Taxol for Injection Concentrate prepared with unpurified Cremophor can be achieved by addition of strong acids, resulting in neutralization of the carboxylate anions. Separately, a quality control test for the cleaning procedure of Cremophor is needed to insure stability of Taxol for Injection Concentrate. A colorimetric indicator test was identified which can distinguish between good and poor quality cleaned Cremophor as it pertains to paclitaxel stability.  相似文献   

7.
In animal models, liposomal formulations of paclitaxel possess lower toxicity and equal antitumor efficacy compared with the clinical formulation, Taxol. The goal of this study was to determine the formulation dependence of paclitaxel pharmacokinetics in rats, in order to test the hypothesis that altered biodistribution of paclitaxel modifies the exposure of critical normal tissues. Paclitaxel was administered intravenously in either multilamellar (MLV) liposomes composed of phosphatidylglycerol/phosphatidylcholine (L-pac) or in the Cremophor EL/ethanol vehicle used for the Taxol formulation (Cre-pac). The dose was 40 mg/kg, and the infusion time was 8 to 9 minutes. Animals were killed at various times, and pharmacokinetic parameters were determined from the blood and tissue distribution of paclitaxel. The area under the concentration vs time curve (AUC) for blood was similar for the 2 formulations (L-pac: 38.1±3.32 μg-h/mL; Cre-pac: 34.5±0.994 μg-h/mL), however, the AUC for various tissues was formulation-dependent. For bone marrow, skin, kidney, brain, adipose, and muscle tissue, the AUC was statistically higher for Cre-pac. For spleen, a tissue of the reticuloendothelial system that is important in the clearance of liposomes, the AUC was statistically higher for L-pac. Apparent tissue partition coefficients (Kp) also were calculated. For bone marrow, a tissue in which paclitaxel exerts significant toxicity, Kp was 5-fold greater for paclitaxel in Cre-pac. The data are consistent with paclitaxel release from circulating liposomes, but with efflux delayed sufficiently to retain drug to a greater extent in the central (blood) compartment and reduce penetration into peripheral tissues. These effects may contribute to the reduced toxicity of liposomal formulations of paclitaxel.  相似文献   

8.
To evaluate the acute toxicity of a paclitaxel solid dispersion formulation, single dose studies in ICR mice were carried out for injectable excipients, paclitaxel solid dispersion powder, and Taxol®. In the dose range of excipients used for preparing paclitaxel solid dispersion, each excipient was clinically safe, and the LD50 for exicipients was higher than 2,000 mg/kg for both males and females. In this study, there were no remarkable clinical signs or deaths related to paclitaxel solid dispersion even at doses up to 160 mg/kg of paclitaxel. But Taxol® resulted in clinical signs when it contained more than 30 mg/mL paclitaxel. The LD50 for paclitaxel solid dispersion was above 160 mg/kg and the LD50 for Taxol® was 31.3 mg/kg, more than 5 times lower than that of paclitaxel solid dispersion. However, paclitaxel solid dispersion could not be administered i.v. at a dose exceeding 160 mg/kg, because of high viscosity. To evaluate the nephrotoxicity of paclitaxel solid dispersion, plasma level of creatinine and kidney weight were measured and compared to Taxol®. At the doses administered, paclitaxel solid dispersion did not change creatinine clearance, while Taxol® killed all animals at doses >15 mg/kg. To investigate membrane damage when paclitaxel formulations were injected, hemolytic activity was determined for different concentrations. Paclitaxel solid dispersion showed about 10% hemolytic activity, whereas Taxol® showed about 40% hemolytic activity when it contained 2 mg of paclitaxel. Comparisons with the LD50 value, nephrotoxicity, and hemolytic activity of Taxol® suggested that Cremophor-free paclitaxel solid dispersion as an injectable formulation is a promising approach to increasing the safety and clinical efficacy of paclitaxel for treatment of cancer.  相似文献   

9.
Hyperthermic intraperitoneal chemotherapy (HIPEC) is a promising strategy in the treatment of peritoneal carcinomatosis. To perform HIPEC, a tensioactive- and solvent-free paclitaxel formulation consisting of water-soluble paclitaxel/randomly methylated-beta-cyclodextrin (Pac/RAMEB) complexes was developed previously. Using MTT and SRB assays the cytotoxic activity of this formulation versus Taxol, was evaluated as well as the cytotoxicity of the different formulation excipients (RAMEB and Cremophor EL. The possible synergistic effect of heat and paclitaxel-based chemotherapy during HIPEC was also evaluated in vitro. The cytotoxicity assays revealed differences in viability between Cremophor EL and RAMEB treated cells of 40 and 50% for the CaCo-2 human and the CC531s rat colon cancer line, respectively, in favour of RAMEB. Despite the higher cytotoxicity of Cremophor EL, Pac/RAMEB complexes and Taxol were equipotent. Using the MTT and SRB assays the average difference in viability between both cell lines was below 10% and IC50 values showed no significant difference. Hyperthermia after drug administration (41 degrees C during 1h) had no effect on cell viability. These results indicated that it was possible to reformulate paclitaxel with a less cytotoxic vehicle while maintaining the cytotoxic activity of the formulation and that there is no synergism between paclitaxel and heat for in vitro cytotoxicity.  相似文献   

10.
The clinical pharmacokinetic behavior of paclitaxel (Taxol) is distinctly nonlinear, with disproportional increases in systemic exposure with an increase in dose. We have recently shown that Cremophor EL, the formulation vehicle used for i.v. administration of paclitaxel, alters drug distribution as a result of micellar entrapment of paclitaxel, and we speculated that the free drug fraction (fu) is dependent on dose and time-varying concentrations of Cremophor EL in the central plasma compartment. To test this hypothesis, a reproducible equilibrium dialysis method has been developed for the measurement of paclitaxel fu in plasma. Equilibrium dialysis was performed at 37 degrees C in a humidified atmosphere of 5% CO(2) using 2.0-ml polypropylene test tubes. Experiments were carried out with 260-microliter aliquots of plasma containing a tracer amount of [G-(3)H]paclitaxel with high-specific activity against an equal volume of 0.01 M phosphate buffer (pH 7.4). Drug concentrations were measured by both reversed-phase HPLC and liquid scintillation counting. Using this method, fu has been measured in three patients receiving three consecutive 3-weekly courses of paclitaxel at dose levels of 135, 175, and 225 mg/m(2) and found to range between 0.036 and 0.079. The method was also used to define concentration-time profiles of unbound drug, estimated from the product of the total plasma concentration and fu.  相似文献   

11.
Antineoplastic agents exert adverse effects that impact both dose and scheduling of drug administration. Our objective was to develop a quantitative relationship between paclitaxel (taxol) exposure and pharmacodynamic endpoints, such as neutropenia or body weight loss. Paclitaxel in liposomes or Cremophor EL was administered to rats at doses of 20 or 40 mg/kg. Body weight and absolute neutrophil count were determined daily. The decrease in body weight was greater for paclitaxel in Cremophor EL than for liposomal paclitaxel, but hematological toxicity was similar. The hematological data was fit using a pharmacodynamic model to investigate the temporal delay between drug exposure and neutropenia. From the model, the lifespan of neutrophils (T(N)), of surviving precursor cells in bone marrow (T(P)), and a killing rate constant (K) were determined. The values of T(N), T(P), and K for liposomal paclitaxel were 95 h, 82 h, and 0.735 (microM h)(-1), respectively, and for paclitaxel in Cremophor EL, 86 h, 78 h, and 0.475 (microM h)(-1), respectively. Simulations of various doses indicated a dependency of the neutropenia time course on paclitaxel exposure. The entire time course of changes in neutrophil count is more informative than a single measurement if myelosuppression is prolonged and at a level associated with increased incidence of clinical adverse effects.  相似文献   

12.
Paclitaxel is widely used to treat several types of solid tumors. The commercially available paclitaxel formulation contains Cremophor/ethanol as solubilizers. This study evaluated the effects of D-alpha-tocopheryl polyethylene glycol 400 succinate (TPGS 400) on the oral absorption of paclitaxel in mice. Mice were given an intravenous (18mg/kg) or oral (100mg/kg) dose of paclitaxel solubilized in Cremophor/ethanol or in TPGS 400/ethanol formulations. Paclitaxel plasma concentrations and pharmacokinetic parameters were determined. The maximal plasma concentrations of paclitaxel after an oral dose were 1.77+/-0.17 and 3.39+/-0.49microg/ml for Cremophor/ethanol and TPGS 400/ethanol formulations, respectively, with a similar time at 40-47min to reach the maximal plasma concentrations. The oral bioavailability of paclitaxel in TPGS 400/ethanol (7.8%) was 3-fold higher than that in Cremophor/ethanol (2.5%). On the other hand, the plasma pharmacokinetic profiles of intravenous paclitaxel demonstrated a superimposition for the two formulations. Furthermore, TPGS 400 concentration-dependently increased the intracellular retention of Rhodamine 123 in Caco-2 cells and enhanced paclitaxel permeability in monolayer Caco-2 cultures. TPGS 400 at concentrations up to 1mM did not inhibit testosterone 6beta-hydroxylase, a cytochrome P450 isozyme 3A in liver microsomes metabolizing paclitaxel. Our results indicated that TPGS 400 enhances the oral bioavailability of paclitaxel in mice and the enhancement may result from an increase in intestinal absorption of paclitaxel.  相似文献   

13.
《Drug delivery》2013,20(5):367-376
In the present study an elastic liposomes-based paclitaxel formulation was developed with the objective to remove Cremophor EL. Cremophor EL is currently used for solubilizing paclitaxel in the marketed formulation and is known to produce toxic effects. Elastic liposomal paclitaxel formulation was extensively characterized in vitro, ex-vivo, and in vivo. The results obtained were compared against the marketed paclitaxel formulation. The maximum amount of paclitaxel loaded in the elastic liposomal formulation was found to be 6.0?mg/ml, which is similar to the commercial strength of marketed paclitaxel formulation. In vitro skin permeation and deposition studies showed 10.8-fold enhanced steady state transdermal flux and 15.0-fold enhanced drug deposition in comparison to drug solution. These results further confirmed with the vesicle–skin interaction study using FTIR technique. Results of the hemolytic toxicity assay indicate that elastic liposomal formulation induced only 11.2?±?0.2% hemolysis in comparison to the commercial formulation which showed 38?±?3.0%. Further, results of the Draize test showed no skin irritation of paclitaxel elastic liposomal formulation. Findings of the study demonstrate that elastic liposomes as a carrier is an attractive approach for localized delivery of paclitaxel.  相似文献   

14.
Cremophor EL and RH40 are widely used excipients in oral and intravenous drug formulations such as Taxol infusion to improve drug dissolution and absorption. Studies indicate that Cremophors, especially EL, have toxic side effects, but few data are available on endothelial and epithelial cells, which form biological barriers and are directly exposed to these molecules. Human hCMEC/D3 brain endothelial and Caco-2 epithelial cells were treated with Cremophor EL and RH40 in the 0.1–50 mg/mL concentration range. Cell toxicity was monitored by real-time cell microelectronic sensing and verified by lactate dehydrogenase release and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays, and morphological methods. Cremophors caused dose- and time-dependent damage in both cell types. In endothelial cells, 0.1 mg/mL and higher concentrations, in epithelial cells, concentrations of 5 mg/mL and above were toxic, especially at longer incubations. Cell death was also proven by double fluorescent staining of cell nuclei. Immunostaining for tight junction proteins claudin-4 and -5 showed barrier disruption in cells treated by surfactants at 24 h. In conclusion, Cremophor EL and RH40 in concentrations corresponding to clinical doses caused endothelial and epithelial toxicity. Endothelial cells were more sensitive to surfactant treatment than epithelial cells, and Cremophor EL was more toxic than RH40 in both cell types.  相似文献   

15.
The current clinical formulation of paclitaxel (Taxol) contains 1:1 blend of Cremophor EL (polyethoxylated castor oil) and dehydrated ethanol. Cremophor EL and dehydrated ethanol are well known to leach di-(2-ethylhexyl) phthalate (DEHP) from polyvinyl chloride (PVC) infusion bags and PVC administration sets. DEHP is a possible hepatotoxin, carcinogen, teratogen and mutagen. Long-term exposure to DEHP may cause health risks. As an alternative formulation for paclitaxel, paclitaxel-loaded polymeric micelles (PLPM), made of monomethoxy poly(ethylene glycol)-block-poly(d,l-lactide) (mPEG-PDLLA) diblock copolymer, has demonstrated clear advantages over Taxol in pharmacokinetics and therapeutic index. Paclitaxel in either PLPM or Taxol formulations, diluted in 0.9% sodium chloride injection, was stable in the PVC infusion bags. The PLPM formulation significantly reduced the amount of DEHP extracted from PVC infusion bags and PVC administration sets. For PLPM diluted in 0.9% sodium chloride injection, the total amount of DEHP delivered over the simulated infusion period was 0.7 mg for 3h and 2.0 mg for 24 h, which was less than 2.9% of the DEHP extracted by Taxol. These results confirmed that there is negligible risk of DEHP exposure from diluted PLPM i.v. infusion using PVC infusion bags and PVC administration sets.  相似文献   

16.
A cholesterol-rich emulsion (LDE) is taken up by malignant cells which over-express low-density lipoprotein (LDL) receptors and thus may be used as a carrier for drugs directed against neoplastic cells. In this study, we associated the antineoplastic agent paclitaxel to LDE and analysed the new formulation's incorporation efficiency, chemical and physical stability, cellular uptake and cytostatic activity against a neoplastic cell line and the acute toxicity to rats. A paclitaxel incorporation efficiency of approximately 75% was achieved when paclitaxel was mixed with LDE at a 6:1 lipid-to-drug molar ratio. The association of paclitaxel with LDE increased by 54% the mean diameter of the emulsion particles but did not damage the paclitaxel chemical structure as analysed by HPLC. Results from gradient ultracentrifugation and Sephadex G25 gel filtration indicated that the binding of the drug to the emulsion was stable. It was shown that the cellular uptake and the cytotoxic activity of LDE-paclitaxel by a neoplastic cell line (NCI-H292 cells) was indeed mediated by the LDL receptors. The antiproliferative activity of LDE-paclitaxel against NCI-H292 cells was less than that of a commercial paclitaxel preparation (50% inhibitory concentration, IC50 = 2.60 and 0.45 microM, respectively). This difference, however, can be ascribed to the in-vitro anti-proliferative activity of the commercial paclitaxel vehicle Cremophor EL; when Cremophor EL was added to the cultures with LDE-paclitaxel, the IC50 value was reduced to 0.45 microM, attaining that of the commercial paclitaxel preparation. The tolerability of LDE-paclitaxel in rats was remarkable, such that its lethal dose (LD50) was ten-fold greater than that of the commercial formulation (LD50 = 324 and 31.8 mg kg(-1), respectively). Therefore, LDE-paclitaxel association is stable and the cytostatic activity of the drug is preserved while its toxicity to rats is small. By diminishing the side effects and directing paclitaxel to neoplastic tissues, LDE may be useful as adjuvant in chemotherapy with this drug.  相似文献   

17.
No HeadingPurpose. To develop a rapidly dissolving porous particle formulation of paclitaxel without Cremophor EL that is appropriate for quick intravenous administration.Methods. A rapidly dissolving porous particle formulation of paclitaxel (AI-850) was created using spray drying. AI-850 was compared to Taxol following intravenous administration in a rat pharmacokinetic study, a rat tissue distribution study, and a human xenograft mammary tumor (MDA-MB-435) model in nude mice.Results. The volume of distribution and clearance for paclitaxel following intravenous bolus administration of AI-850 were 7-fold and 4-fold greater, respectively, than following intravenous bolus administration of Taxol. There were no significant differences between AI-850 and Taxol in tissue concentrations and tissue area under the curve (AUC) for the tissues examined. Nude mice implanted with mammary tumors showed improved tolerance of AI-850, enabling higher administrable does of paclitaxel, which resulted in improved efficacy as compared to Taxol administered at its maximum tolerated dose (MTD).Conclusions. The pharmacokinetic data indicate that paclitaxel in AI-850 has more rapid partitioning from the bloodstream into the tissue compartments than paclitaxel in Taxol. AI-850, administered as an intravenous injection, has been shown to have improved tolerance in rats and mice and improved efficacy in a tumor model in mice when compared to Taxol.  相似文献   

18.
The objective of this study was to evaluate the pharmacokinetics of oral cyclosporin A (CsA) when co-administered to enhance the oral absorption of paclitaxel. Patients received oral paclitaxel in doses of 60-360 mg/m(2) in combination with a dose of oral CsA of 15 mg/kg. Dose escalation of paclitaxel from 60 to 300 mg/m(2) resulted in a significant decrease in the area under the concentration-time curve (AUC) of CsA from 24.4+/-9.9 to 17.6+/-2.8 mg/l.h (p=0.03) (n=28). In conclusion, increases in the paclitaxel dose resulted in a decrease in the AUC of CsA. This observation may be explained by the increase in the co-solvent Cremophor EL of paclitaxel causing reduced absorption of CsA.  相似文献   

19.
Paclitaxel and its formulations   总被引:27,自引:0,他引:27  
Paclitaxel (Taxol) is a promising anti-tumor agent with poor water solubility. It is effective for various cancers especially ovarian and breast cancer. Intravenous administration of a current formulation in a non-aqueous vehicle containing Cremophor EL may cause allergic reactions and precipitation on aqueous dilution. Moreover, the extensive clinical use of this drug is somewhat delayed due to the lack of appropriate delivery vehicles. Due to this there is a need for the development of alternate formulation of paclitaxel having good aqueous solubility and at the same time free of any side effects. Various approaches employed so far include cosolvents, emulsions, micelles, liposomes, microspheres nanoparticles, cyclodextrins, pastes, and implants etc. which are discussed in this paper.  相似文献   

20.
Paclitaxel is a promising anticancer agent with poor solubility in water and requires a suitable formulation for intravenous administration. Presently paclitaxel is formulated for clinical use in ethanol and Cremophor EL (Diluent 12), a solvent system associated with severe adverse effects. In this study paclitaxel was entrapped in lipid emulsion droplets with triolein as oil core and dipalmitoyl phosphatidylcholine as the principal emulsifier. The emulsion was further stabilized with polysorbate 80 and polyethylene glycol-dipalmitoyl phosphatidy-lethanolamine. The drug-emulsion droplets (diameter about 40 nm) were physically and chemically stable during several months at 4°C. Lyophilized preparations in 5% glucose were completely restored by distilled water. Studies of the integrity of the drug-emulsion showed a release of the drug from emulsion globules and surface transfer was found to be the major mechanism for cellular uptake. The in-vitro antiproliferative activity of paclitaxel against T-47D cells was retained by the drug-emulsion with an ID50 value of 7 nM compared to 10 and 35 nM for paclitaxel in liposomes and Diluent 12, respectively. Long-circulating submicron lipid emulsions may prove useful, not only for replacement of the more toxic Cremophor EL vehicle, but also by improving the distribution of the drug to the tumour.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号