首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
载TK基因聚丙交酯乙交酯纳米粒的性质及表达研究   总被引:2,自引:0,他引:2  
何勤  张志荣  刘戟  徐超群 《药学学报》2004,39(4):285-287
目的载pEGFP-TKAFB重组质粒纳米粒的性质及其表达研究。方法以无毒的可生物降解的高分子材料聚丙交酯乙交酯作为载体材料,采用双乳化溶媒蒸发法制备了载pEGFP-TKAFB重组质粒纳米粒,考察其形态学及包封率,琼脂糖电泳分析抗核酸酶抗超声的能力,MTT法测定GCV对细胞的抑制率,流式细胞仪测定报告基因EGFP的表达。结果制得的纳米粒,形态圆整,大小均匀,平均粒径(72±12) nm,平均包封率91.25%,质粒制成纳米粒后提高了质粒对抗超声剪切及核酸酶降解的能力,细胞转染效率也显著优于裸质粒。结论质粒DNA制成纳米粒可进一步研究基因药物的给药系统。  相似文献   

2.
目的 制备粒径符合要求(200 nm以内)的反义寡核苷酸-聚丙交酯乙交酯纳米粒(ATM-ASODNs-PLGA-NP),并初步测定纳米粒的一些理化性质.方法 以无毒的可生物降解的高分子材料聚丙交酯乙交酯作为载体材料,采用双乳化溶媒蒸发法制备载ATM-ASODNs-PLGA-NP,并评价其粒子形态、多分散性、包封率和进入人喉颈癌细胞(Hep-2)的能力等.结果 制备的纳米粒形态圆整,大小均匀,平均粒径为87.9 nm,PDI为0.116,平均包封率为81.70%.经过PLGA纳米粒的包裹,对ATM-ASODN可起较好的保护作用,能载ATM-ASODN进入Hep-2细胞.结论 载反义寡核舒酸纳米粒的制备工艺简便,粒子性状符合要求.  相似文献   

3.
吉顺莉  李博  李贞  王成润  金一  戈延茹 《医药导报》2010,29(11):1411-1415
目的采用聚丙交酯乙交酯共聚物(PLGA)载体制备紫杉醇(TAX)纳米粒,并进行体外评价。方法采用改良的溶剂扩散法制备TAX PLGA共聚物纳米粒,考察不同乳化剂类型和各工艺因素对纳米粒粒径的影响,通过动态激光粒度分析仪、透射电子显微镜(TEM)、扫描电子显微镜(SEM)、差示扫描量热法(DSC)及X线粉末衍射(XRD)初步研究其载药性质,并研究纳米粒冻干粉的体外释放特性。结果优选出制备工艺为:双十二烷基二甲基溴化铵(DMAB)作为乳化剂,浓度为1%(W/V),聚合物浓度为1%(W/V),水相与有机相的体积比例为20:10,均质机转速为16 000 r•min 1,药物浓度为0.1%(W/V)。所得纳米粒外观圆整,平均粒径为99.0 nm,Zeta电位58.3 mV,包封率为56.77%,载药量率为7.10%。TAX纳米粒具有缓释性,体外释放分为两相。DSC及XRD表明TAX被有效地包裹在纳米粒中。结论PLGA纳米粒可成为TAX的新型载体。  相似文献   

4.
制备了注射用载胸苷激酶(TK)基因质粒PLGA纳米粒的冻干剂,并对其形态、粒径、稳定性、体外抗核酸酶和抗超声能力等进行了观察。结果表明,纳米粒可提高TK基因对核酸酶和超声的抵抗能力。  相似文献   

5.
目的:以自制材料乙交酯丙交酯共聚物-维生素E聚乙二醇1000琥珀酸酯(polylactide-co-glycolide-D-α-tocopheryl polyethylene glycol 1000 succinate,PLGA-TPGS)为载体制备脂蟾毒配基PLGA-TPGS纳米粒(Resibufogenin-loaded PLGA-TPGS nanoparticles,RPTN),并以市售材料乙交酯丙交酯共聚物(PLGA)为载体制备脂蟾毒配基PLGA纳米粒(RBG-loaded PLGA nanoparticles,RPN),体外评价和比较2种纳米粒的质量。方法:采用超声乳化-溶剂挥发法制备RPTN和RPN,用透射电子显微镜和激光粒度仪分别测定二者的外观、粒径、表面电荷。采用反相高效液相色谱法,色谱柱为Hypersil C18(4.6 mm×250 mm,5 μm),甲醇和0.05%冰醋酸溶液(9∶1)为流动相,检测波长为298 nm,测定RBG在RPTN和RPN中的载药量、包封率和体外释放度。结果:RPTN和RPN的粒径分别为152.3 nm和331.7 nm,载药量和包封率分别为18.4%、79.3%和15.1%、68.6%。体外药物释放30 d时RPTN和RPN的体外累积释放率分别为86.7%和72.3%,RPTN释放较完全。结论:自制载体制备的RPTN比RPN粒径更小,载药量和包封率更大,体外有明显的缓释作用,释放更完全。  相似文献   

6.
目的用新型生物可降解材料羟基丁酸酯-羟基戊酸酯共聚物(PHBV)为载体,以氢化泼尼松(prednisolone,PNS)为模型药制备PNS-PHBV纳米粒(NP)。方法用超声乳化法制备PNS-PNBV纳米粒,激光粒度分析仪测试NP的粒径及其分布以及粒子表面的Zeta电位。结果NP的粒径为50~250 nm。随着药/载比增加,NP的载药量也增大,但包封率与Zeta电位却明显下降;体外释药曲线表现出明显两相释药特征,伴随着不同程度突释效应,粒径越小突释效应越大,体外释药最长达32 h。结论PNS-PNBV纳米粒制备工艺稳定,具有明显缓释作用。  相似文献   

7.
邢贞建  李祥  陶涛 《中国药房》2011,(25):2357-2360
目的:制备青蒿琥酯纳米粒,并对其性质及体外细胞抑制作用进行研究。方法:以聚乳酸-羟基乙酸共聚物(PLGA)为载体,采用自乳化方法制备青蒿琥酯纳米粒。扫描电镜观察纳米粒的形态,激光粒度仪测定纳米粒的粒径及其分布;考察纳米粒的载药量、包封率、体外释放情况;MTT法考察纳米粒对人白血病细胞株K562在不同时间(24、48、72h)的体外细胞抑制率,并与青蒿琥酯(原料药)比较。结果:所制青蒿琥酯纳米粒为圆球形,表面光滑,平均粒径为(144±3.0)nm,Zeta电位是-31.5mV,平均载药量和包封率分别为14%、84%;体外释放试验前期有明显突释现象,前24h累积释放度为46%,其后释放均匀,120h累积释放度达65%,具有缓释作用;其在72h时对细胞抑制率高于青蒿琥酯组(76.4%vs.59.1%),有较强抑制作用(P<0.05)。结论:所制青蒿琥酯纳米粒在体外具有较好的缓释性,对K562细胞有较强的抑制作用。  相似文献   

8.
目的制备布洛芬聚氰基丙烯酸烷酯纳米粒(IBU-PACA-NP)。方法采用乙醚界面缩聚法制备布洛芬聚氰基丙烯酸烷酯纳米粒;以包封率、载药量为指标,在单因素考察处方及工艺条件基础上,采用正交设计法L9(34)对处方进行优化。结果按优化处方制备的纳米粒平均粒径为166 nm,包封率为96.60%,载药量为17.83%,Zeta电位为-20.2 mV。结论乙醚界面缩聚法制备的布洛芬聚氰基丙烯酸烷酯纳米粒粒径小,包封率和载药量符合要求,可用于口服或注射给药。  相似文献   

9.
目的:本研究以脂蟾毒配基(resibufogenin,RBG)为模型药物,以自制的乙交酯丙交酯共聚物-维生素E聚乙二醇1000琥珀酸酯(polylactide-co-glycolide-D-α-tocopheryl polyethylene glycol 1000 succinate,PLGA-TPGS)为载体材料,采用正交试验筛选制备脂蟾毒配基PLGA-TPGS纳米粒(RBG-loaded PLGA-TPGS nanoparticles,RPTN)的最佳处方和制备工艺,并对RPTN进行体外稳定性考察。方法:采用超声乳化-溶剂挥发法制备RPTN,用单一因素法分别考察主药与载体配比、TPGS水溶液浓度、超声功率、超声时间对RPTN的粒径、载药量和包封率的影响。根据单一因素考察的试验结果,设定因素水平表,通过正交试验筛选制备RPTN的最佳处方和制备工艺。采用影响因素、加速、长期试验考察RPTN的体外稳定性。结果:通过正交试验筛选出制备RPTN的最佳处方和制备工艺,即主药与载体比例为3∶10(W∶W),0.05%TPGS水溶液为乳化剂,超声功率250 W下超声10 min。6批RPTN的平均粒径、载药量和包封率分别为(152.3±2.5)nm、(18.4±0.3)%和(79.3±1.2)%(n=6)。在稳定性考察中,RPTN在影响因素、加速、长期试验中均表现出良好的稳定性。结论:筛选出制备RPTN的最佳处方和制备工艺,自制RPTN粒径较小、载药量和包封率较高,体外具有良好的稳定性。  相似文献   

10.
目的制备抗癫疒间肽纳米粒,并研究其体外释药性能。方法选用聚乙二醇-聚乳酸-聚乙醇酸嵌段共聚物为载体,采用复乳-溶剂挥发法制备抗癫疒间肽纳米粒,以包封率、载药量等指标优化制备工艺,并研究纳米粒体外释药性能。结果抗癫疒间肽纳米粒外观呈圆形或类圆形,平均粒径为(100.2±2.45)nm,包封率和载药量分别为(64.46±1.34)%和(4.73±0.32)%,体外释药呈现缓释和突释两个阶段,符合Weibull方程。结论建立的制备工艺简便可行,得到的抗癫疒间肽纳米粒包封率和载药量较高,粒径小,体外释药具有明显的缓释特征。  相似文献   

11.
目的: 制备槲皮素固体脂质纳米粒并对其理化性质进行考察。方法: 采用乳化蒸发-低温固化法制备槲皮素固体脂质纳米粒,以正交设计优化处方和制备工艺,超滤法测定包封率,透射电子显微镜对其粒子形态进行观察,并使用激光粒度分析仪测定其粒径和Zeta电位。结果: 经处方优化制备的固体脂质纳米粒平均粒径为(124.2±0.371) nm,Zeta电位为(-22.3±0.315) mV,粒子形态均匀,无粘连,平均包封率为(89.3±1.209)%。结论: 制备槲皮素固体脂质纳米粒的工艺简便可行,包封率较高且纳米粒质量优良。  相似文献   

12.
乳化蒸发法制备固体脂质纳米粒   总被引:2,自引:0,他引:2  
李姜晖  王柏 《药学进展》2008,32(3):127-131
目的:采用乳化蒸发法制备固体脂质纳米粒,并考察其载药性能。方法:对影响固体脂质纳米粒质量的工艺因素和处方因素进行考察和优化设计,得到最优处方。选用模型药物酮洛芬制备载药固体脂质纳米粒,考察其包封率和体外释放行为。结果:所得固体脂质纳米粒平均粒径为(228.2±18.1)nm,多分散系数为(0.217±0.022),ξ电位为-(21.4±0.6)mV。载药固体脂质纳米粒最佳包封率为(64.1±3.3)%,体外释放行为符合Weibull模型。结论:采用乳化蒸发法制备固体脂质纳米粒是可行的。  相似文献   

13.
聂绩  黄华 《中国药房》2011,(17):1598-1601
目的:制备氯霉素固体脂质纳米粒(CAP-SLN)并考察其质量。方法:选取CAP与甘油棕榈酸硬脂酸酯(PrecirolATO5)比例(药脂比)、泊洛沙姆含量、乳化温度和初乳-分散相的体积比为考察因素,包封率和载药量为评价指标,设计正交试验并优化处方,利用乳化蒸发-低温固化法制备CAP-SLN;同时以粒径、Zeta电位、包封率、载药量、稳定性及体外释放度为指标评价其质量。结果:最佳制备处方药脂比为1∶10,泊洛沙姆含量为2%,乳化温度为70℃,初乳-分散相的体积比为1∶7。所制纳米粒平均粒径为227nm,Zeta电位为-30.5mV,平均包封率为65.9%,平均载药量为6.59%;于4℃环境中考察30d,其包封率、粒径无显著变化,25℃环境中包封率显著降低、粒径明显增大;在前4h内有明显突释现象,药物累积释放率达58.86%,48h时累积释放率达85.09%,体外释药行为符合Weibull方程。结论:该制剂处方设计和工艺方法可行,制剂质量符合要求,可达到缓释效果。  相似文献   

14.
离子凝胶法制备水杨酸壳聚糖纳米粒   总被引:1,自引:0,他引:1  
目的以壳聚糖为载体材料制备水杨酸壳聚糖纳米粒,并对其制备工艺及体系pH值对药物包封率的影响进行考察,初步探讨壳聚糖纳米粒的载药机制。方法以水杨酸为模型药物,采用离子凝胶法制备壳聚糖纳米粒,以包封率及粒径为指标,考察处方因素对纳米粒制备的影响。结果壳聚糖浓度、体系的pH值、药物质量浓度是影响制备工艺的主要因素;体系的pH值可显著提高壳聚糖纳米粒的包封率。结论药物与壳聚糖之间的离子相互作用较弱,并不是纳米粒载药的主要机制。  相似文献   

15.
夏爱晓  孙渊  马红丹 《中国药业》2012,21(15):59-61
目的制备长春新碱固体脂质纳米粒(VCR-SLN)并优化其处方组成和制备工艺。方法单因素考察筛选载体、稳定剂及制备工艺,用正交试验进行优化,以包封率、载药量和粒径为指标,筛选最佳处方和制备工艺,并对在优化条件下制备的VCR-SLN进行质量评价。结果以单硬酸酯甘油酯为载体,大豆卵磷脂、泊洛沙姆188为乳化剂,采用复乳-溶剂扩散法制备得VCR-SLN,其平均粒径为156.3 nm,包封率为55.12%,载药量为3.09%。结论复乳-溶剂扩散法适用于制备VCR-SLN。  相似文献   

16.
熊果酸磷脂纳米粒的制备与质量评价   总被引:2,自引:1,他引:2  
周小菊  易以木 《医药导报》2004,23(7):0504-0506
目的:对熊果酸纳米粒的制备工艺和含量测定方法进行研究,并对其质量进行评价。方法:用不同的方法制备熊果酸磷脂纳米粒,确定最佳工艺,并对其形态、包封率和pH值等性质进行研究。结果:熊果酸磷脂纳米粒的平均粒径315.0 nm,包封率94.5%,pH值6.35。结论:选择乳化超声法制备熊果酸纳米粒可行,为开发熊果酸新型静脉注射制剂提供了实验依据。  相似文献   

17.
吴燕  田姗  孔健  徐荣 《安徽医药》2016,20(10):1852-1856
目的 以叶酸修饰的生物可降解材料乳酸-羟基乙酸共聚物(PLGA-PEG-FOL)为载体,构建紫杉醇靶向纳米粒并进行评价。方法 采用乳化-分散法,以溶液稳定性、粒径和包封率为评价指标,通过考察乳化剂的用量、有机相种类、水相与有机相比例、聚合物分子量、药载比、剪切速度等因素对纳米粒制备的影响,确定最优处方和制备工艺,并对纳米粒的形态、粒径、Zeta电位、包封率及载药量进行评价。结果 合成了载体PLGA-PEG-FOL;制备的紫杉醇靶向纳米粒为均匀球形粒子,粒径为(88.2±6.7)nm,Zeta电位为(56.5±4.2)mV,包封率为(92.9±3.2)%,载药量为(4.8±1.3)%。结论 纳米粒制备方法简便易行,重现性好。制备的纳米粒大小均匀,粒度分布较窄,包封率和载药量较高。  相似文献   

18.
目的对水飞蓟素纳米粒载体材料和制备方法进行了初步筛选.方法以平均粒径、包封率、载药量和表面形态作为评价指标,考察了水飞蓟素纳米粒载体材料和制备方法.结果固体脂质纳米粒(SLN)具有较高的包封率,纳米粒呈片状;乳酸/乙醇酸共聚物(PLGA)纳米粒粒径分布较均匀;纳米脂质体形成较少.结论选择山榆酸甘油酯作为制备水飞蓟素纳米粒的载体材料,采用高压乳匀法制备水飞蓟素SLN是较为理想的方法.  相似文献   

19.
目的 研究醋酸地塞米松PEG-PLGA纳米粒的制备工艺及影响因素,并优化冻干粉针工艺.方法 采用乳化/溶剂蒸发法制备醋酸地塞米松PEG-PLGA纳米粒,并考察其粒径分布、包封率、载药量等;采用单因素试验筛选出合适的冻干保护剂.结果 醋酸地塞米松PEG-PLGA纳米粒的粒径为91.43±1.00 nm,Zeta电位为-22.73 ±0.57 mv,包封率为88.78% ±2.10%,载药量为4.95%-±0.23%;10%蔗糖作为冻干保护剂的效果最好,冻于复溶后粒径约117.27 nm.结论 所用制备工艺简单易行,可用于制备醋酸地塞米松PEG-PLGA纳米粒.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号