首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Airway inflammation plays a central role in the pathophysiology of diverse pulmonary diseases. In this study, we investigated whether exposure to particulate matter (PM) 2.5, a PM with an aerodynamic diameter of less than 2.5 µm, enhances inflammation‐related toxicity in the human respiratory system through activation of the epidermal growth factor receptor (EGFR) signaling pathway. Through cytokine antibody array analysis of two extracts of PM2.5 [water (W‐PM2.5) and organic (O‐PM2.5) soluble extracts] exposed to A549 (human alveolar epithelial cell), we identified eight cytokines changed their expression with W‐PM2.5 and three cytokines with O‐PM2.5. Among them, epidermal growth factor (EGF) was commonly up‐regulated by W‐PM2.5 and O‐PM2.5. Then, in both groups, we can identify the increase in EGF receptor protein levels. Likewise, increases in the phosphorylation of ERK1/2 MAP kinase and acetylation of nuclear factor(NF)‐κB were detected. We also detected an increase in IL‐8 that was related to inflammatory response. And using the erlotinib as an inhibitor of EGFR, we identified the erlotinib impaired the phosphorylation of EGFR, ERK1/2, acetylation of NF‐κB proteins and decreased IL‐8. Furthermore, at in vivo model, we were able to identify similar patterns. These results suggest that PM2.5 may contribute to an abnormality in the human respiratory system through EGFR, MAP kinase, NF‐κB, and IL‐8 induced toxicity signaling. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 1628–1636, 2017.  相似文献   

2.
Exposure to different ambient pollutants maybe more toxic to lung than exposure to a single pollutant. In this study, we discussed the inflammation and oxidative stress responses of rat lung caused by ozone and PM2.5 versus that of rats exposed to saline, ozone, or single PM2.5. Wistar rats inhaled 0.8 ppm ozone or air for 4 h and then placed in air for 3 h following intratracheal instillation with 0, 0.2 (low dose), 0.8 (medium dose), 3.2 (high dose) mg/rat PM2.5 dissolved in sterile saline (0.25 mL/rat), repeated twice per week for 3 weeks, the cumulative doses of PM2.5 in animals were 1.2, 4.8, and 19.2 mg. Rats were sacrificed 24 h after the last (sixth) exposure. The collected bronchoalveolar lavage fluid (BALF) was analyzed for inflammatory cells and cytokines. Lung tissues were processed for light microscopic and transmission electron microscopic (TEM) examinations. Results showed that total cell number in BALF of PM2.5‐exposed groups were higher than control (p < 0.05). PM2.5 instillation caused dose‐trend increase in tumor necrosis factor alpha (TNF‐α), interleukin‐6, lactate dehydrogenase, and total protein of BALF. Exposure to ozone alone only caused TNF‐α significant change in above‐mentioned indicators of lung injury. On the other hand, ozone could enhance PM2.5‐induced inflammatory changes and pathological characters in rat lungs. SOD and GSH‐Px activities in lung were reduced in PM2.5‐exposed rats with and without prior ozone exposure compared to control. To determine whether the PM2.5 and ozone affect endothelium system, iNOS, eNOS, and ICAM‐1 mRNA levels in lung were analyzed by real‐time PCR. These data demonstrated that inflammation and oxidative stress were involved in toxicology mechanisms of PM2.5 in rat lung and ozone potentiated these effects induced by PM2.5. These results have implications for understanding the pulmonary effects induced by ozone and PM2.5. © 2013 Wiley Periodicals, Inc. Environ Toxicol 30: 343–356, 2015.  相似文献   

3.
Chronic exposure to PM2.5 contributes to the pathogenesis of numerous disorders, although the underlying mechanisms remain unknown. The study investigated whether exposure of human monocytes to PM2.5 is associated with alterations in miRNAs. Monocytes were exposed in vitro to PM2.5 collected during winter and summer, followed by miRNA isolation from monocytes. Additionally, in 140 persons chronically exposed to air pollution, some miRNA patterns were isolated from serum seasonally. Between-season differences in chemical PM2.5 composition were observed. Some miRNAs were expressed both in monocytes and in human serum.MiR-34c-5p and miR-223-5p expression was more pronounced in winter. Bioinformatics analyses showed that selected miRNAs were involved in the regulation of several pathways. The expression of the same miRNA species in monocytes and serum suggests that these cells are involved in the production of miRNAs implicated in the development of disorders mediated by inflammation, oxidative stress, proliferation, and apoptosis after exposure to PM2.5.  相似文献   

4.
Human bronchial epithelial (HBE) cells and c-fos-silenced HBE cells were first exposed to fine particulate matter (PM2.5) and the resulting miRNA sequenced. Thereafter, a weighted gene co-expression network analysis was performed using Cytoscape software to visualize the interactions between identified hub miRNAs and their target genes. Nine differentially expressed miRNAs in hub miRNAs were identified in the different treatment groups, of which miR-25−3p, miR-215−5p, and miR-145−5p were selected for further study. Following qPCR validation, both miR-25−3p and miR-215−5p were found to be significantly up-regulated whilst, miR-145−5p was significantly down-regulated (p < 0.05) in the PM2.5 group. Furthermore, miR-25−3p and miR-145−5p were also significantly down-regulated in the untreated group of c-fos silenced HBE cells. However, miR-215−5p was significantly down-regulated in both the untreated and PM2.5-treated groups of c-fos silenced HBE cells. Subsequent analysis of their target genes also illustrated differential gene expression when comparing the treatment groups of the two cell types. The present data indicated that the c-fos gene has an important effect on the miRNA expression profiles and the related signaling pathways in PM2.5-treated HBE cells. Therefore, each of miR-25−3p, miR-145−5p, and miR-215−5p may potentially provide future research information for additional exploration of a PM2.5-induced carcinogenesis mechanism.  相似文献   

5.
PM2.5 travels along the respiratory tract and enters systemic blood circulation. Studies have shown that PM2.5 increases the incidence of various diseases not only in adults but also in newborn infants. It causes chronic inflammation in pregnant women and retards fetal development. In this study, pregnant rats were exposed to PM2.5 for extended periods of time and it was found that PM2.5 exposure increased immune cells in mother rats. In addition, cytokines and free radicals rapidly accumulated in the amniotic fluid and indirectly affected the fetuses. The authors collected cerebral cortex and hippocampus samples at E18 and analyzed changes of miRNA levels. Expression levels of cortical miR‐6315, miR‐3588, and miR‐466b‐5p were upregulated, and positively correlated with the genes Pkn2 (astrocyte migration), Gorab (neuritogenesis), and Mobp (allergic encephalomyelitis). In contrast, PM2.5 decreased expression of miR‐338‐5p and let‐7e‐5p, both related to mental development. Further, PM2.5 exposure increased miR‐3560 and let‐7b‐5p in the hippocampus, two proteins that regulate genes Oxct1 and Lin28b that control ketogenesis and glycosylation, and neural cell differentiation, respectively. miR‐99b‐5p, miR‐92b‐5p, and miR‐99a‐5p were decreased, leading to reduced expression of Kbtbd8 and Adam11 which reduced cell mitosis, migration, and differentiation, and inhibited learning abilities and motor coordination of the fetus. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 1412–1425, 2017.  相似文献   

6.
MicroRNAs (miRNAs) have been reported to regulate essential biological processes, and their expression was shown to be affected by pathological processes and drug-induced toxicity. Amphotericin B (AmB) can cause liver and kidney injury, but a recently developed complex of AmB with copper (II) ions (AmB–Cu2+) exhibits a lower toxicity to human renal cells while retaining a high antifungal activity. The aim of our study was to assess AmB–Cu2+-induced changes in the miRNA profile of renal cells and examine which biological processes are significantly affected by AmB–Cu2+. We also aimed to predict whether differentially expressed miRNAs would influence observed changes in the mRNA profile. miRNA and mRNA profiles in normal human renal proximal tubule epithelial cells (RPTEC) treated with AmB–Cu2+ or AmB were appointed with the use of microarray technology. For differentially expressed mRNAs, the PANTHER overrepresentation binomial test was performed. miRNA target interactions (MTIs) were predicted using the miRTar tool. The mRNA profile was much more strongly affected than the miRNA profile, in both AmB–Cu2+- and AmB-treated cells. AmB–Cu2+ influenced both the miRNA and mRNA profiles much more strongly than AmB. The most affected biological processes were intracellular signal transduction (AmB–Cu2+) and signal transduction (AmB). Only a few interactions between differentiating miRNAs and mRNAs were found. Changes in the profiles of genes involved in signal transduction and intracellular signal transduction may not result from interactions with differentially expressed miRNAs. Changes in the miRNA profile suggest the possible influence of tested drugs on the regulation of fibrosis via a miRNA-dependent mechanism.  相似文献   

7.
《Nanotoxicology》2013,7(9):1045-1067
Abstract

Research suggests that particulate matter (PM2.5) is a predisposing factor for metabolic syndrome-related systemic inflammation and oxidative stress injury. TNF-α as a major pro-inflammatory cytokine was confirmed to participate in various diseases. Inactive rhomboid protein 2 (iRhom2) was recently determined as a necessary regulator for shedding of TNF-α in immune cells. Importantly, kidney-resident macrophages are critical to inflammation-associated chronic renal injury. Podocyte injury can be induced by stimulants and give rise to nephritis, but how iRhom2 contributes to PM2.5-induced renal injury is unclear. Thus, we studied whether PM2.5 causes renal injury and characterized iRhom2 with respect to TNF-α release in mice macrophages and renal tissues in long-term PM2.5-exposed mouse models. After long-term PM2.5 exposures, renal injury was confirmed via inflammatory cytokine, chemokine expression, and reduced antioxidant activity. Patients with kidney-related diseases had increased TNF-α, which may contribute to renal injury. We observed up-regulation of serum creatinine, serum urea nitrogen, kidney injury molecule 1, uric acid, TNF-α, MDA, H2O2, and O2 in PM2.5-treated mice, which was greater than that found in Nrf2?/? mice. Meanwhile, increases in metabolic disorder-associated indicators were involved in PM2.5-induced nephritis. In vitro, kidney-resident macrophages were observed to be critical to renal inflammatory infiltration and function loss via regulation of iRhom2/TACE/TNF-α signaling, and suppression of Nrf2-associated anti-oxidant response. PM2.5 exposure led to renal injury partly by inflammation-mediated podocyte injury. Reduced SOD1, SOD2, Nrf2 activation, and increased XO, NF-κB activity, TACE, iNOS, IL-1β, TNF-α, IL-6, MIP-1α, Emr-1, MCP-1, and Cxcr4, were also noted. Long-term PM2.5 exposure causes chronic renal injury by up-regulation of iRhom2/TACE/TNF-α axis in kidney-resident macrophages. Overexpression of TNF-α derived from macrophages causes podocyte injury and kidney function loss. Thus, PM2.5 toxicities are related to exposure duration and iRhom2 may be a potential therapeutic renal target.  相似文献   

8.
9.
Exposure to ambient fine particulate matter (<2.5 μm; PM2.5) increases the risk of the physiopathology of vascular diseases. However, the underlying mechanism, particularly the mitochondrial damage mechanism, of PM2.5‐induced vascular dysfunction is still unclear. In this study, we examined PM2.5‐induced alterations of mitochondrial morphology, and further demonstrated the adverse effects on mitochondrial dynamics and function in vascular endothelial cells. Consequently, cultured EA.hy926 cells were subjected to PM2.5 collected from Beijing. A Cell Counting Assay Kit‐8 demonstrated that PM2.5 exposure decreased the proliferation of EA.hy926 cells in a dose‐dependent manner. The exposure caused an increment of abnormal mitochondria coupled with the decrease of fusion protein MFN2 and the increase of fission protein FIS1, suggesting that PM2.5 inhibits mitochondrial fusion. Further analyses revealed PM2.5 decreased the mitochondrial membrane potential (ΔΨm) and increased the mitochondrial permeability transport pore opening, eventually resulting in impairments in adenosine triphosphate synthesis. Therefore, it is clearly shown that PM2.5 triggered endothelial toxicity through mitochondria as the target, including the damage of mitochondrial homeostasis.  相似文献   

10.
11.
Oxidative stress and inflammation are critically implicated in ambient fine particulate matter (mean diameter < 2.5 μm; PM2.5)‐induced lung injury. Autophagy, playing a crucial role in various physiopathological conditions, modulates cellular homeostasis and stress adaptation. Resveratrol is a phytoalexin that exerts potent antioxidant effects on cardiopulmonary diseases. To date, the mechanisms by which resveratrol protects against PM2.5 remain to be elucidated. In the present study, we investigated the effect of resveratrol on PM2.5‐induced oxidative injury. The potential role of nuclear factor erythroid‐2‐related factor 2 and autophagy in this progress was explored. Human bronchial epithelial cells were treated with PM2.5 and the cytotoxicity and oxidative stress markers were determined. The results showed that PM2.5 decreased cell viability and elevated the level of lactate dehydrogenase. The levels of malondialdehyde and reactive oxygen species were increased by PM2.5 exposure. PM2.5 also induced a significant increase of the inflammatory cytokines including interleukin (IL)‐6, IL‐8, IL‐1β and tumor necrosis factor α. Meanwhile, PM2.5 triggered autophagy formation and alteration of the nuclear factor erythroid‐2‐related factor 2 pathway. Furthermore, human bronchial epithelial cells were co‐treated with PM2.5 and resveratrol in the presence or absence of 3‐methylamphetamine, an inhibitor of autophagic formation. It was revealed that resveratrol intervention abolished PM2.5‐induced oxidative injury partially through the suppression of autophagy deregulation. Findings from this study could provide new insights into the molecular mechanisms of pulmonary intervention during PM2.5 exposure.  相似文献   

12.
Recent studies have shown that fine particulate matter (PM2.5) is associated with multiple adverse health outcomes and PM2.5‐induced oxidative stress is now commonly known as a proposed mechanism of PM2.5‐mediated toxicity. However, the association between allergic symptoms in children and exposure to PM2.5 has not been fully elucidated, particularly the role of PM2.5 on the indoor environment involved in allergy or non‐allergy is unknown. The aim of the present study was to explore whether indoor PM2.5 from the homes of children with allergic symptoms had more increased risks of allergy than that of healthy ones and then compare the toxicity and inflammatory response of them. In this study, indoor PM2.5 was collected from the homes of schoolchildren with allergic symptoms and those of healthy ones respectively, and components of PM2.5 were analyzed. PM2.5‐mediated oxidative damage and inflammatory response were further evaluated in mouse peritoneal macrophages based on its effects on the levels of reactive oxygen species accumulation, lipid peroxidation, DNA damage or cytokine production. It seems that oxidative stress may contribute to PM2.5‐induced toxicity, and PM2.5 from the allergic indoor environment produced more serious toxic effects and an inflammatory response on mouse peritoneal macrophages than that from a non‐allergic indoor environment. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
Fine particulate matter (PM2.5) is a major component of air pollutions that are closely associated with increased risk of lung cancer. However, the role of PM2.5 in the etiology of lung cancer is largely unknown. In this study, we performed acute (24 hours) and chronic (five passages) exposure models to investigate the carcinogenetic mechanisms of PM2.5 by targeting the induction of epithelial‐mesenchymal transition (EMT) and cancer stem cells (CSC) properties in human non‐small cell lung cancer cell line A549. We found that both acute and chronic PM2.5 exposure enhanced cell migration and invasion, decreased mRNA expression of epithelial markers and increased mRNA expression of mesenchymal markers. Chronic PM2.5 exposure further induced notable EMT morphology and CSC properties, indicating the developing process of cell malignant behaviors from acute to chronic PM2.5 exposure. CSC properties induced by chronic PM2.5 exposure characterized with increased cell‐surface markers (CD44, ABCG2), self‐renewal genes (SOX2 and OCT4), side population cells and neoplastic capacity. Furthermore, the levels of three stemness‐associated microRNAs, Let‐7a, miR‐16 and miR‐34a, were found to be significantly downregulated by chronic PM2.5 exposure, with microarray data analysis from TCGA database showing their lower expression in human lung adenocarcinoma tissues than that in the adjacent normal lung tissues. These data revealed that the induction of EMT and CSC properties were involved in the lung cancer risk of PM2.5, and implicated CSC properties and related microRNAs as possible biomarkers for carcinogenicity prediction of PM2.5.  相似文献   

14.
15.
Coarse and fine particulate matter (PM2.5-10 and PM2.5, respectively) are regulated ambient air pollutants thought to have major adverse health effects in exposed humans. The role of endotoxin and other bioaerosol components in the toxicity of PM from ambient air is controversial. This study evaluated the inflammatory lung response in mice instilled intratracheally with PM2.5-10 and PM2.5 emitted from a working dairy barn, a source presumed to have elevated concentrations of endotoxin. PM2.5-10 was more pro-inflammatory on an equal weight basis than was PM2.5; both fractions elicited a predominantly neutrophilic response. The inflammatory response was reversible, with a peak response to PM2.5-10 observed at 24 h after instillation, and a return to control values by 72 h after instillation. The major active pro-inflammatory component in whole PM2.5-10, but not in whole PM2.5, is heat-labile, consistent with it being endotoxin. A heat treatment protocol for the gradual inactivation of biological materials in the PM fractions over a measurable time course was developed and optimized in this study using pure lipopolysaccharide (LPS) as a model system. The time course of heat inactivation of pure LPS and of endotoxin activity in PM2.5-10 as measured by Limulus bioassay is identical. The active material in both PM2.5-10 and PM2.5 remained in the insoluble fraction when the whole PM samples were extracted with physiological saline solution. Histological analysis of lung sections from mice instilled with PM2.5-10 or PM2.5 showed evidence of inflammation consistent with the cellular responses observed in lung lavage fluid. The major pro-inflammatory components present in endotoxin-rich PM were found in the insoluble fraction of PM2.5-10; however, in contrast with PM2.5-10 isolated from ambient air in the Central Valley of California, the active components in the insoluble fraction were heat-labile.  相似文献   

16.
In previous studies, we have investigated the relationships between environmental chemicals and health risk based on omics analysis and identified significant biomarkers. Our current findings indicate that hexanal may be an important toxicant of the pulmonary system in epigenetic insights. MicroRNA (miRNA) is an important indicator of biomedical risk assessment and target identification. Hexanal is highly detectable in the exhaled breath of patients with chronic obstructive pulmonary disease (COPD) and chronic inflammatory lung disease. In this study, we aimed to identify hexanal‐characterized miRNA‐mRNA correlations involved in lung toxicity. Microarray analysis identified 56 miRNAs that commonly changed their expression more than 1.3‐fold in three doses (600, 1000, and 1500 ppm) within hexanal‐exposed Fischer 344 rats by inhalation, and 226 genes were predicted to be target genes of miRNAs through TargetScan analysis. By integrating analyses of miRNA and mRNA expression profiles, we identified one anti‐correlated target gene (Chga; chromogranin A; parathyroid secretory protein 1). Comparative toxicogenomics database (CTD) analysis of this gene showed that Chga is involved with several disease categories such as cancer, respiratory tract disease, nervous system disease, and cardiovascular disease. Further research is necessary to elucidate the mechanisms of hexanal‐responsive toxicologic pathways at the molecular level. This study concludes that our integrated approach to miRNA and mRNA enables us to identify molecular events in disease development induced by hexanal in an in vivo rat model. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1909–1921, 2016.  相似文献   

17.
Growing evidences indicate that inflammation induced by PM2.5 exposure has been considered as a major driving force for the development of cardiovascular diseases. However, the mechanisms underlying PM2.5‐induced cardiac injury remain unclear. This study aims to investigate the role of NLRP3 inflammasome in PM2.5‐induced cardiac functional and pathological injury in mice. In this study, BALB/c mice were intratracheally instilled with PM2.5 suspension (4.0 mg/kg BW) for 5 days to set up a cardiac injury model, which was evaluated by electrocardiogram monitoring, HE and Masson staining. Then, the effects of PM2.5 on the expression of α‐SMA, NLRP3, IL‐1β, and IL‐18 proteins and the activation of caspase‐1 and IL‐1β were investigated. The results showed that PM2.5 exposure induced characteristic abnormal ECG changes such as the abnormality of heart rhythm, tachycardia, and T‐wave reduction. Inflammatory cell infiltration and fibrosis were observed in the heart tissues of PM2.5‐exposed mice. Meanwhile, PM2.5 exposure increased the expression of α‐SMA. And, NLRP3 activation‐associated proteins of NLRP3, IL‐1β, IL‐18, Cleaved caspase‐1 p10, and Cleaved IL‐1β were upregulated in heart tissue of PM2.5‐induced mice. In summary, PM2.5 exposure could induce cardiac functional and pathological injury, which may be associated with the activation of NLRP3 inflammasome.  相似文献   

18.
ABSTRACT

Exposure to ambient air pollutants such as ozone (O3) and particulate matter (PM) is associated with increased cardiovascular morbidity and rate of mortality, but the underlying biological mechanisms have yet to be described. Emerging evidence shows that extracellular vehicle (EV) microRNAs (miRNAs) may facilitate cell-to-cell and organ-to-organ communications and play a role in the air pollution-induced cardiovascular effects. This study aims to explore the association between air pollutant exposure and miRNA changes related to cardiovascular diseases. Using a panel study design, 14 participants with coronary artery diseases were enrolled in this study. Each participant had up to 10 clinical visits and their plasma samples were collected and measured for expression of miRNA-21 (miR-21), miR-126, miR-146, miR-150, and miR-155. Mixed effects models adjusted for temperature, humidity, and season were used to examine the association between miRNA levels and exposure to 8-hr O3 or 24-hr PM2.5 up to 4 days prior. Results demonstrated that miR-150 expression was positively associated with O3 exposure at 1–4 days lag and 5day moving average while miR-155 expression tracked with O3 exposure at lag 0. No significant association was found between miRNA expression and ambient PM2.5 at any time point. β-blocker and diabetic medication usage significantly modified the correlation between O3 exposure and miR-150 expression where the link was more prominent among non-users. In conclusion, evidence indicated an association between exposure to ambient O3 and circulating levels of EV miR-150 and miR-155 was observed. These findings pointed to a future research direction involving miRNA-mediated mechanisms of O3-induced cardiovascular effects.  相似文献   

19.
20.
Epidemiological studies show a positive correlation between the air levels of fine particulate matter (PM2.5) and cardiovascular disorders, but how PM2.5 affects cardiomyocytes has not been studied in great deal. The aim of the present study was to obtain an insight into the links among intracellular levels of reactive oxygen species (ROS), apoptosis and mitogen‐activated protein kinases (MAPKs) in rat cardiac H9c2 cells exposed to PM2.5. H9c2 cells were incubated with PM2.5 at 100–800 µg ml–1 to evaluate the effects of PM2.5 on cell viability, cell apoptosis, intracellular levels of ROS and expression of apoptosis‐related proteins as well as activation of MAPKs. PM2.5 decreased cell viability, increased the cell apoptosis rate and intracellular ROS production in a concentration‐dependent manner. PM2.5 decreased the Bcl‐2/Bax ratio and increased cleaved caspase‐3 levels. A Western blots study showed up‐regulation of phosphorylated MAPKs including extracellular signal‐regulated protein kinases (ERKs), c‐Jun NH2‐terminal kinases (JNKs) and p38 MAPK in the PM2.5‐treated cells. The p38 MAPK inhibitor SB239063 attenuated whereas the ERKs inhibitor PD98059 augmented the effects of PM2.5 on apoptosis and the expression of related proteins. In conclusion, PM2.5 decreases cell viability and increases apoptosis by enhancing intracellular ROS production and activating the MAPKs signaling pathway in H9c2 cells. The MAPKs signaling pathway could be a new promising target for clinical therapeutic strategies against PM2.5‐induced cardiac injury. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号