首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Using bioisosterism as a medicinal chemistry tool, 16 3,5‐diaryl‐isoxazole analogues of the tetrahydrofuran neolignans veraguensin, grandisin and machilin G were synthesized via 1,3‐dipolar cycloaddition reactions, with yields from 43% to 90%. Antitrypanosomatid activities were evaluated against Trypanosoma cruzi, Leishmania (L.) amazonensis and Leishmania (V.) braziliensis. All compounds were selective for the Leishmania genus and inactive against T. cruzi. Isoxazole analogues showed a standard activity on both promastigotes of L. amazonensis and L. braziliensis. The most active compounds were 15 , 16 and 19 with IC50 values of 2.0, 3.3 and 9.5 μM against L. amazonensis and IC50 values of 1.2, 2.1 and 6.4 μM on L. braziliensis, respectively. All compounds were noncytotoxic, showing lower cytotoxicity (>250 μM) than pentamidine (78.9 μM). Regarding the structure–activity relationship (SAR), the methylenedioxy group was essential to antileishmanial activity against promastigotes. Replacement of the tetrahydrofuran nucleus by an isoxazole core improved the antileishmanial activity.  相似文献   

2.
We describe herein the synthesis and antileishmanial activity of 1,3‐bis(aryloxy)propan‐2‐ols. Five compounds ( 2 , 3 , 13 , 17 , and 18 ) exhibited an effective antileishmanial activity against stationary promastigote forms of Leishmania amazonensis (IC50 < 15.0 μm ), and an influence of compound lipophilicity on activity was suggested. Most of the compounds were poorly selective, as they showed toxicity toward murine macrophages, except 17 and 18 , which presented good selective indexes (SI ≥ 10.0). The five more active compounds ( 2 , 3 , 13 , 17 , and 18 ) were selected for the treatment of infected macrophages, and all of them were able to reduce the number of internalized parasites by more than 80%, as well as the number of infected macrophages by more than 70% in at least one of the tested concentrations. Altogether, these results demonstrate the potential of these compounds as new hits of antileishmanial agents and open future possibilities for them to be tested in in vivo studies.  相似文献   

3.
Traditional antimalarial drugs based on 4‐aminoquinolines have exhibited good antiproliferative activities against Leishmania parasites; however, their clinical use is currently limited. To identify new 4‐aminoquinolines to combat American cutaneous leishmaniasis, we carried out a full in vitro evaluation of a series of dehydroxy isoquines and isotebuquines against two Leishmania parasites such as Leishmania braziliensis and Leishmania mexicana. First, the antiproliferative activity of the quinolines was studied against the promastigote forms of L. braziliensis and L. mexicana parasites, finding that five of them exhibited good antileishmanial responses with micromolar IC50 values ranging from 3.84 to 10 μM. A structure‐activity relationship analysis gave evidence that a piperidine or a morpholine attached as N‐alkyamino terminal substituent as well as the inclusion of an extra phenyl ring attached at the aniline ring of the isotebuquine core constitute important pharmacophores to generate the most active derivatives, with antileishmanial responses by far superior to those found for the reference drug, glucantime. All compounds showed a relatively low toxicity on human dermis fibroblasts, with CC50 ranging from 69 to >250 μM. The five most active compounds displayed moderate to good antileishmanial activity against the intracellular amastigote form of L. braziliensis, compared to the reference drug. In particular, compound 2j was identified as the most potent agent against antimony‐resistant amastigotes of L. braziliensis with acceptable biological response and selectivity, emerging as a promising candidate for further in vivo antileishmanial evaluation. Diverse mechanism‐of‐action studies and molecular docking simulations were performed for the most active 4‐aminoquinoline.  相似文献   

4.
This work presents synthesis and antimicrobial evaluation of nineteen 6‐alkylamino‐N–phenylpyrazine‐2‐carboxamides. Antimycobacterial activity was determined against Mycobacterium tuberculosis H37Rv, M. kansasii and two strains of M. avium. Generally, the antimycobacterial activity increased with prolongation of simple alkyl chain and culminated in compounds with heptylamino substitution ( 3e , 4e ) with MIC = 5–10 μm against M. tuberculosis H37Rv. On the contrary, derivatives with modified alkyl chain (containing e.g. terminal methoxy or hydroxy group) as well as phenylalkylamino derivatives were mainly inactive. The most active compounds (with hexyl to octylamino substitution) were evaluated for their in vitro activity against drug‐resistant strains of M. tuberculosis and possessed activity comparable to that of the reference drug isoniazid. None of the tested compounds were active against M. avium. Some derivatives exhibited activity against Gram‐positive bacteria including methicillin‐resistant Staphylococcus aureus (best MIC = 7.8 μm ), while Gram‐negative strains as well as tested fungal strains were completely unsusceptible. Active compounds were tested for in vitro toxicity on various cell lines and in most cases were non‐toxic up to 100 μm .  相似文献   

5.
A series of oxygenated analogues of marine 3‐alkylpyridine alkaloids were synthesized, and their leishmanicidal activity was assayed. All compounds were prepared from 3‐pyridinepropanol in few steps and in good yields. The key step for the synthesis of these compounds was a classic Williamson etherification under phase‐transfer conditions. Besides toxicity in peritoneal macrophages, the compounds exhibited a significant leishmanicidal activity. Of twelve compounds tested, five showed a strong leishmanicidal activity against promastigote forms of Leishmania amazonensis and L. braziliensis with IC50 below 10 μm . Compounds 11 , 14 , 15, and 16 showed a strong leishmanicidal activity on intracellular amastigotes (IC50 values of 2.78; 0.27; 1.03, and 1.33 μm , respectively), which is unlikely to be owing to the activation of nitric oxide production by macrophages.  相似文献   

6.
Novel 3‐alkoxymethyl/3‐phenyl indole‐2‐carboxamide derivatives were synthesized and evaluated for their anticancer activity. Most of the tested compounds showed moderate to excellent activity against the tested cell lines (MCF7 and HCT116). 3‐Phenyl substitution on indole with p‐piperidinyl phenethyl 24a and p‐dimethylamino phenethyl 24c exhibited anticancer activity against MCF7 with IC50 of 0.13 and 0.14 μm , respectively. Further mechanistic study of the most active compounds through their action on cell cycle showed disturbance in cell cycle progression and cell cycle arrest. For future development of this series of compounds, pharmacophore study was conducted which indicated that the enhancement of the activity could be achieved through the addition of acceptor or donating groups to the already‐present indole nucleus.  相似文献   

7.
To identify new agents for the treatment of American cutaneous leishmaniasis, a series of eight 1,4‐bis(substituted benzalhydrazino)phthalazines was evaluated against Leishmania braziliensis and Leishmania mexicana parasites. These compounds represent a disubstituted version of the 1‐chloro‐4‐(monoaryl/heteroarylhydranizyl)phthalazine that exhibited a significant response against L. braziliensis according to our previous findings. Two disubstituted phthalazines 3b and 3f were identified as potential antileishmanial agents against L. braziliensis parasites, exhibiting a submicromolar IC50 response of 2.37 and 7.90 µM on the promastigote form, and of 1.82 and 4.56 µM against intracellular amastigotes, respectively. In particular, compound 3b showed interesting responses against amastigote isolates from reference, glucantime‐resistant and clinical human strains, which were by far superior to the biological response found for the glucantime drug. With regard to the toxicity results, both 3b and 3f exhibited moderate LD50 values against murine macrophages (BMDM), with good selectivity indexes on promastigotes and intracellular amastigotes of L. braziliensis. A comparison of biological response was established between the monosubstituted and disubstituted versions of these benzalhydrazino‐phthalazines. Easy synthetic procedure and significant response against amastigote strains including against resistant lines made compound 3b a potential candidate for further pharmacokinetic and in vivo experiments as antileishmanial agent, and as a platform for further structural optimization. Mechanism‐of‐action studies and molecular docking simulations discarded to inhibition of superoxide dismutase as possible mode of action.  相似文献   

8.
9.
Six series of pyrrolo[2,3‐d]pyrimidine and pyrazolo[3,4‐d]pyrimidine derivatives bearing 1,2,3‐triazole moiety were designed and synthesized, and some bio‐evaluation was also carried out. As a result, four points can be summarized: Firstly, some of compounds exhibited excellent cytotoxicity activity and selectivity with the IC50 values in single‐digit μm level. In particular, the most promising compound 16d showed equal activity to lead compound foretinib against A549, HepG2, and MCF‐7 cell lines, with the IC50 values of 4.79 ± 0.82, 2.03 ± 0.39, and 2.90 ± 0.43 μm , respectively. Secondly, the SARs and docking studies indicated that the in vitro antitumor activity of pyrrolo[2,3‐d]pyrimidine derivatives bearing 1,2,3‐triazole moiety was superior to the pyrazolo[3,4‐d]pyrimidine derivatives bearing 1,2,3‐triazole moiety. Thirdly, three selected compounds ( 16d , 18d , and 20d ) were further evaluated for inhibitory activity against the c‐Met kinase, and the 16d could inhibit the c‐Met kinase selectively by experiments of enzyme‐based selectivity. What is more, 16d could induce apoptosis of HepG2 cells and inhibitor the cell cycle of HepG2 on G2/M phase by acridine orange staining and cell cycle experiments, respectively.  相似文献   

10.
11.
A one‐pot method for the synthesis of structural type urease inhibitors, 2‐amino‐1,3,4‐oxadiazoles, was developed. The structures of the compounds were established using spectroanalytical techniques and unambiguously confirmed by single‐crystal X‐ray analysis of compound 3o . The synthesized compounds were tested against jack beans urease, and most of the compounds ( 3c , 3g , 3j , 3k , 3n , 3r – 3v ) were found more active than the standard. The most potent compound ( 3u ) had an IC50 value of 6.03 ± 0.02 μm as compared to the IC50 value of the standard (thiourea; 22.0 ± 1.2 μm ). The prominent urease inhibition activity of these compounds may serve as an important finding in the development of less toxic and more potent antiulcer drugs. The compounds were also investigated against four bacterial strains, and some of the compounds ( 3g and 3r ) were found more potent than the standard drug (ciprofloxacin) against all the tested strains. The MIC value for compound 3g was 0.156 μmol/mL against the tested bacterial strains.  相似文献   

12.
A series of novel 4‐aminoquinolinyl and 9‐anilinoacridinyl Schiff base hydrazones have been synthesized and evaluated for their antimalarial activity. All compounds were evaluated in vitro for their antimalarial activity against chloroquine‐sensitive strain 3D7 and the chloroquine‐resistant K1 strain of Plasmodium falciparum and for cytotoxicity toward Vero cells. Compounds 17 , 20 , and 21 displayed good activity against the 3D7 strain with IC50 values ranging from 19.69 to 25.38 nm . Moreover, compounds 16 , 17 , 21 , 24 , 32, and 33 exhibited excellent activities (21.64–54.26 nm ) against K1 strain and several compounds displayed β‐hematin inhibitory activity, suggesting that they act on the heme crystallization process such as CQ. Compounds were also found to be non‐toxic with good selectivity index.  相似文献   

13.
A novel series of 1‐(thiophen‐2‐yl)‐9H‐pyrido [3,4‐b]indole derivatives were synthesized using DL‐tryptophan as starting material. All the compounds were characterized by spectral analysis such as 1H NMR, Mass, IR, elemental analysis and evaluated for inhibitory potency against HIV‐1 replication. Among the reported analogues, compound 7g exhibited significant anti‐HIV activity with EC50 0.53 μm and selectivity index 483; compounds 7e , 7i , and 7o displayed moderate activity with EC50 3.8, 3.8, and 2.8 μm and selectivity index >105, >105, and 3.85, respectively. Interestingly, compound 7g inhibited p24 antigen expression in acute HIV‐1IIIB infected cell line C8166 with EC50 1.1 μm . In this study, we also reported the Lipinski rule of 5 parameters, predicted toxicity profile, drug‐likeness, and drug score of the synthesized analogues.  相似文献   

14.
A series of novel S‐DABO derivatives with the substituted 1,2,3‐triazole moiety on the C‐2 side chain were synthesized using the simple and efficient CuAAC reaction, and biologically evaluated as inhibitors of HIV‐1. Among them, the most active HIV‐1 inhibitor was compound 4‐((4‐((4‐(2,6‐dichlorobenzyl)‐5‐methyl‐6‐oxo‐1,6‐dihydropyrimidin‐2‐ylthio)methyl)‐1H‐1,2,3‐triazol‐1‐yl)methyl)benzenesulfonamide ( B5b7) , which exhibited similar HIV‐1 inhibitory potency (EC50 = 3.22 μm ) compared with 3TC (EC50 = 2.24 μm ). None of these compounds demonstrated inhibition against HIV‐2 replication. The preliminary structure–activity relationship (SAR) of these new derivatives was discussed briefly.  相似文献   

15.
Based on the hybridization of the privileged fragments in DABO and DAPY‐typed HIV‐1 NNRTIs, a novel series of 4‐aminopiperidinyl‐linked 3,5‐disubstituted‐1,2,6‐thiadiazine‐1,1‐dione derivatives were designed, synthesized, and evaluated for their in vitro anti‐HIV activities in MT‐4 cells. Most of the target compounds showed weak inhibitory activity against WT HIV‐1. In order to confirm the mode of action of the target compounds, representative compounds Ba8 and Bb8 were selected to perform the HIV‐1 RT inhibitory assay. In this assay, Ba8 and Bb8 displayed good activity with IC50 values of 3.15 and 1.52 μm , respectively. Additionally, preliminary structure–activity relationships (SARs) analysis and molecular docking studies of newly synthesized compounds are also discussed.  相似文献   

16.
Isoxazole analogues derived from the neolignans veraguensin, grandisin, and machilin G were previously synthesized with different substitution patterns through the bioisosterism strategy. These compounds were tested on intracellular amastigotes of Leishmania (Leishmania) amazonensis; the derivatives proved to be active against intracellular amastigotes, with IC50 values ranging from 0.4 to 25 μM. The most active analogues were 4′ , 14′ , 15′, and 18′ , with IC50 values of 0.9, 0.4, 0.7, and 1.4 μM, respectively, showing high selectivity indexes (SI = 277.0; 625.0; 178.5 and 357.1). Overall, the isoxazole analogues did not induce nitric oxide (NO) production by infected cells; there was no evidence that NO influences the antileishmanial mechanism of action, except for compound 4′ . Trimethoxy groups as substituents seemed to be critical for antileishmanial activity. The SAR study demonstrated that the isoxazole compounds were more active than 1,2,3‐triazole compounds with the same substitution pattterns, demonstrating the importance of the bioisosterism strategy in drug design.  相似文献   

17.
In this research, a series of substituted 5‐(5‐amino‐1‐aryl‐1H‐pyrazol‐4‐yl)‐1H‐tetrazoles were synthesized and evaluated for in vitro antileishmanial activity. Among the derivatives, examined compounds 3b and 3l exhibited promising activity against promastigotes and amastigotes forms of Leishmania amazonensis. The cytotoxicity of these compounds was evaluated on murine cells, giving access to the corresponding selectivity index (SI).  相似文献   

18.
The main aim of this work is to find out novel chemical moieties with potent anti‐inflammatory and vasorelaxant activities with reduced gastric toxicities. For fulfilling the above aim, here we investigated novel chalcones (1, 3‐diphenylprop‐2‐en‐1‐one derivatives) with nitric oxide (NO) and hydrogen sulphide (H2S) donating potency for anti‐inflammatory activity by carrageenan‐induced rat paw oedema. These molecules then further evaluated for in‐vitro NO‐releasing potency and vasorelaxation effect on isolated adult goat aortic tissue. The promising molecules were further screened for ulcerogenic activity in the rat model. The tested compounds produced % inhibition in paw oedema ranging from 29.16% to 79.69% and standard drug Diclofenac sodium produced 85.30% reduction in paw oedema after 5 hours. Out of this dataset, compounds AI1, AI7, Ca1, B2, B10, D2, and E8 showed 73.01%, 79.69%, 75.02%, 75.46%, 74.35%, 73.9% and 74.35% reduction in paw oedema respectively, which is approximately 80%–90% to that of standard Diclofenac sodium. The compound Ca1 was found to release 0.870 ± 0.025 mol/mol of NO and standard Glyceryl trinitrate (GTN) was found to release 0.983 ± 0.063 mol/mol of NO. The compound Ca1 produced 950.2 μmol/L of EC50 whereas standard GTN produced 975.8 μmol/L of EC50 for aortic smooth relaxation. The compounds Ca1 produced 0.1117 of ulcer index which is far less than that of standard Diclofenac sodium (1.148). The potent lead molecules were further evaluated to understand the mechanism of vasorelaxation by using specific antagonists or blockers of NO and H2S.  相似文献   

19.
Resistance among dormant mycobacteria leading to multidrug‐resistant and extremely drug‐resistant tuberculosis is one of the major threats. Hence, a series of 1,2,4‐triazole‐3‐thione and 1,3,4‐oxadiazole‐2‐thione derivatives ( 4a–5c ) have been synthesized and screened for their antitubercular activity against Mycobacterium tuberculosis H37Ra (H37Ra). The triazolethiones 4b and 4v showed high antitubercular activity (both MIC and IC50) against the dormant H37Ra by in vitro and ex vivo. They were shown to have more specificity toward mycobacteria than other Gram‐negative and Gram‐positive pathogenic bacteria. The cytotoxicity was almost insignificant up to 100 μg/ml against THP‐1, A549, and PANC‐1 human cancer cell lines, and solubility was high in aqueous solution, indicating the potential of developing these compounds further as novel therapeutics against tuberculosis infection.  相似文献   

20.
A small library of new 3‐aryl‐5‐(alkyl‐thio)‐1H‐1,2,4‐triazoles was synthesized and screened for the antimycobacterial potency against Mycobacterium tuberculosis H37Ra strain and Mycobacterium bovis BCG both in active and dormant stage. Among the synthesized library, 25 compounds exhibited promising anti‐TB activity in the range of IC500.03–5.88 μg/ml for dormant stage and 20 compounds in the range of 0.03–6.96 μg/ml for active stage. Their lower toxicity (>100 μg/ml) and higher selectivity (SI = >10) against all cancer cell lines screened make them interesting compounds with potential antimycobacterial effects. Furthermore, to rationalize the observed biological activity data and to establish a structural basis for inhibition of M. tuberculosis, the molecular docking study was carried out against a potential target MTB CYP121 which revealed a significant correlation between the binding score and biological activity for these compounds. Cytotoxicity and in vivo pharmacokinetic studies suggested that 1,2,4‐triazole analogues have an acceptable safety index, in vivo stability and bio‐availability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号