首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Human squamous cell carcinoma of the head and neck (SCCHN) is characterized by over expression of a tumor cell surface-specific receptor namely Hsp47/CBP2 that makes it a favorable candidate for targeted delivery of anticancer drugs. Several synthetic peptides have been identified as effective ligands for binding to CBP2. The purpose of this study is to investigate the potential of water-soluble N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer-doxorubicin (Dox) conjugates containing a Hsp47/CBP2 binding peptide sequence, namely WHYPWFQNWAMA for targeted delivery to SCCHN. An HPMA copolymer containing Dox and CBP2 targeting peptide conjugated via lysosomally degradable glycylphenylalanylleucylglycine (GFLG) spacer was synthesized by free radical precipitation copolymerization. A control polymer without targeting moiety was also synthesized. The conjugates were characterized for drug content, peptide content, molecular weight and molecular weight distribution. The uptake of polymeric conjugates by both drug resistant and drug sensitive SCCHN cells were determined in vitro by flow cytometry using FACS scan analysis. Cytotoxicity of the conjugates towards drug sensitive as well as multidrug resistant SCCHN cells were evaluated by a clonal survival assay and compared to free Dox. The cytotoxicity of the free peptide was similarly evaluated. The internalization and subcellular fate of the conjugates in drug sensitive SCCHN cells was monitored using confocal microscopy. The new targetable copolymer contained 0.16 mmole peptide/g polymer. Studies on drug sensitive SCCHN cells demonstrated lesser uptake of both targeted and non-targeted conjugates compared to free Dox suggesting a slower endocytic mechanism of uptake for the conjugates as opposed to rapid diffusion of free Dox. At higher Dox equivalent concentrations (>20 microM) the targeted conjugate showed significantly higher uptake (p < or = 0.028) than the non-targeted conjugate. The uptake of the targeted conjugate was inhibited in the presence of an anti Hsp47 antibody suggesting the involvement of active receptor mediated endocytosis in cell entry of the conjugate. Compared to free Dox, the targeted and non-targeted conjugates caused marginally lower inhibition (p < or = 0.01) of the drug sensitive SCCHN cells. In contrast, the same conjugates showed significantly higher uptake (p < or = 0.004) by drug resistant SCCHN cells and caused significantly higher inhibition (p < or = 0.02) of drug resistant SCCHN cells when compared to free Dox. Results suggest that the polymeric conjugates were able to overcome drug resistance. Confocal microscopy studies demonstrated the uptake of the polymeric conjugates, followed by internalization, intralysosomal localization and subsequent release of Dox. HPMA copolymer-Dox-peptide conjugates targeted to SCCHN cells were able to overcome drug resistance and increase efficacy in vitro. The results suggest that targetable polymeric conjugates have potential to improve systemic head and neck cancer chemotherapy by increasing tumor localization and reducing dose-limiting toxicity.  相似文献   

2.
Human squamous cell carcinoma of the head and neck (SCCHN) is characterized by over expression of a tumor cell surface-specific receptor namely Hsp47/CBP2 that makes it a favorable candidate for targeted delivery of anticancer drugs. Several synthetic peptides have been identified as effective ligands for binding to CBP2. The purpose of this study is to investigate the potential of water-soluble N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer-doxorubicin (Dox) conjugates containing a Hsp47/CBP2 binding peptide sequence, namely WHYPWFQNWAMA for targeted delivery to SCCHN. An HPMA copolymer containing Dox and CBP2 targeting peptide conjugated via lysosomally degradable glycylphenylalanylleucylglycine (GFLG) spacer was synthesized by free radical precipitation copolymerization. A control polymer without targeting moiety was also synthesized. The conjugates were characterized for drug content, peptide content, molecular weight and molecular weight distribution. The uptake of polymeric conjugates by both drug resistant and drug sensitive SCCHN cells were determined in vitro by flow cytometry using FACS scan analysis. Cytotoxicity of the conjugates towards drug sensitive as well as multidrug resistant SCCHN cells were evaluated by a clonal survival assay and compared to free Dox. The cytotoxicity of the free peptide was similarly evaluated. The internalization and subcellular fate of the conjugates in drug sensitive SCCHN cells was monitored using confocal microscopy. The new targetable copolymer contained 0.16 mmole peptide/g polymer. Studies on drug sensitive SCCHN cells demonstrated lesser uptake of both targeted and non-targeted conjugates compared to free Dox suggesting a slower endocytic mechanism of uptake for the conjugates as opposed to rapid diffusion of free Dox. At higher Dox equivalent concentrations (>20 μM) the targeted conjugate showed significantly higher uptake (p≤0.028) than the non-targeted conjugate. The uptake of the targeted conjugate was inhibited in the presence of an anti Hsp47 antibody suggesting the involvement of active receptor mediated endocytosis in cell entry of the conjugate. Compared to free Dox, the targeted and non-targeted conjugates caused marginally lower inhibition (p≤0.01) of the drug sensitive SCCHN cells. In contrast, the same conjugates showed significantly higher uptake (p≤0.004) by drug resistant SCCHN cells and caused significantly higher inhibition (p≤0.02) of drug resistant SCCHN cells when compared to free Dox. Results suggest that the polymeric conjugates were able to overcome drug resistance. Confocal microscopy studies demonstrated the uptake of the polymeric conjugates, followed by internalization, intralysosomal localization and subsequent release of Dox. HPMA copolymer-Dox-peptide conjugates targeted to SCCHN cells were able to overcome drug resistance and increase efficacy in vitro. The results suggest that targetable polymeric conjugates have potential to improve systemic head and neck cancer chemotherapy by increasing tumor localization and reducing dose-limiting toxicity.  相似文献   

3.
Trastuzumab-conjugated pH-sensitive double emulsion nanocapsules (DENCs) stabilized by a single-component Poly (vinyl alcohol) (PVA) with magnetic nanoparticles can be fabricated through a two-step double emulsion process; these nanocapsules can be used to encapsulate hydrophilic doxorubicin (Dox) and hydrophobic paclitaxel (PTX) simultaneously. When PMASH was attached to the shell of the DENCs, enhanced dual drug release of PTX/Dox was detected, specifically in intracellular acidic pH environments. The targeting ability of these Trastuzumab-conjugated DENCs was demonstrated with confocal images, which revealed a significantly elevated cellular uptake in HER-2 overexpressing SkBr3 cells. More importantly, an intravenous injection of this co-delivery system followed by magnetic targeting (MT) chemotherapy suppressed cancer growth in vivo more efficiently than the delivery of either PTX or Dox alone. The integration of the functionalities makes this combination therapy system a powerfully new tool for in vitro/in vivo cancer therapy, especially for in HER-2 positive cancers.From the Clinical EditorTrastuzumab-conjugated pH-sensitive nanocapsules were used in this study for simultaneous targeted delivery of hydrophobic (PTX) and hydrophilic (Dox) anti-cancer agents to HER-2 positive cancer cells. Additional use of magnetic targeting demonstrated superior efficacy of this delivery system compared to PTX or Dox alone.  相似文献   

4.
Plants as important source of natural active components with anticancer effects commonly are different in structure and biological properties. The pericarp of Pistacia atlantica sub kurdica with local name of Baneh, a rich source of active phytochemicals, contains noticeable amounts of polyphenolic compounds, flavonoids and anthocyanins. Therefore, the antiproliferative, apoptosis induction and cell cycle alterations of Baneh were evaluated in human colon carcinoma HT29 cells. The Baneh extract (0.7 mg/ml) resulted in 50% growth inhibition similar to 500 nM of Doxorubicin (Dox) in HT29 cells after 72 h. The down-regulation of cyclin A protein by Baneh extract induced S phase delay in cell cycle progression of HT29 cells. Unlike the Baneh extract, Dox showed G2/M accumulation of HT29 cells which was associated with an increase in cyclin A and cyclin B1 protein expression. Furthermore, the induction of apoptosis following Baneh extract and Dox treatment in HT29 cells was confirmed by DNA fragmentation and translocation of phosphatidylserine. The morphological characteristics of apoptosis were also observed in HT29 cells exposed to the Baneh extract and Dox. These results suggest that due to the existence of bioactive components, methanolic extract of the Baneh has significant cytotoxic effects against human colon carcinoma HT29 cells.  相似文献   

5.
Purpose. Investigation of the ability of doxorubicin-loaded nanoparticles (NP/Dox) to overcome multidrug resistance (MDR) when they have first been taken up by macrophages. Methods. The growth inhibition of P388 sensitive (P388) and resistant (P388/ADR) tumor cells was evaluated in a coculture system consisting of wells with two compartments. The tumor cells were seeded into the lower compartment, the macrophages were introduced into the upper part in which the drug preparations were also added. Results. Doxorubicin exerted lower cytotoxicity on tumor cells in coculture compared with direct contact. In P388/ADR, NP/Dox cytotoxicity was far higher than that of free doxorubicin (Dox). Three different formulations of cyclosporin A (either free (CyA), loaded to nanoparticles (NP/CyA) or in a combined formulation with doxorubicin (NP/Dox-CyA)), were added to modulate doxorubicin efficacy. The addition of cyclosporin A to Dox increased drug cytotoxicity. Both CyA added to NP/Dox and NP/Dox-CyA were able to bypass drug resistance. Conclusions. Despite the barrier role of macrophages, NP/Dox remained far more cytotoxic than Dox against P388/ADR. Both NP/ Dox + CyA and NP/Dox-CyA allowed to overcome MDR, but the last one should present greater advantagein vivo by confining both drugs in the same compartment, hence reducing the adverse effects.  相似文献   

6.
Drug resistance is a common phenomenon that occurs in cancer chemotherapy. Delivery of chemotherapeutic agents as polymer pro-drug conjugates (PPDCs) pretargeted with bispecific antibodies could circumvent drug resistance in cancer cells. To demonstrate this approach to overcome drug resistance, Paclitaxel (Ptxl)-resistant SKOV3 TR human ovarian- and doxorubicin (Dox)-resistant MCF7 ADR human mammary-carcinoma cell lines were used. Pre-targeting over-expressed biotin or HER2/neu receptors on cancer cells was conducted by biotinylated anti-DTPA or anti-HER2/neu affibody – anti-DTPA Fab bispecific antibody complexes. The targeting PPDCs are either D-Dox-PGA or D-Ptxl-PGA. Cytotoxicity studies demonstrate that the pretargeted approach increases cytotoxicity of Ptxl or Dox in SKOV3 TR or MCF7 ADR resistant cell lines by 5.4 and 27 times, respectively. Epifluorescent microscopy – used to track internalization of D-Dox-PGA and Dox in MCF7 ADR cells – shows that the pretargeted delivery of D-Dox-PGA resulted in a 2- to 4-fold increase in intracellular Dox concentration relative to treatment with free Dox. The mechanism of internalization of PPDCs is consistent with endocytosis. Enhanced drug delivery and intracellular retention following pretargeted delivery of PPDCs resulted in greater tumor cell toxicity in the current in vitro studies.  相似文献   

7.
Purpose This work is intended to develop and evaluate a new polymer–lipid hybrid nanoparticle system that can efficiently load and release water-soluble anticancer drug doxorubicin hydrochloride (Dox) and enhance Dox toxicity against multidrug-resistant (MDR) cancer cells. Methods Cationic Dox was complexed with a new soybean-oil-based anionic polymer and dispersed together with a lipid in water to form Dox-loaded solid lipid nanoparticles (Dox–SLNs). Drug loading and release properties were measured spectrophotometrically. The in vitro cytotoxicity of Dox–SLN and the excipients in an MDR human breast cancer cell line (MDA435/LCC6/MDR1) and its wild-type line were evaluated by trypan blue exclusion and clonogenic assays. Cellular uptake and retention of Dox were determined with a microplate fluorometer. Results Dox–SLNs were prepared with a drug encapsulation efficiency of 60–80% and a particle size range of 80–350 nm. About 50% of the loaded drug was released in the first few hours and an additional 10–20% in 2 weeks. Treatment of the MDR cells with Dox–SLN resulted in over 8-fold increase in cell kill when compared to Dox solution treatment at equivalent doses. The blank SLN and the excipients exhibited little cytotoxicity. The biological activity of the released Dox remained unchanged from fresh, free Dox. Cellular Dox uptake and retention by the MDR cells were both significantly enhanced (p < 0.05) when Dox was delivered in Dox–SLN form. Conclusions The new polymer–lipid hybrid nanoparticle system is effective for delivery of Dox and enhances its efficacy against MDR breast cancer cells.  相似文献   

8.
A doxorubicin (Dox) and curcumin (Cur) combination treatment regimen has been widely studied in pre-clinical research. However, the nanoparticles developed for this combination therapy require a consecutive drug loading process because of the different water-solubility of these drugs. This study provides a strategy for the “one-step” formation of nanoparticles encapsulating both Dox and Cur. We took advantage of polyacrylic acid (PAA) and calcium carbonate (CaCO3) to realise a high drug entrapment efficiency (EE) and pH-sensitive drug release using a simplified preparation method. Optimisation of lipid ratios and concentrations of CaCO3 was conducted. Under optimal conditions, the mean diameter of PEGylated lipid/PAA/CaCO3 nanoparticles with encapsulated Cur and Dox (LPCCD) was less than 100?nm. An obvious pH-sensitive release of both drugs was observed, with different Dox and Cur release rates. Successful co-delivery of Cur and Dox was achieved via LPCCD on HepG2 cells. LPCCD altered the bio-distribution of Dox and Cur in vivo and decreased Dox-induced cardiotoxicity. The current investigation has developed an efficient ternary system for co-delivery of Dox and Cur to tumours, using a “one-step” formation resulting in nanoparticles possessing remarkable pH-sensitive drug release behaviour, which may be valuable for further clinical studies and eventual clinical application.  相似文献   

9.
The ability of cancer cells to become simultaneously resistant to different drugs, a trait known as multidrug resistance, remains a major obstacle for successful anticancer therapy. One major mechanism of resistance involves cellular drug efflux by expression of P-glycoprotein (P-gp), a membrane transporter with a wide variety of substrates. Anthracyclines are especially prone to induction of resistance by the P-gp mechanism. P-gp mediated resistance is often confronted by use of P-gp inhibitors, synthesis of novel analogs, or conjugating drugs to macromolecular carriers in order to circumvent the efflux mechanism. In this report, the effect of free and Elastin-like polypeptide (ELP) bound doxorubicin (Dox) on the viability of sensitive (MES-SA and MCF-7) and multidrug resistant (MES-SA/Dx5 and NCI/ADR-RES) human carcinoma cells was studied in vitro. The resistant MES-SA/Dx5 cells demonstrated about 70 times higher resistance to free Dox than the sensitive MES-SA cells, and the NCI/ADR-RES cells were about 30 fold more resistant than the MCF-7 cells. However, the ELP-bound Dox was equally cytotoxic in both sensitive and resistant cell lines. The ELP-bound Dox was shown to accumulate in MES-SA/Dx5 cells, as opposed to free Dox, which was rapidly pumped out by the P-gp transporter. Since ELP is a thermally responsive carrier, the effect of hyperthermia on the cytotoxicity of the ELP-Dox conjugate was investigated. Both cytotoxicity and apoptosis were enhanced by hyperthermia in the Dox resistant cells. The results suggest that ELP-Dox conjugates may provide a means to thermally target solid tumors and to overcome drug resistance in cancer cells.  相似文献   

10.
N-(2-Hydroxypropyl)methacrylamide (HPMA) copolymer–doxorubicin (Dox) has already shown clinical activity in breast cancer patients. Moreover, we have recently found that an HPMA conjugate containing a combination of both Dox and the aromatase inhibitor aminoglutethimide (AGM) shows significantly increased anti-tumour activity in vitro. To better understand the mechanism of action of HPMA copolymer–AGM conjugates several models were used here to investigate their effect on cell growth and aromatase inhibition. Cytotoxicity of HPMA copolymer conjugates containing AGM, Dox and also the combination AGM–Dox was determined by MTT assay in MCF-7 and MCF-7ca cells. Androstenedione (5 × 10? 8 M) stimulates the growth of MCF-7ca cells. Both free AGM and polymer-bound AGM (0.2–0.4 mg/ml) were shown to block this mitogenic activity. When MCF-7ca cells were incubated [3H]androstenedione both AGM and HPMA copolymer–GFLG–AGM (0.2 mg/ml AGM-equiv.) showed the ability to inhibit aromatase. Although, free AGM was able to inhibit isolated human placental microsomal aromatase in a concentration dependent manner, polymer-bound AGM was not, suggesting that drug release is essential for activity of the conjugate. HPMA copolymer conjugates containing aromatase inhibitors have potential for the treatment of hormone-dependant cancers, and it would be particularly interesting to explore further as potential therapies in post-menopausal women as components of combination therapy.  相似文献   

11.
Multidrug resistance (MDR) has been considered as a huge challenge to the effective chemotherapy. Therefore, it is necessary to develop new strategies to effectively overcome MDR. Here, based on the previous research of N-(2-hydroxypropyl)methacrylamide (HPMA) polymer–drug conjugates, we designed an effective system that combined drug-efflux circumvention and mitochondria targeting of anticancer drug doxorubicin (Dox). Briefly, Dox was modified with mitochondrial membrane penetrating peptide (MPP) and then attached to (HPMA) copolymers (P-M-Dox). Our study showed that macromolecular HPMA copolymers successfully bypassed drug efflux pumps and escorted Dox into resistant MCF-7/ADR cells via endocytic pathway. Subsequently, the mitochondria accumulation of drugs was significantly enhanced with 11.6-fold increase by MPP modification. The excellent mitochondria targeting then resulted in significant enhancement of reactive oxygen species (ROS) as well as reduction of adenosine triphosphate (ATP) production, which could further inhibit drug efflux and resistant cancer cell growth. By reversing Dox resistance, P-M-Dox achieved much better suppression in the growth of 3D MCF-7/ADR tumor spheroids compared with free Dox. Hence, our study provides a promising approach to treat drug-resistant cancer through simultaneous drug efflux circumvention and direct mitochondria delivery.  相似文献   

12.
The use of poly(beta-malic acid) and poly(l-lysine citramide) carriers to transport doxorubicin (Dox) within K562 myeloblastic cells was studied by taking advantage of laser microspectrofluorometry (L-MSF). This technique provided a means to monitor and to quantify the penetration of Dox molecules in the cytoplasm and in the nucleus of Dox-sensitive and Dox-resistant cells. Comparison was made between polymer-drug conjugates more or less hydrophobised by C2, C7 and C12 aliphatic substituents and by the Dox attached to the polymer backbone as pendent chains. Furthermore, a method was proposed to introduce a cleavable non-peptidic spacer of the lactyllactyl-type between the poly(L-lysine citramide) backbone and the drug. It is shown that: Dox was released from the conjugates by a non-enzymatic route in the absence of cells, the Dox-uptake by cells was slower for the conjugates than for the free drug, and the hydrophobisation promoted the penetration of the released drug within the nucleus, even in the case of Dox-resistant cells. However, no reversion of the resistance was observed.  相似文献   

13.
《Journal of drug targeting》2013,21(10):874-889
Novel star polymer-doxorubicin conjugates designed for passive tumor targeting have been developed and their potential for treatment of cancer has been investigated. In the present study the synthesis, physico-chemical characterization, drug release, bio-distribution and preliminary data of in vivo efficacy of the conjugates are described. In the water-soluble conjugates the core of a molecule formed by poly(amido amine) (PAMAM) dendrimers was grafted with semitelechelic N-(2-hydroxypropyl)methacrylamide (HPMA) copolymers bearing doxorubicin (Dox) attached by hydrazone bonds enabling intracellular pH-controlled hydrolytic drug release, or by GFLG sequence susceptible to enzymatic degradation. The controlled synthesis utilizing semitelechelic copolymer precursors facilitated preparation of polymer conjugates in a broad range of molecular weights (1.1–3.0·105 g/mol). In contrast to free drug or linear conjugates the star polymer-Dox conjugates exhibited prolonged blood circulation and enhanced tumor accumulation in tumor-bearing mice indicating important role of the EPR effect. The star polymer-Dox conjugates showed significantly higher anti-tumor activity in vivo than Dox·HCl or its linear or graft polymer conjugates, if treated with a single dose 15 or 5?mg Dox eq./kg. Method of tumor initialization (acute or chronic experimental tumor models) significantly influenced effectiveness of the treatment with much lower success in treatment of mice bearing chronic tumors.  相似文献   

14.
N-(2-Hydroxypropyl)methacrylamide (HPMA) copolymer-doxorubicin (Dox) has already shown clinical activity in breast cancer patients. Moreover, we have recently found that an HPMA conjugate containing a combination of both Dox and the aromatase inhibitor aminoglutethimide (AGM) shows significantly increased anti-tumour activity in vitro. To better understand the mechanism of action of HPMA copolymer-AGM conjugates several models were used here to investigate their effect on cell growth and aromatase inhibition. Cytotoxicity of HPMA copolymer conjugates containing AGM, Dox and also the combination AGM-Dox was determined by MTT assay in MCF-7 and MCF-7ca cells. Androstenedione (5 x 10(- 8) M) stimulates the growth of MCF-7ca cells. Both free AGM and polymer-bound AGM (0.2-0.4 mg/ml) were shown to block this mitogenic activity. When MCF-7ca cells were incubated [(3)H]androstenedione both AGM and HPMA copolymer-GFLG-AGM (0.2 mg/ml AGM-equiv.) showed the ability to inhibit aromatase. Although, free AGM was able to inhibit isolated human placental microsomal aromatase in a concentration dependent manner, polymer-bound AGM was not, suggesting that drug release is essential for activity of the conjugate. HPMA copolymer conjugates containing aromatase inhibitors have potential for the treatment of hormone-dependant cancers, and it would be particularly interesting to explore further as potential therapies in post-menopausal women as components of combination therapy.  相似文献   

15.
The most frequent drawback of doxorubicin is the onset of drug resistance, due to the active efflux through P-glycoprotein (Pgp). Recently formulations of liposome-encapsulated doxorubicin have been approved for the treatment of tumors resistant to conventional anticancer drugs, but the molecular basis of their efficacy is not known. To clarify by which mechanisms the liposome-encapsulated doxorubicin is effective in drug-resistant cancer cells, we analyzed the effects of doxorubicin and doxorubicin-containing anionic liposomal nanoparticles ("Lipodox") on the drug-sensitive human colon cancer HT29 cells and on the drug-resistant HT29-dx cells. Interestingly, we did not detect any difference in drug accumulation and toxicity between free doxorubicin and Lipodox in HT29 cells, but Lipodox was significantly more effective than doxorubicin in HT29-dx cells, which are rich in Pgp. This effect was lost in HT29-dx cells silenced for Pgp and acquired by HT29 cells overexpressing Pgp. Lipodox was less extruded by Pgp than doxorubicin and inhibited the pump activity. This inhibition was due to a double effect: the liposome shell per se altered the composition of rafts in resistant cells and decreased the lipid raft-associated amount of Pgp, and the doxorubicin-loaded liposomes directly impaired transport and ATPase activity of Pgp. The efficacy of Lipodox was not increased by verapamil and cyclosporin A and was underwent interference by colchicine. Binding assays revealed that Lipodox competed with verapamil for binding Pgp and hampered the interaction of colchicine with this transporter. Site-directed mutagenesis experiments demonstrated that glycine 185 is a critical residue for the direct inhibitory effect of Lipodox on Pgp. Our work describes novel properties of liposomal doxorubicin, investigating the molecular bases that make this formulation an inhibitor of Pgp activity and a vehicle particularly indicated against drug-resistant tumors.  相似文献   

16.

Background and purpose:

Oxaliplatin is the first platinum-based compound effective in the treatment of colorectal cancer. Oxaliplatin combined with cetuximab for metastatic colorectal cancer is under evaluation. The preliminary results seem controversial, particularly for the use of cetuximab in K-Ras mutated patients. K-Ras mutation is known to affect redox homeostasis. Here we evaluated how the efficacy of oxaliplatin alone or combined with cetuximab varied according to the Ras mutation and redox status in a panel of colorectal tumour cell lines.

Experimental approach:

Viability was evaluated by methylthiazoletetrazolium assay, reactive oxygen species production by DCFDA and lucigenin on HT29-D4, Caco-2, SW480 and SW620 cell lines.

Key results:

Combination of oxaliplatin and cetuximab was less cytotoxic than oxaliplatin alone in colorectal cells harbouring wild-type Ras and membrane expression of receptors for epidermal growth factor receptor (EGFR), such as HT29-D4 and Caco-2 cells. In contrast, cetuximab did not affect oxaliplatin efficiency in cells harbouring K-RasV12 mutation, irrespective of membrane EGFR expression (SW620 and SW480 cells). Transfection of HT29-D4 with K-RasV12 decreased oxaliplatin IC50 and impaired cetuximab sensitivity, without affecting expression of membrane EGFR compared with HT29-D4 control. Oxaliplatin efficacy relies on endogenous production of H2O2. Cetuximab inhibits H2O2 production inhibiting the EGFR/Nox1 NADPH oxidase pathway. Oxaliplatin efficacy was impaired by short hairpin RNA for Nox1 and by catalase (H2O2 scavenger).

Conclusions and implications:

Cetuximab limited oxaliplatin efficiency by affecting the redox status of cancer cells through Nox1. Such combined therapy might be improved by controlling H2O2 elimination.  相似文献   

17.
The cytotoxicity of doxorubicin bound to poly(butyl cyanoacrylate) nanoparticles (Dox-PBCA-NP) was investigated in the rat glioma cell lines GS-9L, F-98 and RG-2. MTT and LDH assays were used as cytotoxic assays. In general, the cytotoxicity of nanoparticle-bound doxorubicin (Dox) was enhanced compared to the free drug in solution. However, responses of the cell lines towards the drug effects were different. In the case of free Dox in solution, this difference correlated with different intracellular concentrations of Dox, which in turn, depended on the level of P-glycoprotein (P-gp) expression in these cell lines. Accordingly, the 9L gliosarcoma (GS-9L) cells, which appeared to be most resistant towards Dox, were characterized by the highest P-gp expression.

Additionally, the influence of surfactants on the cytotoxic effect was investigated at different Dox concentrations. It was shown that the presence of polysorbate 80 (Tween® 80) in the nanoparticle formulation significantly enhanced the cytotoxicity, whereas poloxamer 188 (Pluronic® F68) and poloxamine 908 (Tetronic® 908) had a negligible influence.  相似文献   

18.
Design of an efficient site-specific drug delivery system based on degradable functional polymers still remains challenging. In this work, we synthesized and characterized three degradable functional polyesters belonging to the poly(malic acid) family: the poly(benzyl malate) (PMLABe), the poly(ethylene glycol)-b-poly(benzyl malate) (PEG42-b-PMLABe), the biotin-poly(ethylene glycol)-b-poly(benzyl malate) (Biot-PEG62-PMLABe). Starting from these building blocks, we were able to prepare the corresponding well-defined degradable functional nanoparticles whose toxicity was evaluated in vitro on normal and cancer cell lines. Results have evidenced that the prepared nanoparticles did not show any significant cytotoxicity even at high concentrations. A model anti-cancer drug (doxorubicin, Dox) or a fluorescent probe (1,1′-dioctadecyl-3,3,3′,3′-tetramethylindodicarbocyanine, DiD oil) has been encapsulated into PMLABe, PEG42-PMLABe or Biot-PEG62-PMLABe based nanoparticles in order to evaluate, respectively, the in vitro cytotoxicity of Dox-loaded nanoparticles on normal and cancer cell lines and the ligand (biotin) effect on cellular uptake in vitro using mmt 060562 cell line. Dox-loaded PMLABe, PEG42-PMLABe or Biot-PEG62-PMLABe nanoparticles showed an in vitro cytotoxicity similar to that of free Dox. Moreover, the DiD oil loaded Biot-PEG62-PMLABe based nanoparticles showed a better in vitro cellular uptake than ligand-free DiD oil loaded nanoparticles. Both results evidence the great potential of such degradable functional poly(malic acid) derivatives for the design of highly efficient site-specific anti-cancer nanovectors.  相似文献   

19.
The cytotoxicity of doxorubicin bound to poly(butyl cyanoacrylate) nanoparticles (Dox-PBCA-NP) was investigated in the rat glioma cell lines GS-9L, F-98 and RG-2. MTT and LDH assays were used as cytotoxic assays. In general, the cytotoxicity of nanoparticle-bound doxorubicin (Dox) was enhanced compared to the free drug in solution. However, responses of the cell lines towards the drug effects were different. In the case of free Dox in solution, this difference correlated with different intracellular concentrations of Dox, which in turn, depended on the level of P-glycoprotein (P-gp) expression in these cell lines. Accordingly, the 9L gliosarcoma (GS-9L) cells, which appeared to be most resistant towards Dox, were characterized by the highest P-gp expression.Additionally, the influence of surfactants on the cytotoxic effect was investigated at different Dox concentrations. It was shown that the presence of polysorbate 80 (Tween 80) in the nanoparticle formulation significantly enhanced the cytotoxicity, whereas poloxamer 188 (Pluronic F68) and poloxamine 908 (Tetronic 908) had a negligible influence.  相似文献   

20.
C-1748 is a DNA-binding agent with potent antitumor activity, especially towards prostate and colon carcinoma xenografts in mice. Here, we elucidated the nature of cellular response of human colon carcinoma HCT8 and HT29 cells to C-1748 treatment, at biologically relevant concentrations (EC90 and their multiplicity). Cell cycle analysis showed gradual increase in HCT8 cells with sub-G1 DNA content (25% after 72 h) considered as apoptotic. Hypodiploid cell population increased up to 60% upon treatment with 4× EC90 concentration of the drug. Compared with HCT8 cells, the fraction of sub-G1 HT29 cells did not exceed 14%, even following 4-fold dose escalation. Morphological changes and biochemical markers such as: phosphatydylserine externalization, apoptotic DNA breaks, mitochondrial dysfunction and caspase activation confirmed the presence of considerable amount of apoptotic HCT8 cells but only a low amount of apoptotic HT29 cells. Next, we demonstrated that HCT8 cells surviving after exposure to C-1748 were in the state of senescence, based on altered cell morphology and expression of a pH 6-dependent β-galactosidase. On the contrary, no β-galactosidase staining was observed in HT29 cells after C-1748 treatment. Moreover, prolonged drug incubation (up to 168 h) resulted in massive detachment of cells from culture plates, which together with Annexin V/PI results, indicated that necrosis was the main response of HT29 cells to C-1748 treatment. We also determined the ability of C-1748 to induce reactive oxygen species (ROS) in colon cancer cells and demonstrated, that generation of ROS was not essential for C-1748-induced apoptosis and cytotoxic activity of this drug.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号